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Methylation is one of themost extensivemodifications of biological macromolecules and affects
cell-fate determination, development, aging, and cancer. Several methylation modifications,
including 5-methylcytosine and N6-methyladenosine, play an essential role in many cancers.
However, little is known about the relationship between methylation and the prognosis of clear
cell renal cell carcinoma (ccRCC). Here, we established a methylation-regulating genes
prognostic signature (MRGPS) to predict the prognoses of ccRCC patients. We obtained
ccRCC samples from The Cancer Genome Atlas and identified methylation-regulatingd genes
(MRGs) from the Gene Set Enrichment Analysis database. We also determined differentially
expressed genes (DEGs) and performed cluster analysis to identify candidate genes.
Subsequently, we established and validated an MRGPS to predict the overall survival of
ccRCC patients. This was also verified in 15 ccRCC samples collected from the Fujian
Provincial Hospital via quantitative real-time transcription (qRT-PCR). While 95 MRGs were
differentially expressed (DEGs1) between tumor and normal tissues, 17 MRGs were
differentially expressed (DEGs2) between cluster 1 and 2. Notably, 13 genes common
among DEGs1 and DEGs2 were identified as hub genes. In fact, we established three
genes (NOP2, NSUN6, and TET2) to be an MRGPS based on their multivariate Cox
regression analysis coefficients (p < 0.05). A receiver operating characteristic curve analysis
confirmed this MRGPS to have a good prognostic performance. Moreover, the MRGPS was
associated with characteristics of the tumor immune microenvironment and responses to
inhibitor checkpoint inhibitors. Data from “IMvigor 210” demonstrated that patients with a low
MRGPS would benefit more from atelozumab (p < 0.05). Furthermore, a multivariate analysis
revealed that MRGPS was an independent risk factor associated with ccRCC prognosis (p <
0.05). Notably, a nomogram constructed by combining with clinical characteristics (age, grade,
stage, andMRGPS risk score) to predict the overall survival of a ccRCC patient had a favorable
predictive value. Eventually, our qRT-PCR results showed that tumor tissues had higherNOP2
and NSUN6 expression levels and lower TET2 expression than normal tissues of ccRCC
samples. While the proposed MRGPS comprising NOP2, NSUN6, and TET2 can be an
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alternative prognostic biomarker for ccRCC patients, it is a promising index for personalized ICI
treatments against ccRCC.

Keywords: methylation, clear cell renal cell carcinoma, quantitative real-time transcription, immune checkpoint
inhibitor, prognosis, risk signature

INTRODUCTION

Clear cell renal cell carcinoma (ccRCC) is one of the most lethal
malignancies of the genitourinary tract, accounting for 70–80% of
renal cell carcinoma patients (Zhao et al., 2018). Despite
substantial advances in the diagnosis and treatment of ccRCC,
long-term prognosis remains far from satisfactory (Siegel et al.,
2017). Approximately 20–30% of patients initially present with
metastasis (Reiter et al., 2015), indicating that the current
screening index for ccRCC is inadequate; thus, it is necessary
to immediately identify an aggressive diagnostic marker for
ccRCC. In addition, approximately 30–40% of patients with
localized ccRCC relapse or exhibit metastasis within 2 years of
undergoing radical surgeries (Miao et al., 2018). This implies that
the ccRCC patient population is greatly heterogeneous and
highlights the inaccuracies in the existing staging system
integrated with clinicopathological characteristics.

Interestingly, ccRCC is a highly immunogenic tumor
characterized by an abundance of suppressed immune cells
(Díaz-Montero et al., 2020). A randomized phase II study has
demonstrated that immune checkpoint inhibitor (ICI)
monotherapy exhibits non-inferiority efficacy to sunitinib
(Mcdermott et al., 2018). However, a CheckMate-214 trial
(Cella et al., 2019; Albiges et al., 2020) has revealed that
nivolumab combined with iplimumab has positive outcomes
compared with sunitinib. Thus, this combination has been
approved by the United States Food and Drug Administration
as a frontline therapeutic approach for ccRCC patients with
intermediate severity. Nonetheless, the objective response rates
(ORRs) of avelumab, pembrolizumab, and nivolumab are 16, 36,
and 17%, respectively (Tzeng et al., 2021), whereas that of
avelumab combined with nivolumab is 42% (Cella et al.,
2019). Additionally, continuing treatment with nivolumab has
been found to be associated with reduced tumor burden in
approximately 50% of patients (Hellmann et al., 2018). Hence,
an aggressive biomarker, except PD-1/PD-L1, tumor mutation
burden (TMB), and microsatellite status, is urgently warranted in
ICI management for ccRCC.

