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Abstract
Reducing levels of  CO2, a greenhouse gas, in the earth’s atmosphere is crucial to addressing the problem of climate change. 
An effective strategy to achieve this without compromising the scale of industrial activity involves use of renewable energy 
and waste heat in conversion of  CO2 to useful products. In this perspective, we present quantum mechanical and machine 
learning approaches to tackle various aspects of thermocatalytic reduction of  CO2 to methanol, using  H2 as a reducing 
agent. Waste heat can be utilized effectively in the thermocatalytic process, and  H2 can be generated using solar energy in 
electrolytic, photocatalytic and photoelectrocatalytic processes. Methanol being a readily usable fuel in automobiles, this 
technology achieves (a) carbon recycling process, (b) use of renewable energy, and (c) portable storage of  H2 for applications 
in automobiles, alleviating the problem of rising  CO2 emissions and levels in atmosphere.

Keywords CO2 utilization · Methanol · Hydrogen evolution reaction · CO2 reduction reaction · Hydrogen storage · Density 
functional theory · Quantum mechanics · Machine learning · Catalysis · Green technology

Introduction

A dire predicament faced globally today is that of increased 
 CO2 emissions, which contribute significantly to global 
warming. While  CO2 occurs naturally in the earth’s atmos-
phere originating from sources such as volcanoes, forest 
fires, hot springs and geysers, its concentration has increased 
from pre-industrial levels of 280 ppm to 412 ppm in 2020 
(Blunden and Arndt 2020; Eggleton and Eggleton 2013). 
Such rise in  CO2 levels over the course of the industrial 
revolution is primarily anthropogenic and can be attributed 
largely to the increased use of fossil fuels.

While there is an overall increase in fossil fuel based 
 CO2 emissions over the years, there have been some occa-
sional dips correlating with slumps in industrial activity. For 
instance, the dip recorded in 2007–2008 corresponded to 
the global financial crisis (GFC). More recently, due to the 
COVID-19 pandemic, a sharp reduction in  CO2 emissions 
has been estimated (Le Quéré et al. 2020). Interestingly 

however, each such a drop is followed by a steep rise indi-
cating the revival of the economy and industrial activity. 
Sustained economic growth thus necessitates technologies 
to stall rising  CO2 emissions.

To combat  CO2 emissions, drastic scaling down of indus-
trial activity is both impractical and futile. Rather, a more 
effective strategy for sustainability is to convert the emitted 
 CO2 to potentially useful, value-added chemicals. In this 
regard, the  CO2 reduction reaction (CO2RR) is especially 
relevant, and involves reduction of  CO2 to form compounds 
such as carbon monoxide, methane, methanol (MeOH) and 
dimethyl ether, among others. In this perspective, our focus 
is on MeOH as a product of CO2RR and how computer sim-
ulations can be a powerful tool in development of efficient 
catalytic materials to achieve high performance technology.

Hydrogen as a Green Fuel: Importance 
and Challenges

Dihydrogen  (H2) is critical in its role as a reducing agent in 
hydrogenation of  CO2. Also,  H2, by itself, is a zero-emis-
sion fuel with a high combustion energy, and can be used to 
power liquid-propellant rockets, automobiles, and fuel cells. 
 H2 is rarely found in its pure form in the atmosphere because 
of its molecular weight being significantly lower than air. 
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Also, production of  H2 at an industrial scale comes at an 
energy cost. As of 2020, most usable  H2 is being produced 
through steam reforming of fossil fuels (Collodi 2010; Liu 
et al. 2010). Undesirably, this ties back to the problem of 
 CO2 emissions and the advantage of  H2 being a clean fuel 
is compromised.

A major technological challenge in the use of  H2 as a 
fuel in automobiles is its safe storage that is mass and vol-
ume efficient. Its qualities of having low ignition energy 
and high combustion energy make it an excellent fuel but 
also dangerous to store, transport, and handle. Current tech-
niques to store  H2 include tuning external conditions, i.e., 
high pressures and low temperatures. Car manufactures 
such as Honda and Nissan have been developing the for-
mer approach with compressed  H2 in tanks at pressures as 
high as 350–700 bar (Eberle et al. 2012), while the BMW 
Hydrogen 7 (a limited edition car) uses the latter technique 
by using liquid  H2 in its fuel tanks by lowering temperatures 
to − 253 °C (Wallner et al. 2008). As of 2019, commercially 
available fuel cell vehicles (FCV) powered by  H2 include 
Toyota Mirai, Hyundai Nexo, and Honda Clarity.

Despite the established technologies,  H2 at high pres-
sures requires strong materials for storage and achieving low 
temperatures requires significant energy, resulting in greater 
costs. Solid state or chemical storage circumvent these dis-
advantages and also offers high storage densities. Metal 
hydrides, which fall in this category, are in development 
for use in automobiles (Lototskyy et al. 2017). Alternatives 
for solid state and chemical storage of  H2 are active areas 
of research, and the technology described here amounts to 
chemical storage of  H2 in the form of MeOH.

Methanol as an Alternative Fuel

MeOH is used as a precursor in production of several com-
modity chemicals, such as formaldehyde, acetic acid, methyl 
tert-butyl ether, among others. In 2005, Nobel laureate 
George A. Olah, proposed the idea of methanol economy, 
to replace fossil fuels as the primary source of energy (Olah 
2003, 2005; Olah et al. 2009). Methanol can be used read-
ily as an alternative fuel in internal combustion engines, 
in addition to being used as a cooking fuel (Saraswat and 
Bansal 2017; Shih et al. 2018). Use of MeOH in internal 
combustion engines, in lieu of fossil fuel derived petroleum, 
offers several advantages. It is significantly cheaper, and can 
also be derived from organic waste. It is harder to ignite than 
gasoline, making MeOH fires unlikely. In case of accidents, 
it does not produce opaque smoke clouds, and fires due to 
MeOH can be easily extinguished with water. These factors 
add to the promise of a methanol economy, and the global 
demand of MeOH, which was ~ 70 million metric tons in 
2015, is expected to go up significantly (Roy et al. 2018a, b).

Currently, MeOH is produced industrially by passing 
syngas (a mixture of  H2 and CO) over Cu/ZnO/Al2O3, at 
50–100 bar and 473–573 K (Bart and Sneeden 1987; Beh-
rens et al. 2012). Production of syngas is predominantly 
through gasification of coal and steam reformation (Liu 
et al. 2010). We note that the same process is used in the 
generation of  H2, and ties back to the problem of additional 
 CO2 emissions. Generating MeOH through CO2RR does not 
suffer from this disadvantage. As mentioned earlier, MeOH, 
generated from the addition of  H2 to  CO2, also amounts to 
chemical storage of  H2 and innovative portable use of  H2 
as a fuel.

Sustainable Production of Methanol Using 
Renewable Energy

CO2 capture is the first step towards utilization of  CO2. Of 
the various sources of  CO2 emissions (Davis et al. 2018) 
(Fig. 1), not all qualify as emission streams which can be 
used readily as inputs in a  CO2 capture process. Sources 
which can be used as emission streams include the flue gas 
from thermal power stations, emissions from oil refineries, 
blast furnace gas, and cement kiln off-gas (Rubin and De 
Coninck 2005). In addition to being some of the strongest 
sources of  CO2 emissions, these sources also generate con-
siderable amounts of waste heat.

Therefore, a thermocatalytic approach to the CO2RR 
is attractive because it would reduce  CO2 emissions while 
making use of the already generated waste heat. When the 
required intake of  H2 is generated using solar energy through 
photocatalytic and photoelectrocatalytic approaches, this 
further reduces the overall  CO2 emission in the process.

Despite generating  H2 using clean energy sources, and 
carrying out CO2RR using waste heat, use of the produced 
MeOH as a fuel will add to  CO2 emissions. In principle,  CO2 
generated from burning of MeOH as a fuel can be recycled 

Fig. 1  Share of  CO2 emissions due to various human activities for the 
year 2014, with the percentages indicated inside the bars. The overall 
annual  CO2 emissions amounts to 33.9 gigatons (Davis et al. 2018)
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back to generate more MeOH, making the process carbon 
neutral (Fig. 2). In the overall process, renewable energy 
conversion, hydrogen generation and storage, and reduced 
 CO2 emissions can be achieved.

In this perspective, we discuss various aspects of real-
izing this goal (Fig. 2), with an emphasis on how computer 
simulations can be cost-effective and efficient tools in devel-
opment of such technology. In the next section, we discuss 
two main theoretical approaches to this problem. This is 
followed by sections on  H2 generation and CO2RR. Finally, 
the challenges and opportunities for simulation techniques 
are presented along with conclusions.