Methylation is one of the most abundant modifications that is
widespread across all biological processes. It involves an alkylation
reaction, wherein a methyl group replaces a hydrogen atom
(Michalak et al., 2019). Methyltransferases, also called “writers,”
use the methyl donor S-adenosylmethionine to catalyze
methylation; “writers” cooperate with dedicated “erasers”
(demethylases) and methyl “readers” (Dawson and Kouzarides,
2012). Genomic studies have demonstrated that hypo- and/or
hyper-methylation occur in various enzymes and can result in loss
of histone modification (Michalak et al., 2019). Few examples include
mutations in metabolic enzymes that regulate histone and DNA
demethylation and somaticmutations in core histone genes (You and

Jones, 2012). In fact, previous studies have demonstrated that
aberrant changes in DNA or RNA methylation can be
prospectively utilized in the diagnosis, prognosis, and
individualized treatment of various cancers, including ccRCC
(Fang et al., 2020; Zhang et al., 2020; Li et al., 2021). Therefore,
we systematically analyzed the transcriptomic data of ccRCC patient
tissues to identify methylation-regulating genes (MRGs) and
accurately predict the prognoses and guide the ICI management
of ccRCC patients.

MATERIALS AND METHODS

Patients and Datasets
We retrieved 359 human MRGs from the Gene Set Enrichment
Analysis (GSEA) database (https://www.gsea-msigdb.org/gsea/
index.Jsp; Supplementary Table S1) (Subramanian et al.,
2005). Moreover, we obtained RNA sequencing (RNA-Seq)
expression profile dataset of 537 ccRCC patients and 72
corresponsonding normal samples from The Cancer Genome
Atlas (TCGA; https://portal.gdc.cancer.gov/) (Tomczak et al.,
2015). The clinicopathological characteristics and survival data
of these patients was also retrieved from TCGA. The RNA-seq
profiles and clinical data of“IMvigor 210” cohort were obtained
from http://research-pub.gene.com/IMvigor210CoreBiologies/.

Furthermore, 15 frozen, surgically resected tumor specimens
were acquired from patients pathologically diagnosed with
ccRCC at the Fujian Provincial Hospital (FPH) between
December 2018 and December 2020. Additionally, we
validated the immunohistochemical staining of prognostic
genes using The Human Protein Atlas (HPA) database (http://
www.proteinatlas.org/) (Uhlén et al., 2015). This study was
approved by the ethics committee of the FPH.

Identification of Methylation-Regulating
Hub Genes
Based on the RNA-seq data of the ccRCC samples (537 tumors vs
72 normal samples) obtained from TCGA, we analyzed the
differentially expressed genes (DEGs1) between tumor and
normal tissues. We also functionally explored the biological
properties of MRGs in the TCGA ccRCC patients by
clustering ccRCC patients into different clusters using the
“ConsensusClusterPluspackage” (Wilkerson and Hayes, 2010)
(http://www.bioconductor.org/; 1,000 iterations and resampling
rate of 80%). The cumulative distribution function (CDF) and
delta area were considered to determine the optimal number of
groups (k). Subsequently, we identified DEGs between the
different clusters (DEGs2) and defined the hub genes as genes
common to both DEGs1 and DEGs2.
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Construction and Validation of
Methylation-Regulating Genes Prognostic
Signature
We divided TCGA patients into training and validation cohorts at
a ratio of 3:7 (11 samples were deleted because their OS was 0 or
unknown), and prognostically significant hub genes (p < 0.05)
were screened by univariate Cox regression analysis. In fact, these
candidate genes were used to establish a methylation-regulating
genes prognostic signature (MRGPS) via multivariate Cox
regression analysis. The risk score for each patient was
determined using the following formula:

Risk score � ∑
n

i�1
Coef(i) × x(i)

Thereafter, the patients were classified into low-risk and high-
risk groups based on the median risk score. We determined the
prognostic ability of the MRGPS in the training cohort by
generating Kaplan–Meier survival curves and receiving
operating characteristic (ROC) curves using the R packages
“survminer” and “survivalROC”. The prognostic performance
of this MRGPS was further tested in the testing cohort in the same
manner as mentioned above.

Functional Analysis
We conducted Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis to analyze the main
function using the “clusterProfiler" (Yu et al., 2012) R package
and visualized it using the “Treemap” (Liu et al., 2021) and
“ggplot2” packages. Additionally, GSEA was performed to
understand the biological processes prevalent in the different
subgroups using the “clusterProfiler” R package. Predefined gene
sets were identified in the GSEA using the GO Biological Process;
5,000 permutations were performed to determine the p values of
these gene sets. Significant pathways were defined as having a p
value of <0.05 and a false discovery rate (FDR) of <0.05 (Powers
et al., 2018).