Uncovering Overall Operation of Catalysis: 
Computer Simulations

Catalysts play key role in most industrial reactions in terms 
of their efficiency of conversion as well as selectivity of 
products. A catalyst is a material on the surface of which 
reactants find an energetically easy pathway to form products 
in selective manner. In the past 2–3 decades, remarkable pro-
gress has been achieved experimentally in the field of reduc-
tion of  CO2 (Álvarez et al. 2017; Roy et al. 2018a, b; Wang 

et al. 2015). However, experimental identification and isola-
tion of reaction intermediates forming on the catalyst surface 
is still a challenge owing to their short lifetimes. Computer 
simulations are powerful tools in complementing experi-
ments in this task. Despite having short lifetimes, interme-
diates are minima in the energy landscape of the reaction, 
and are accessible to first-principles quantum mechanical 
density functional theory (DFT) calculations. These calcu-
lations determine interatomic interaction potential through 
simulation of quantum motion of electrons, giving access to 
interactions between various reacting species with the cata-
lyst surface and each other (Weijing et al. 2018). Transition 
states, in comparison to reaction intermediates, have even 
shorter lifetimes. Experimentally, this is the characteristic 
difference between the two. Both intermediates and tran-
sition states are stationary points in the energy landscape: 
intermediates are local minima while transition states are 
typically first-order saddle points, and this topological differ-
ence helps in the optimization and analysis of these entities.

Revealing Mechanism of Catalysis Using Quantum 
Mechanics: Density Functional Theory

First-principles DFT calculations give an estimate of the 
electronic structure (energy and density) of the ground state 
for a given nuclear geometry. Among computational quan-
tum mechanical methods, DFT is one of the most popu-
lar, efficient and versatile methods, and used extensively in 
materials science. In DFT, exact form of the exchange–cor-
relation (XC) energy functional is not known, and many 
flavors of its approximations have been developed. Primary 
among these are the local-density (LDA) (Becke 1986) and 
generalized gradient (GGA) (Perdew et al. 1996) approxi-
mations. LDA is based on XC energy of uniform electron 
gas and tends to give an overbinding description, leading 
to high chemisorption energies and barriers (Becke 1986, 
2014). Overbinding of LDA is partially corrected in GGA 
(Beck 1993; Becke 2014), which is a commonly used func-
tional approximation in computational heterogeneous cataly-
sis. Although functionals more accurate than GGA (hybrid 
XC functionals such as B3LYP, PBE0, M05-2X) have been 
developed, their high computational cost for large systems 
typically restrict the level of theory to GGA.

Results obtained within DFT depend on the XC func-
tional used, and therefore, the functionals need to be selected 
carefully to estimate energies which are accurate and physi-
cally meaningful (Christensen et al. 2015). A reliable way 
to support the selection of an optimal XC functional is 
through comparison of the calculated values (structural 
parameters and band gaps of reactants and products) with 
experiment. However, experimental values of adsorption 
energies, activation barriers, and structures of intermedi-
ates may not be available. Several studies have benchmarked 

Fig. 2  Schematic of a sustainable process where MeOH is generated. 
PC, PEC and TC denote photocatalytic, photoelectrocatalytic, and 
thermocatalytic, respectively
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the performance of various XC functionals in the context of 
catalysis. For instance, the RPBE (Hammer et al. 1999) and 
BEEF-vdW (Wellendorff et al. 2012) XC functionals have 
been specifically developed to study catalytic reactions and 
are shown to be ideal for estimation of chemisorption ener-
gies (Teng et al. 2014; Wellendorff and Silbaugh 2015). Both 
GGA and LDA do not capture the van der Waals interac-
tions, and a parametrized form of the Grimme D2 scheme 
(Grimme 2006) of van der Waals correction improves the 
description of interactions greatly. PBE–Grimme D2 (Per-
dew et al. 1996), a popular and frequently used GGA-XC 
functional in heterogeneous catalysis, is known to be reli-
able in reproducing experimental enthalpies relevant to  CO2 
reduction reactions fairly accurately (Christensen et al. 2015; 
Perdew et al. 1996).

Investigating Reaction Pathways and Mechanisms

The energies of intermediates, reactants and products, con-
stitute parameters in the thermodynamic analysis of the 
reaction. The relative energy of products in comparison to 
reactants, the enthalpy, is the amount of heat generated or 
consumed in a reaction (see Fig. 3). Energies of the transi-
tion states, on the other hand, provide activation energies 
(Fig. 3) which are inversely related to the rate of the reac-
tions. They are a measure of energy to activate an intermedi-
ate through stretching or breaking of bonds.

The structures and energies of the reactants, products, 
all intervening intermediates and transition states constitute 
the complete pathway, or mechanism, of a reaction (Fig. 3). 
Often, more than one mechanism is proposed experimen-
tally based on identification of some intermediates. In such 
a situation, theory is in a position to narrow down the most 
likely pathway or the mechanism by comparing intermediate 
energies and associated activation barriers (Cherevotan et al. 
2021). Structures of the catalyst-reacting species complex 

are useful to identify active sites on catalysts along with 
spectroscopic information. This is especially important for 
multistep reactions, where different active sites on a cata-
lyst assist in different steps of the reaction. Identification 
of active sites also helps in the design of more efficient and 
cheaper catalysts.

In the forthcoming sections (“Mechanistic Insights 
into HER from Computer Simulations” and “Mechanistic 
Insights into CO2RR from Computer Simulations”), the 
mechanisms and catalysts for Hydrogen Evolution Reaction 
and CO2RR are discussed, with emphasis on how computer 
simulations have helped in mechanistic understanding, and 
hence in the design of new materials to increase the effi-
ciency of these chemical processes.

Descriptors for High‑Throughput Screening: 
Machine Learning

Understanding the mechanism of a reaction is tremendously 
useful in intuitive approaches for improving the catalyst. 
However, using purely mechanistic approaches to predict 
new materials as catalysts is enormously computationally 
expensive. This is further complicated by the exceedingly 
large number of candidate materials which can potentially 
serve as catalysts, and first-principles calculations of detailed 
mechanistic pathways on each of these materials and their 
various surfaces is simply impractical. Therefore, there is a 
need for an efficient simulation tool to screen through a large 
library of materials, possibly through an algorithm which 
can analyze the data on structural, chemical, and electronic 
properties of materials to provide insightful predictions. 
These paradigms already exist in areas such as drug design 
and protein structure prediction, and while their translation 
to material science has been limited by the available data and 
computational costs, the recent advances in computational 
throughput and access to data have increased its feasibility. 
Databases of information on materials, such as the Materials 
Genome Initiative (de Pablo 2014), Materials Project (Jain 
et al. 2013), and MatWeb (MatWeb 2013), among others, 
are the examples of these initiatives.

In general, descriptors are a set of physically meaningful 
parameters or properties of materials, and material databases 
comprise typically a large number of descriptors, for a large 
set of materials (Ghiringhelli et al. 2015). Artificial neural 
networks (ANN) are useful in modelling the relationship 
between all the descriptors and the target property [the key 
performance index (KPI)] (Bhadeshia 2009, 1999). In con-
trast, machine learning (ML) schemes such as least abso-
lute shrinkage and selection operation (LASSO) and boot-
strapped projected gradient descent (BoPGD) are the feature 
selection schemes that can be effectively used in determi-
nation of the minimal set of fingerprint descriptors start-
ing from a large pool of descriptors or their combinations 

Fig. 3  Schematic of a reaction mechanism, where, R, P, I, TS, rep-
resent the reactant, product, intermediates, transition states, respec-
tively, and Ea, ΔH represent activation energies, and enthalpy of the 
reaction, respectively
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(Kumar et al. 2018; Pankajakshan et al. 2017). Descrip-
tors should ideally (a) be easy to calculate, (b) be able to 
uniquely characterize the material property (i.e. be distinc-
tive for different materials), and (c) the set of such descrip-
tors should be as small as possible. These can be used to 
develop a simple model (M) which relates the fingerprint 
descriptors (D) (corresponding to a set of materials (C)), 
with a KPI or key performance indicator (Fig. 4). Recently, 
dimensional analysis and scaling laws were combined with 
BoPGD ML approach to derive models that learn from 
data as well as wisdom (Kumar et al. 2018; Pankajakshan 
et al. 2017). Such models are often more generalizable than 
ANNs because their construction involves determination and 
use of physically meaningful descriptors. This model, M, 
can then be applied to new materials, to predict their KPI. 
In the forthcoming sections (“Descriptors for HER” and 
“Descriptors for CO2RR”), descriptors for  H2 generation 
and CO2RR, and the role they play in greater understanding 
of the respective processes are discussed.