Immune Score and Immunotherapy
Benefits Analyses
We conducted a single sample GSEA (ssGSEA) analysis, where
(Bustin and Mueller, 2005)in we analyzed 20 immune cells of 537
ccRCC samples based on the expression profile of a single sample;
we used the “gsva” R package to perform this analysis
(Hänzelmann et al., 2013). The ESTIMATE algorithm (i.e., the
“estimate” R package) was used to calculate the immune score of
each patient. Subsequently, we assessed the immune score
difference between the two cluster subgroups. A semi-
quantitative analysis of 22 immune cell types in the two
MRGPS groups was performed using CIBERSORT via the
“cibersort” R package (Chen et al., 2018). Moreover, we
calculated tumor immune dysfunction and exclusion (TIDE)
and microsatellite instability (MSI) scores from the website of
http://tide.dfci.harvar.edu to assess the potential efficacy of ICIs
in the twoMRGPS subgroups (Fu et al., 2020). We also compared

the somatic mutations between the two MRGPS subgroups by
obtaining the TMB, i.e., the total number of somatic mutations.

Predicting the Benefits of MRGPS for
Tyrosine Kinase Inhibitors
Since VEGFR-targeted therapy remains the first line of treatment
for ccRCC, we explored the sensitivity of TKIs, such as sunitinib,
sorafenib, pazopanib, and axitinib, stratified by MRGPS. The
sensitivity of each TKI was evaluated by IC50 calculation using the
“pRRophetic” package (Geeleher et al., 2014), and the
corresponding data were obtained from the Genomics of Drug
Sensitivity in Cancer database (Yang et al., 2013).

Development of Risk Prediction Model
Furthermore, we conducted a multivariate Cox analysis to
evaluate whether the signature-based risk score was
independent of other clinical characteristics. The testing
cohort was used to further test the performance of the
signature in the same manner mentioned above. Thereafter,
we generated a nomogram consisting of the current MRGPS
and clinical characteristics with p < 0.1. This helped predict the 1-,
3- and 5-years overall survival (OS) of the TCGA ccRCC patients
using the “rms” package. Additionally, we evaluated this
nomogram using the calibration curve, ROC curve, and
decision-making curve (DCA).

Quantitative Reverse Transcription PCR
Relative quantitation of the 15 paired mRNAs was determined by
quantitative reverse transcription polymerase chain reaction
(qRT-PCR; SuperScript IV Reverse Transcriptase 18090010;
Thermo Fisher, United States). The amplification reactions
were performed as described previously (Bustin and Mueller,
2005). NSUN6-specific primers were: forward primer, 5′-ATC
TGCGTCCGTTTCACC-3′ and reverse primer, 5′-GCTTCC
ACCACACCTCATC-3’. NOP2-specific primers were: forward
primer, 5′-GGGCACAGACACACAAACA-3′ and reverse
primer, 5′-GAACGGATGGGAGACACAG-3’. TET2-specific
primers were: forward primer, 5′-CACAACCATCCCAGAGTT
CA-3′ and reverse primer, 5′-ACTTCCTCCAGTCCCATTTG-
3’. Human β-actin-specific primers were: forward primer, 5′-
GAAGAGCTACGAGCTGCCTGA-3′ and reverse primer 5′-
CAGACAGCACTGTGTTGGCG-3’. Data analysis was
performed using the ΔΔCT method.

Statistical Analyses
Distributed data were compared by performing the Student’s
t-test and Wilcoxon test, whereas proportion differences
were calculated by the chi-square test. Additionally,
component analysis in subgroups were compared by the
Fisher’s test. While survival differences between different
groups were assessed via the log-rank test, prognostic
factors were identified by the Cox regression analyses. All
statistical analyses were performed using RStudio version
4.0.3, and two-sided p < 0.05 was considered as statistically
significant.
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RESULTS

Identification of Methylation-Regulating
Hub Genes
The entire analytical process of this study is presented in Figure 1,
and the clinical characteristics of the ccRCC patients in the TCGA
and FPH cohorts are listed in Table 1. Additionally, Figure 2A
presents all 95 DEGs among tumor and normal tissues (DEGs1:
FDR<0.05 and |log2FC|>0.5), including 51 upregulated and 44
downregulated genes; the top 50 DEGs are presented in a
heatmap (Figure 2B). The GO analysis of DEGs1 revealed that
methylation-relate biological process (BP), cellular component (CC),
and molecular function (MF) were enriched in tumor tissues
(Figure 2C).

Subsequently, we performed consensus clustering to explore
the molecular characteristics between different MRG expression
samples. We observed a relative change in the CDF of the
consensus cluster from k = 2 to k = 9 (Figure 2D); the delta
area under the CDF curve from k = 2 to 9 is depicted in

Supplementary Figure S1H. The corresponding heatmap
presents the results of this consensus from k = 2 to 9 (k = 2,
Figure 2E; k = 3–9, Supplementary Figure S1A–G). The criteria
for deciding the cluster number was determined by a relatively
high consistency and a low variation coefficient and an
appreciable increase in the area under the CDF curve. Thus,
after comprehensive consideration, we chose k = 2 as the optimal
cut-off for the clusters number.

A significant difference in the OS was observed between patients
of clusters 1 and 2 (p < 0.001, Figure 2F). To determine which genes
contributed to this difference in prognosis, we first identified 17 genes
asDEGs between cluster 1 and cluster 2 (DEGs2: FDR<0.05, |log2FC|
>0.5; Figure 2G); these genes are also represented in a heatmap
(Figure 2H). Eventually, 13 overlapping genes between DEGs1 and
DEGs2 were identified as the hub genes (Figure 2I, Supplementary
Table S2).

We further evaluated the molecular characteristics of the
different clusters by conducting immune-related analyses
between clusters 1 and 2. The ssGSEA demonstrated that

FIGURE 1 | The entire analytical process of the study.
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cluster 2 had a high abundance of approximately all immune cell
types compared to cluster 1 (p < 0.05, Figure 3A). Moreover, the
tumor microenvironment estimate scores, including the stromal,
immune, and total scores, were higher in cluster 2 than those in
cluster 1 (p < 0.05, Figure 3B). Notably, immune-related
signaling pathways were enriched in cluster 2, as determined
by the GSEA (Figure 3C and Supplementary Table S3).
Furthermore, we obtained the enrichment score of each
negative immune-related signaling pathway in each ccRCC
sample by performing a gene set variation analysis (GSVA).
Consequently, we observed significant survival differences
between high- and low-GSVA scores regarding the negative
regulation of adaptive immune response, negative regulation of
immune response, and negative regulation of leukocyte-mediated
immunity (p < 0.05, Figures 3D–F); however, this did not hold
true for the negative regulation of natural killer cell-mediated
immunity (p > 0.05, Figure 3G).

Construction and Validation of the
Methylation-Regulating Genes Prognostic
Signature
In the training cohort, we screened prognosis-associated seven
hub genes by univariate Cox regression analysis (Figure 4A).
Then, a multivariate Cox regression analysis was conducted to

screen the optimal model and was depicted in Figure 4B; based
on their regression coefficients, three MRGS (NOP2, NSUN6, and
TET2) were identified to form an MRGPS. The MRGPS score of
each patient was calculated according to the following formula:
Risk score = [NOP2 expression*(0.656940513)] + [NSUN6
expression*(0.911107243)] + [TET2 expression*(-
1.180533124)]. Considering the median score as the cut-off
value, patients in the training cohort were divided into low-
and high-risk groups; these patients had apparent survival
differences (p < 0.001, Figure 4C). The corresponding risk
scores and survival statuses are presented in Figure 4D. The
ROC curves demonstrated the excellent predictive capability of
the current MRGPS with 1-, 3-, and 5-years AUCs being 0.798,
0.750, and 0.768, respectively (Figure 4E). Likewise, the
advantages of the current MRGPS were observed in the
validation (Figures 4F–H) and the whole cohorts (Figures 4I,J).

In addition, relationships between clinicopathological
characteristics and risk scores were further explored. As shown
in Supplementary Figure S2A, differences were observed
regarding the age (age ≤65 years, age >65 years), differentiation
(G1, G2, G3, G4), T stage (T1, T2, T3, T4), M stage (M0, M1), and
cancer stage (I, II, III, IV). Furthermore, Kaplan–Meier survival
curves showed that the high-risk patients had worse prognoses
than the low-risk patients in the following attributes: age
≤65 years, age >65 years, male sex, female sex, G1-2, G3-4, T1-
2, T3-4, M0, M1, stage I–II, and stage III–IV (p < 0.05,
Supplementary Figure S2B–M).

Immune Analyses and Immunotherapy
We further explored the immune microenvironment
characteristics of patients belonging to the different risk
subgroups by conducting immune cell infiltration and immune
function analysis on the TCGA cohort patients. We observed
significantly decreased number of naive B cells, memory B cells,
plasma cells, CD4+T cells, CD4+T memory cells, gamma T cells,
resting NK cells, M0/M1/M2 and resting dendritic cells, activated
dendritic cells, and resting mast cells and also observed increased
number of CD8+T cells and regulatory T cells in the high-risk
group (p < 0.05, Figure 5A). Relative expression levels of MHC
molecules and co-stimulatory molecules and adhesion factors,
such as CD40, CD58, HLA-A, HLA-B, HLA-C, HLA-DMA,
HLA-DOB, HLA-DPB1, and HLA-F, were all higher in the
high-risk group than those in the low-risk group (p < 0.05,
Figure 5B). Importantly, the expression levels of immune
checkpoint proteins, such as PDCD1, CTLA4, TBX2, TNF,
LAG3, CD8A, IFNG, and GZMB were all significantly higher
in the high-risk group than those in the low-risk group (p < 0.05,
Figure 5C).