Hydrogen Evolution Reaction

H2, as a fuel, possesses the highest energy per unit mass. 
It has the added benefit of being a clean fuel since the only 
by-product of its combustion is  H2O. It is also used exten-
sively as a reducing agent. A clean and efficient method 
of producing  H2 has thus been studied extensively for the 
past few decades. One of the most elementary processes to 
produce  H2 is water splitting, i.e., the chemical splitting of 
 H2O into oxygen and hydrogen, which was first reported in 
1789 (De Levie 1999; van Troostwijk and Deiman 1789). 
Electrochemical splitting of water is a redox reaction con-
sisting of an oxidation (oxygen evolution reaction, OER) 

and a reduction (hydrogen evolution reaction, HER) half-cell 
reactions:

An ideal water splitting photocatalyst should have elec-
tronic conduction band minima (CBM) just above the hydro-
gen reduction potential and valence band maxima (VBM) 
just below the oxygen evolution potential on the standard 
hydrogen electrode (SHE) scale (Fig. 5). CBM is the low-
est energy unoccupied electronic state, while VBM is the 
highest energy occupied state. The gap between the CBM 
and VBM is called the band gap, and this gap determines 
whether a material is a conductor, insulator, or a semi-con-
ductor. Optical excitation of an electron (e−) from VBM to 
CBM, creates a hole (h+) in the VBM (Fig. 5), and resulting 
pair of electron and hole can be used to catalyse both the 
half-cell reactions (HER and OER, respectively) and thus 
efficiently split water molecules to yield  H2 (g) and  O2 (g).

In the case of electrocatalysis, OER and HER are car-
ried out on specifically designed catalysts which reduce the 
electrochemical overpotential, thus making the reactions 
feasible. Overpotential is the voltage difference between 
the thermodynamic reduction potential and the potential at 
which the reaction occurs experimentally (Morales-Guio 
et al. 2014). Efficient catalysts are those materials that 
facilitate the reaction at lower overpotentials. Currently, the 
best catalysts for HER are platinum-group metals, which 
include ruthenium, rhodium, palladium, osmium, iridium, 

2H
2
O(l) → O

2
(g) + 4H

+(aq) + 4e
−(OER)

2H
+(aq) + 2e

−
→ H

2
(g) (HER)

Fig. 4  Representation of machine learning schemes to map a set of 
descriptors Di for a set of n materials Mj to obtain a model which can 
predict the Key Performance Index (KPI) for a new material

Fig. 5  Conduction band maximum (CB) and valence band minimum 
(VB) of an ideal water splitting photocatalyst aligned with the stand-
ard hydrogen electrode (SHE) scale. HER and OER mean hydrogen 
evolution reaction, and oxygen evolution reaction, respectively. Elec-
tron (filled green circle) and hole (unfilled red circle) are indicated e−, 
and h+, respectively (colour figure online)
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and platinum. However, the dearth and high cost of these 
elements hinders their use as catalysts on an industrial scale 
(Bockris 1970; Trasatti 1972).

Mechanisms and Conditions for HER

HER can proceed via two reaction pathways (Fig. 6), Vol-
mer-Heyrovsky and Volmer-Tafel pathways, both consisting 
of two elementary steps, each involving the transfer of one 
electron from the cathode to  H+, evolving  H2 (Morales-Guio 
et al. 2014). The first step (Volmer) is common to both path-
ways and corresponds to the adsorption of the first proton on 
an available active site of the catalyst. An electron transfers 
from the catalyst to the proton to yield an adsorbed H atom 
(Fig. 6). Following this step, the formation and subsequent 
evolution of  H2 can occur via two dissimilar routes. The first 
is the Heyrovsky step, where, a proton from the solution 
reacts with the adsorbed H-atom to form  H2. This happens 
simultaneously with transfer of another electron from the 
electrode evolving  H2. This step is also referred to as the 
ion + atom reaction (Morales-Guio et al. 2014). The sec-
ond pathway involves the Tafel step, where, another proton 
attaches to the electrode surface in the vicinity of the first 
H-atom. The two adsorbed H-atoms coalesce to give  H2, and 
thus this is a combination reaction.

HER is generally carried out in acidic media where 
hydronium ions  (H3O+) serve as the source of protons. Pre-
viously, it has been shown that some of the most effective 
materials for acidic HER are sulfides, carbides and phos-
phides (Attanayake et al. 2020; Chhetri et al. 2016; Dheer 
et al. 2020; Kouser et al. 2015; Roy et al. 2018a, b; Sarkar 
et al. 2020; Vesborg et al. 2015; Zou and Zhang 2015). How-
ever, for industrial scaling of HER, OER, the oxidation half 
of the reaction, should also be efficient in the same medium 
(Attanayake et al. 2020; Gong et al. 2016; Montoya et al. 
2017; Thenuwara et al. 2016a, b; Thenuwara et al. 2016a, 
b). Since many inexpensive OER catalysts fail in acidic 
medium, it is preferable to choose an alkaline medium to 
split water and generate hydrogen (Thenuwara et al. 2018). 
Additionally, alkaline medium is known to reduce corro-
sion of non-noble metal catalysts and keep them functional 
for longer cycles. HER follows the same mechanisms in 
both acidic and alkaline media but there is an additional 

step involved in the latter. The catalyst also has to break 
the stronger covalent H–O–H bonds to produce  H+ for the 
reaction, instead of the dative covalent bond in  H3O+ ion, 
which is a weaker interaction. Computer simulations of the 
 H2O adsorption and splitting gives insight into the activity 
of a catalyst in alkaline medium based on the activation of 
the H–O–H bond (Kou et al. 2018; Mahmood et al. 2018; 
Maslovara et al. 2019; Mohammed-Ibrahim and Sun 2019; 
Narasimman et al. 2021).