Furthermore, patients in the high-risk group were found to
have a higher TIDE score, lower MSI score, and higher TMB than
those in the low-risk group (p < 0.05, Figures 5D–F). This
suggested that low-risk patients may benefit more from
immunotherapy compared to high-risk ones according to the
current MRGPS. We further validated this observation using the
“IMvigor 210” dataset containing clinical information and RNA-
seq data of metastatic urothelial cancer patients who were treated
with the ICI atezolizumab (PD-L1 inhibitor). Remarkably, data

TABLE 1 | Clinical characteristics of the ccRCC patients in TCGA cohort and FPH
cohort.

Characteristic TCGA cohort FPH cohort

n (%) 537 (100%) 15 (100%)
Age, n (%) — —

≤65 352 (65.55%) 11 (73.33%)
>65 185 (34.45%) 4 (26.67%)

Gender, n (%) — —

Female 191 (35.57%) 6 (40.00%)
Male 346 (64.43%) 9 (60.00%)

Histologic grade, n (%) — —

G1 14 (2.61%) NA
G2 230 (42.83%) NA
G3 207 (38.55%) NA
G4 78 (14.53%) NA
NA 8 (1.48%) NA

Pathologic stage, n (%) — —

Stage I 269 (50.09%) 12 (80.00%)
Stage II 57 (10.61%) 2 (13.33%)
Stage III 125 (23.28%) 1 (4.67%)
Stage IV 83 (15.46%) 0 (0%)
NA 3 (0.56%) 0 (0%)

T stage, n (%) — —

T1 275 (51.21%) 12 (80.00%)
T2 69 (12.85%) 2 (13.33%)
T3 182 (33.89%) 1 (4.67%)
T4 11 (2.05%) 0 (0%)

N stage, n (%) — —

N0 240 (44.69%) 15 (100%)
N1 17 (3.17%) 0 (0%)
NA 280 (52.14%) 0 (0%)

M stage, n (%) — —

M0 426 (79.33%) 15 (100%)
M1 79 (14.71%) 0 (0%)
NA 32 (5.96%) 0 (0%)
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from the 298 IMvigor patients also validated the clinical utility of
the current MRGPS in response to atezolizumab (p < 0.05,
Figure 5G).

Potential Biological Pathway Analysis of
Methylation-Regulating Genes Prognostic
Signature
We further determined the potential biological pathways
prevalent in different risk group by performing a KEGG
analysis on the DEGs among high- and low-risk groups
(FDR<0.05 and |log2FC|>0.5). We observed that the
“PI3K−Akt signaling pathway”, “mTOR signaling pathway”,

“Ras signaling pathway” and other carcinogenesis-related
pathways were enriched in the high-risk group (Figure 6A).
Furthermore, the GSEA revealed that the high-risk group had
higher enrichment score for the PI3K-AKT and mTOR pathways
compared to the low-risk group (Figures 6B,C). These results
revealed that the MRGPS possibly promotes cancer development
by activating these pathways.

VEGF Family Expressions and TKI
Sensitivity
As the VEGF family was an important molecular target, we
compared their expression levels in high- and low-risk groups.

FIGURE 2 | Identification of methylation-regulating Hub Genes. (A) Volcano plot demonstrates DEGs1. (B) Heatmap demonstrates the top 50 DEGs1. (C) The
GeneOntology (GO) analysis of DEGs1 in ccRCC. (D)Consensus clustering cumulative distribution function (CDF) for k = 2 to 9. (E) The consensus heatmap showed the
ccRCC patients was divided into two distinct clusters when k = 2. (F) Overall Survival (OS) analysis of different clusters in the TCGA dataset. (G) Volcano plot
demonstrates the DEGs2. (H) Heatmap demonstrates the DEGs2. (I) Venn diagram demonstrates the intersect between DEGs1 and DEGs2.
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FIGURE 3 | Immune cell infiltration analysis and GSEA analysis between different clusters. (A) Estimated abundance of 20 immune cells using ssGSEA. (B) Tumor
microenvironment (TME) estimate score in different clusters. (C)GSEA delineation of the biological pathways which enrich in cluster 2 using the gene set “c5. go.bp.v7.4.
symbols”. Overall Survival (OS) analysis in different GSVA score of (D) negative regulation of adaptive immune response, (E) negative regulation of immune response, and
(F) negative regulation of leukocyte-mediated immunity, (G) negative regulation of natural killer cell-mediated immunity in TCGA-ccRCC patients. Significant
statistical differences between the two clusters were assessed using the Wilcoxon test (ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001).
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Consequently, no significant differences in VEGFA expression
were observed between the two groups (p > 0.05, Figure 7A).
However, VEGFB and VEGFD expression levels were
significantly upregulated in the high-risk group (p < 0.05,

Figures 7B,D), whereas that of VEGFC was significantly
downregulated in the high-risk group (p < 0.05, Figure 7C).
Further analysis revealed that sunitinib had lower IC50 the higher-
risk group than that in the low-risk groups (p < 0.05, Figure 7E).