Mechanistic Insights into HER from Computer 
Simulations

A catalytic process involves interaction of reactants, inter-
mediates, and products on the electrode surface. Quantifying 
the strength of interaction of these molecular moieties gives 
insights into the possible mechanism and helps identify the 
rate-determining step along the reaction. It is possible to 
obtain the relative potential energy cost associated with 
each elementary reaction along a pathway and determine 
the activity of the material as a catalyst. Identifying active 
sites and tuning the catalytic activity of a material is also 
possible using computational analysis.

As mentioned above, for a catalyst to carry out HER in 
an alkaline medium, it should be able to activate the H–O–H 
bond and cleave it within reasonable energy cost (Thenu-
wara et al. 2016a, b). Once the protons are generated, the 
H-atom intermediate should adhere to the catalyst neither 
exceedingly strongly, nor very weakly. This is because of 
the Sabatier principle which states that if the intermediate 
(H* in this case) attaches strongly to the material, the forma-
tion of product from the intermediate will be hindered. On 
the other hand, if the catalyst interacts with an intermediate 
weakly, it will quickly desorb from the surface before form-
ing the product, rendering the reaction unfeasible.

Descriptors for HER

Gibbs free energy of adsorption of H, ΔGH*, is a widely 
used parameter to probe the catalytic activity of any mate-
rial for HER and a value close to 0 eV is desirable (Choi 
et al. 2013; Greeley et al. 2006; Hinnemann et al. 2005; 
Nørskov et al. 2005). Pt is known for stabilising the H* 

Fig. 6  The mechanism of 
hydrogen evolution on the 
surface of a cathode
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intermediate with a ΔGH* of approximately − 0.1 eV. By 
computing ΔGH* within first-principles DFT for various 
metallic surfaces, Nørskov et al. showed a volcano shape 
relationship between ΔGH* and exchange current density 
(Nørskov et al. 2005). However, this approach does not con-
sider the effects of an electrode–electrolyte interface, and 
a passivation layer on measuring the properties of metals. 
Work function of a metal, φ, is another parameter that was 
recently demonstrated as a descriptor for HER by Zeradjanin 
et al. (Zeradjanin et al. 2017). Work function is the minimum 
thermodynamic work, or energy, required to remove an elec-
tron from the surface of a material. They showed that there 
exists a similar volcano type relation between the exchange 
current density and the difference in work functions (Δφ) of 
hydrogenated and non-hydrogenated metals in the presence 
of an interfacial layer of water molecules. Δφ as a descriptor 
only explains the ability of hydrogen to adhere to potential 
catalysts without considering important factors like changes 
in the electrolyte, interfacial interactions, to name a few, 
which play a key role in determining the kinetics of the reac-
tion. While there are not many other descriptors of HER, it 
is worth noting that they depend invariably on how H binds 
to the surface.

Reduction of  CO2 to MeOH

Established Mechanisms of  CO2 Reduction to MeOH

CO2 is a significantly stable molecule and hence the activa-
tion of the C=O bond is a challenge. Here, activation of 
a bond refers to cleavage or elongation of the bond. Also, 
 CO2 is a Lewis acid, implying that a catalyst should have the 

ability to donate electrons to (the anti-bonding orbitals of) 
 CO2 for successful thermocatalytic conversion of  CO2. The 
overall reaction  (CO2 +  3H2 →  CH3OH +  H2O) is exothermic 
with an enthalpy of − 49.3 kJ  mol−1 at 298.15 K, mean-
ing, high temperatures would hinder the reaction. Currently, 
a metal that can successfully reduce  CO2 to MeOH on an 
industrial scale is Cu (Liu et al. 2003; Wang et al. 2011).

Mechanism of a catalytic reaction naturally depends on 
the catalyst being used, and three established mechanisms of 
CO2RR to MeOH on Cu as the catalyst are discussed below, 
since it is currently the most widely used (Li et al. 2015; 
Tang et al. 2017). These established mechanisms form the 
standard with which reaction mechanisms on new catalytic 
materials can be compared with, to assess their catalytic 
performance. The three mechanisms are the formate (orange 
and purple pathways in Fig. 7), RWGS (CO hydrogenation) 
(red pathway in Fig. 7), and carboxylic acid (green and blue 
pathways in Fig. 7) mechanisms, differentiated by first inter-
mediates, which are formate (HCOO*), carbon monoxide 
(CO), and trans–COOH, respectively. These intermediates 
effectively control the rate of the reaction, and their forma-
tion is the rate-determining step in the respective mecha-
nism. It should be noted that the aforementioned interme-
diates have been experimentally obtained. Therefore, they 
act as starting points of computational research to decipher 
the subsequent intermediates and map the entire mechanism 
(Fig. 7). These identify the intermediates which crucially 
affect reaction rates, which are hard to isolate experimen-
tally. This is an illustration of how experiment and computer 
simulations work synergistically to obtain mechanisms.

Despite significant overlapping parts of these path-
ways (Fig. 7), the mechanism appears complex. Further, 
the formate pathway additionally branches into formate-1, 

Fig. 7  Reaction pathways of 
 CO2 hydrogenation to MeOH 
on Cu as the catalyst. Path-
ways coloured green, orange, 
purple, red, and blue indicate 
the cis–COOH, formate (1 
and 2), formate-3, RWGS and 
trans–COOH pathways. The 
various pathways are differenti-
ated based on the intermediate 
formed after the addition of the 
first  H+ atom
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formate-2, and formate-3 pathways. In the forthcom-
ing subsection, the mechanism is clarified with the aid of 
first-principles computer simulations. Further, catalysts 
apart from Cu, and the accompanying mechanism are also 
discussed.

Mechanistic Insights into CO2RR from Computer 
Simulations

Computer simulations have found the formate-2 pathway to 
be kinetically favourable over the formate-1 pathway (Fig. 7) 
in the case of Cu(111) (Grabow and Mavrikakis 2011; Tang 
et al. 2017). Kinetically favourable implies that the barri-
ers between intermediates (Ea in Fig. 3) are reasonably low. 
The HCOO* intermediate can bind to the surface either in 
a monodentate or a bidentate fashion, depending on the 
catalyst, meaning that it can form one (monodentate) or two 
(bidentate) bonds with the surface. If HCOO* were to bind 
to the surface in a bidentate manner, then the incoming H* 
can only attack the C atom of HCOO*, thus reducing the 
possibility of the formate-2 pathway. This has been observed 
in the case of Cu (111) (Grabow and Mavrikakis 2011; Zhao 
et al. 2011) and Ni-doped Cu (111) (Yang et al. 2012). This 
example illustrates how computer simulations probe these 
reactions at an atomistic level, providing insight which is not 
possible through experiments.

The trans–COOH pathway is named so because in the 
–COOH group, attached to the surface, the H and carbonyl 
O are in a trans configuration or arrangement. While a cis 
configuration is also possible (see insets in Fig. 7 for cis 
and trans configurations), it cannot be formed directly from 
hydrogenation of  CO2. In the trans–COOH configuration, 
the H atom is closer to the surface of the catalyst (Fig. 7). 
They are distinguishable only by the direction of the OH 
group. Computer simulations indicate that the cis and trans 
configurations are interconvertible because of similar stabili-
ties (Tang et al. 2017). Therefore, the formation of the cis 
and trans configurations does not necessarily decide which 
pathway is chosen (green or blue in Fig. 7), since the cis and 
trans configurations can switch easily.

Descriptors for CO2RR

A catalyst’s ability to bind with an adsorbate strongly 
depends on the electronic structure of the surface. In the 
context of CO2RR, the catalyst’s ability to activate the 
O=C=O bond depends on its capacity to donate electrons 
from its filled d-orbitals to the anti-bonding (π*) orbitals of 
 CO2. The d-band model suggests that the extent of coupling 
between the d and π* orbitals can be correlated with location 
of the d-band centre, which can be experimentally deter-
mined as well. Therefore, the energy location of the d-band 

centre is an excellent descriptor for pure materials (Hammer 
and Norskov 1995).

Ma et al. (2015) used artificial neural networks (ANN) to 
develop a model to capture adsorbate–substrate interactions 
to propose better catalysts for CO2RR. They showed that 
along with the location of the d-band centre, higher moments 
of the d-band such as its occupation, centre, width, skew-
ness, and kurtosis, and local Pauling electronegativity are 
efficient descriptors for alloys and mixtures. They found this 
to be especially true in the case of coinage metals (Cu, Ag, 
Au) as compared to Group 10 transition metals (Ni, Pd, Pt).