FIGURE 4 | Construction and validation of the MRGPS. (A) Forrest plot of the univariate Cox regression analysis in the training cohort. (B) Forrest plot of the
multivariate Cox regression analysis in the training cohort. Kaplan-Meier analysis, risk score analysis and ROC curve of the MRGPS inthe training cohort (C–E), validation
cohort (F–H), and whole TCGA cohort (I–K).
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In contrast, pazopanib (p < 0.05, Figure 7G), but not sorafenib
and axitinib (both p > 0.05, Figures 7F,H), had lower IC50 in the
low-risk group than that in the high-risk group. These results
indicated that different risk groups had varying susceptibilities for
different targeted drugs.

Methylation-Regulating Genes Prognostic
Signature-Based Nomogram Construction
Furthermore, we discovered that the current risk score was an
independent risk factor for OS in the training, validation, and

whole cohorts (p < 0.05, Table 2). Subsequently, we developed a
nomogram based on age, differentiation grade, stage, andMRGPS
risk score to further predict the OS of ccRCC patients belonging
to the TCGA cohort (p < 0.1, Figure 8A). We observed good
calibrations regarding the predicted vs observed 1-, 3-, and 5-
years OS of the patients (Figure 8B). Moreover, the ROC curves
exhibited better predictive capability in the current nomogram to
predict the 1-, 3-, and 5-years OS than theMRGPS and risk scores
published by Wang et al. (2021), Chen et al. (2021), and Zheng
et al. (2021) (Figures 8C–E). Additionally, DCA analysis revealed
the superiority of the current nomogram over MRGPS and the

FIGURE 5 | Immune-related analysis between different MRGPS subgroup. (A) The proportions of TME cells in different MRGPS subgroups. (B)Relative expression
of MHCmolecules, co-stimulatory molecules, and adhesion factors. (C) Association of MRGPS with immune checkpoint molecules. (D) TIDE, (E)MSI, (F) TMB score in
different MRGPS subgroups. (G) Distribution of immune response to ICIs therapy in different MRGPS subgroups in IMvigor patients. Significant statistical differences
between the two subgroups were assessed using the Wilcoxon test (ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001).
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published risk scores in predicting the 1-, 3-, and 5-years OS
(Figures 8F–H).

Validation Using Quantitative Real-Time
Transcription-PCR and Human Protein
Atlas Datasets
Our qRT-PCR analysis revealed elevated expression levels of
NOP2 and NSUN6, but decreased expression of TET2 were in
the tumor tissues compared to those in the paired normal tissues
of 15 ccRCC samples obtained from FPH (p < 0.05, Figures
9A–C). The results of HPA database demonstrated that the
expression levels of both NOP2 and NSUN6 were higher in
the ccRCC tissues than those in the normal tissues; however,
the expression of TET2 was significantly lower in the ccRCC
tissues than that in the normal tissue (Figures 9D–F).

DISCUSSION

Global and local changes in DNA/RNA/histone methylation are
seminal features of malignant tumor cells (Michalak et al., 2019).
In the current study, we identified three MRGs (NOP2, NSUN6,
and TET2) from TCGA data and established an MRGPS for the

prognoses of ccRCC patients. This MRGPS exhibited excellent
calibration and discrimination. In addition, we validated the three
candidate genes in 15 paired ccRCC samples obtained from FPH
by qRT-PCR. Furthermore, the current risk score was correlated
with tumor immune microenvironment characteristics and could
be used as a potential biomarker of ccRCC response to ICIs.