A more recent study used Bootstrapped Projected Gradi-
ent Descent (BoPGD) to build a model which can predict the 
KPI (binding energy of the adsorbed CO on the catalyst sur-
face) from a large number of descriptors (Pankajakshan et al. 
2017). From the large number of descriptors, a smaller set 
of fingerprinted descriptors are chosen, making the model 
efficient and chemically intuitive. This study found that 
the inclusion of work function as an additional descriptor, 
greatly improves the d-band model. The BoPGD, a feature 
selection scheme, offers several advantages over ANN and 
other ML tools: it uses fingerprinted descriptors, employs a 
clustering algorithm which makes it scale more efficiently, 
it does not have instability issues that methods like LASSO 
face, and most importantly, chemical insights can be gleaned 
from the analysis.

Summary and Outlook

Challenges and Opportunities for Computer 
Simulations

First-principles based computer simulations are useful 
in determination of relevant structures like the reactants, 
products, intermediates and transition states, which govern 
the mechanism of the catalytic reaction. Determining these 
stationary points does not provide dynamical insights into 
the reaction. However, performing dynamical simulations 
on catalytic reactions, which typically have a large system 
size, is computationally intractable. Further, the reaction 
pathway mapped by calculations usually involves one reac-
tant molecule which gets converted to one product molecule. 
In reality, however, several molecules are constantly being 
adsorbed and desorbed from the given unit of surface, which 
will naturally affect the mechanism and rate of reaction. 
Computationally, this can be accounted for by performing 
coverage studies, however, these are very demanding cal-
culations. A reaction typically will have multiple available 
pathways. In the interest of computational cost, few likely 
pathways are selected for thorough study, and the most fea-
sible pathway is decided upon. However, when dynamical 
aspects and a finite concentration of the reactants (i.e. more 
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than one molecule of the reactant) are considered, this deter-
mined pathway may not be the most feasible. Further, zero 
point energy, Gibbs free energy and entropy contributions to 
the energy are not included because of high computational 
costs. When a molecule is adsorbed on a surface, it can do 
so in various orientations with respect to the surface, and the 
possibilities increase with the size of the adsorbate. How-
ever, to conserve computational cost, only select orientations 
are intuitively chosen in analysis.

In principle, all of the deficiencies mentioned above can 
be overcome if computational resources are not a bottleneck. 
Conversely, these deficiencies present an opportunity for a 
method which can rapidly scan through a large number of 
materials at reduced computational cost. While quantum 
mechanics is able to relate properties using atomic struc-
ture, machine learning can be effective in achieving an inte-
grated framework to capture processing-structure–property-
performance relationships in material science. The use of 
descriptors along with machine learning helps in efficiently 
scanning a large number of materials and even propose new 
ones. Further, the scalable synthesis of materials continues 
to be an experimental challenge, limiting use of predicted 
materials for practical applications.

Conclusions

We presented how development of thermocatalytic reduc-
tion of  CO2 to MeOH can be facilitated through microscopic 
understanding and computational design with simulations. 
Overall, a scheme for sustainable generation of MeOH 
involves use of renewable sources of energy for generation 
of  H2 and using it as a reducing agent in thermochemical 
CO2RR at sources where the amount of  CO2 emissions is 
particularly high and is accompanied by generation of waste 
heat. Examples of such sources include flue gas from ther-
mal power stations, cement and steel factories, and oil refin-
eries. The product, MeOH, is an alternative fuel that also 
serves as a solution for chemical storage of  H2. Further, the 
 CO2 emissions upon use of MeOH as a fuel, can be recycled 
back to the CO2RR step, in principle, making the process 
carbon neutral and effectively achieving carbon recycling.

First-principles simulations capture the catalyst-reactant 
interaction accurately, and have been remarkably effective 
in predicting energetics, rates, mechanisms of reactions, and 
importantly, proposing new materials as catalysts. With a 
two pronged approach of (a) first-principles mechanistic 
analysis, which aids understanding, and (b) machine learn-
ing to identify fingerprint descriptors for predictive models, 
which facilitate high-throughput screening of a large number 
of materials, much can be achieved towards development of 
new, efficient and cost-effective materials. Currently, only 
5% of commercial  H2 production comes from renewable 
sources and  CO2 emissions are on the rise. The technologies 

discussed here address the energy and environmental prob-
lems of current importance, and highlight the role played by 
computer simulations in design of materials needed in their 
accelerated development.
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