Of note, ccRCC is a highly heterogeneous malignancy
(Jonasch et al., 2021). The existing prognosis models that
incorporate clinicopathological characteristics, such as the
AJCC staging system and the Mayo Clinic stage and necrosis
score, have improved prognosis capacity (Parker et al., 2017).
However, owing to the complex molecular mechanism of ccRCC,
clinical parameters alone are inadequate for predicting the
prognoses of ccRCC patients. Interestingly, chromatin
methylations, such as m5C and m6A, play a fundamental role
in the ccRCC carcinogenesis (Angulo et al., 2021). Nonetheless,
comprehensive exploration of chromatin methylation in ccRCC
is still lacking. In this study, we established a novel MRGPS using
data from TCGA ccRCC patients; this MRGPs improved the
prognoses of ccRCC patients with a C-index as high as 0.798 at 1-
year OS. In addition, close links were identified between the
clinical and pathological characteristics of ccRCC and MRGPS:
age, sex, differentiation, and tumor node metastasis (TNM) stage.
Furthermore, a MRGPS-incorporating nomogram demonstrated

FIGURE 6 | KEGG and GSEA analysis of MRGPS. (A) KEGG analysis of the DEGs between high- and low-risk groups. (B) PI3K−Akt signaling pathway and (C)
mTOR signaling pathway were identified in the high-risk group.
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a higher prognostic capacity and clinical utility than published
risk scores.

Among the three MRGs identified, NOP2 and NSUN6 were
prognostic risk factors, whereas TET2 was a prognostic protective
factor. Notably, NOP2 and NSUN6 are key members of the
NOP2/Sun domain family and possess S-adenosyl-L-
methionine-dependent methyltransferase activity (Frye and
Blanco, 2016). NOP2 is upregulated in various cancers,
including lung adenocarcinoma, breast cancer, and prostate
cancer, and it is associated with tumor aggressiveness (Ma
et al., 2017). Deficiency of NSUN6-mediated methylation can
downregulate transcription and translation. While NSUN6
expression is highest in the testis and lowest in the blood, it is
heterogeneous in different tumors. However, it is downregulated
in tumors originating from tissues that have high NSUN6

expression, such as the testis, thyroid, and ovaries (Selmi et al.,
2021). In contrast, it is upregulated in tumors originating from
tissues that have low NSUN6 expression, such as that in
hematologic tumor and kidney cancer. Moreover, NSUN6 is
associated with prognosis of various cancers, including
pancreatic cancer (Yang et al., 2021) and hepatocellular
carcinoma (Wang et al., 2018). It also plays an important role
in bone metastasis (Li et al., 2017). On the other hand, TET2
mutations have been widely identified various myeloid
malignancies. In fact, TET2 inactivation leads to
polyhematopoietic abnormalities in mice, which is a recurrent
event in human lymphoma formation (Ferrone et al., 2020).
Notably, TET2 dysfunction mutations are generally associated
with DNA hypermethylation, tumor progression, and poor
patient outcomes (Cimmino et al., 2017). However, NOP2,

FIGURE 7 | VEGF family expressions and the sensibility of TKI inhibitors in different MRGPS subgroups. (A–D) VEGF family expressions in different MRGPS
subgroups. Drug susceptibility analysis between different MRGPS subgroups about (E) Sunitinib, (F) Sorafenib, (G) Pazopanib, (H) Axitinib. Wilcoxon test (ns, p > 0.05;
*, p < 0.05; **, p < 0.01; ***, p < 0.001).

TABLE 2 | Multivariate Cox regression analysis in training, validation, and the whole cohorts.

Characteristics Multivariate analysis

Hazard
ratio (95% CI)

Training cohort Validation cohort The whole cohorts

Age 1.045 (1.019–1.072)a 1.027 (1.009–1.046)a 1.032 (1.017–1.047)a

Gender 0.955 (0.554–1.649) 0.879 (0.577–1.340) 0.958 (0.691–1.329)
Grade 1.168 (0.761–1.791) 1.474 (1.098–1.978)a 1.398 (1.108–1.765)a

Stage 2.123 (0.955–4.722) 1.504 (0.834–2.710) 1.559 (0.985–2.466)
T 0.687 (0.339–1.390) 0.914 (0.530–1.577) 0.894 (0.589–1.357)
M 1.561 (0.499–4.886) 1.426 (0.593–3.428) 1.523 (0.774–2.996)
Risk score 1.218 (1.115–1.332)a 1.230 (1.076–1.406)a 1.222 (1.141–1.308)a

aStatistically significant (p < 0.05).
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NSUN6, and TET2 have been rarely studied in ccRCC. In the
present study, qRT-PCR data from 15 paired FPH ccRCC
samples revealed that while NOP2 and NSUN6 were
upregulated, TET2 was downregulated in tumor tissues
compared with those in normal tissues. In summary, NOP2,
NSUN6, and TET2 were identified as prognostic biomarkers
for ccRCC; however, additional in vitro and in vivo research is
needed to validate these findings.

The potential mechanisms of MRGPS regulating ccRCC
prognosis deserved further study. In the present study, we
found via KEGG analysis and GSEA that the PI3K-AKT and
mTOR signaling pathways were highly enriched in the high-risk
subgroup. The PI3K signaling pathway facilitates several essential
cellular functions, such as cell proliferation, growth, migration,
metabolism, and survival (Fruman and Rommel, 2014). In a large
cohort of 419 primary ccRCC patients, aberrantly expressed

components of the PI3K signaling cascade (e.g., PTEN, PI3K,
p-AKT, mTOR, p-mTOR, p-S6, and p-4EBP1 proteins) exhibited
aggressive pathological features and caused adverse survival
(Darwish et al., 2013). Therefore, we hypothesized that poor
prognoses of patients with a high MRGPS might be because of
activation of the PI3K-AKT and mTOR pathways; nonetheless,
this hypothesis requires further exploration.

Since ccRCC is a highly vascular tumor, the levels of
angiogenic factors, including VEGF, are correlated with its
prognosis (Choueiri and Kaelin, 2020). Inhibition of VEGFR
generally causes vascular normalization, thereby activating anti-
tumor immunity (Hsieh et al., 2017). Until 2017, the multikinase
inhibitors sunitinib and pazopanib that primarily target VEGFR
formed the frontline treatment for ccRCC (Powles et al., 2021).
The median progress free survival (PFS), OS and ORR for
sunitinib and pazopanib are 8.4 and 9.5 months, 28.4 months

FIGURE 8 | Construction and verification of nomogram. (A) The prognostic nomogram constructed based on the risk score of MRGPS and clinicopathological
parameters predicted the survival rate of TCGA-ccRCC patients at 1-, 3-, and 5-years. (B)Calibration curves showed the concordance between predicted and observed
1-, 3-, and 5-years survival rates. AUCs of the nomogram, MRGPS and other signatures in ROC analysis were calculated at (C) 1-, (D) 3-, and (E) 5-years OS time in
TCGA-ccRCC cohort. Decision curve analyses (DCA) for nomogram, MRGPS and other signatures at (F) 1-, (G) 3-, and (H) 5-years to assess clinical utility in
TCGA-ccRCC cohort.
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and 29.3 months, and 25 and 31%, respectively (George et al.,
2021). The complexity of the VEGFR family may possibly be
responsible for the inconsistent results. In this study, we
found that the current MRGPS could be used as an
alternative to VEGFRs. Remarkably, it had a positively
correlation with VEGFB/D and negative correlation with
VEGFC; however, it did not have a correlation with
VEGFA. Furthermore, we also found that while sunitinib
had a lower IC50, pazopanib had a higher IC50 in high-risk
patients than those in low-risk patients, according to the
current MRGPS. This highlighted the response divergence
between sunitinib and pazopanib and clarified personalized
TKI treatment for ccRCC patients.

Although ccRCC patients have a typically suppressed immune
status, they are highly abundant in immune cells (Şenbabaoğlu
et al., 2016). In this study, we revealed that the current MRGPS
was correlated with tumor-infiltrating lymphocytes: highMRGPS
was associated with increased number of CD8+T cell number,

activated NK cell, follicular helper cells T cells, and regulatory
T cells. In contrast, low MRGPS was associated with decreased
number of naïve B cells, resting memory CD4+ T cells,
monocytes, macrophages M2, and resting mast cells, as
previously reported (Díaz-Montero et al., 2020). In addition,
the current MRGPS was also associated with co-stimulatory
molecules, such as CD40 and CD58. Immune checkpoints are
cell surface receptors expressed on immune cells, and their
inhibition causes immune activation. In the present study, we
found that high MRGPS was associated with PDCD1 and CTLA4
expression levels (both p < 0.001). Further analysis revealed that
low MRGPS was correlated with lower TIDE score and higher
MSI score than high MRGPS (both p < 0.05), indicating that
patients with low MRGPS would benefit more from ICIs.
Importantly, this finding was validated in 298 IMvigor patients
receiving atezolizumab. Therefore, MRGPS is a promising
biomarker for predicting the response of ccRCC patients
towards ICIs.

FIGURE 9 | Validation using qPCR andHPA datasets. (A)NOP2, (B)NSUN6, and (C) TET2mRNA expressionmeasured by qRT-PCR. Validation of the differences
in expression of (D) NOP2, (E) NSUN6, and (F) TET2 between renal cancer and normal renal tissue at the translational level with data from the HPA database.
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Nonetheless, our study has several limitations. First, both the
data from TCGA and FPH are retrospective; therefore, the risk
score needs to be verified in prospective cohorts. Second, merely
incorporating MRGPS to build a prognostic model is inadequate,
regardless of its importance. Third, samples from FPH were too
few, and the results need to be validated in more samples. Finally,
the associations of the current MRGPS with tumor mutations,
tumor immune microenvironment, and TKI and ICI responses
require further validation in vitro and in vivo.

In conclusion, the current MRGPS consisting of NOP2,
NSUN6, and TET2 is a potential alternative prognostic
biomarker for ccRCC patients and is also be a promising
index for personalized ICI treatments in ccRCC.
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