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Abstract

Recently diverged species are challenging for identification, yet they are frequently of special interest scientifically as well as
from a regulatory perspective. DNA barcoding has proven instrumental in species identification, especially in insects and
vertebrates, but for the identification of recently diverged species it has been reported to be problematic in some cases.
Problems are mostly due to incomplete lineage sorting or simply lack of a ‘barcode gap’ and probably related to large
effective population size and/or low mutation rate. Our objective was to compare six methods in their ability to correctly
identify recently diverged species with DNA barcodes: neighbor joining and parsimony (both tree-based), nearest neighbor
and BLAST (similarity-based), and the diagnostic methods DNA-BAR, and BLOG. We analyzed simulated data assuming three
different effective population sizes as well as three selected empirical data sets from published studies. Results show, as
expected, that success rates are significantly lower for recently diverged species (,75%) than for older species (,97%)
(P,0.00001). Similarity-based and diagnostic methods significantly outperform tree-based methods, when applied to
simulated DNA barcode data (P,0.00001). The diagnostic method BLOG had highest correct query identification rate based
on simulated (86.2%) as well as empirical data (93.1%), indicating that it is a consistently better method overall. Another
advantage of BLOG is that it offers species-level information that can be used outside the realm of DNA barcoding, for
instance in species description or molecular detection assays. Even though we can confirm that identification success based
on DNA barcoding is generally high in our data, recently diverged species remain difficult to identify. Nevertheless, our
results contribute to improved solutions for their accurate identification.
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Introduction

Recently diverged species are frequently of special interest, for

example in ecology, regulation or forensics [1,2,3], and hence their

accurate identification is warranted. DNA barcoding [4,5,6,7] has

proven instrumental in identifying recently diverged species (e.g.

species complexes or cryptic species) that are of importance to

conservation biology [8,9,10,11], pest management [12,13,14],

fishery [15,16,17,18,19,20], invasive biology [21,22,23,24,25,26]

and disease control [27,28,29,30]. In some cases, however,

identification of recently diverged species using DNA barcodes

has been reported to be problematic [1,2,31,32,33,34] due to

ambiguous barcode matches or the absence of barcode clusters in

DNA barcode trees.

Failure of DNA barcodes to properly resolve recently-diverged

species can be attributed to population genetic factors of the

species involved [31,35,36,37,38,39]. Coalescent theory [40]

predicts that the chance that gene sequences sampled from a

species are monophyletic is dependent on the age of that species

(measured in number of generations since speciation) and reversely

dependent on its effective population size (Ne) [40,41]. This is

because species with large Ne are predicted to have larger within-

species genetic variation [40,41,42]. When such species have

diverged only recently their gene sequences are likely to have a

most recent common ancestor predating the speciation event

(incomplete lineage sorting) [42]. This results in overlapping

within- and between-species genetic distances (lack of a ‘barcode

gap’) and paraphyly or even polyphyly of conspecific samples in

gene trees [42,43,44,45]. For example, in Lycaenidae (Blue

butterflies) Wiemers and Fiedler [38] found a general lack of

‘barcode gaps’ and paraphyly or polyphyly of conspecific DNA

sequences, probably caused by incomplete lineage sorting [38], as

did McFadden et al. in Octocorals [36]. Meyer and Paulay [31], in

their DNA barcode study of marine gastropods, explained non-

monophyly of some species by incomplete lineage sorting effects.

Elias et al. [43] reported limited performance of DNA barcoding in

two butterfly communities in Ecuador, which they attributed in

part to large Ne and associated long coalescent times [39]. Based

on simulated DNA barcode data sets Ross et al. [37] and Austerlitz

et al. [35] found that species monophyly and identification success

generally decreased with increasing coalescent depth.

Regardless of Ne, recently diverged species have acquired only

few genetic differences meaning that there are few characters to

discriminate them. The rate at which two sister species genetically

diversify is dependent on their effective mutation rate (m). If m is

sufficiently low, even reciprocally monophyletic species will share
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identical haplotypes. Indeed, some morphologically well-differen-

tiated species may share identical DNA barcode sequences,

preventing accurate identification using DNA barcodes

[33,36,38]. If m is higher, identification success depends on the

extent of lineage sorting: on the one hand, a single fixed mutation

can be enough for successful identification [36,46,47]; on the other

hand, non-monophyletic (i.e. incompletely-sorted) species will have

overlapping genetic variation even when m is high. Therefore, we

consider the factors governing lineage sorting: time (measured in

generations), and Ne, to be the most important factors contributing

to DNA barcode identification problems with recently diverged

species. Obviously, when given enough time any Ne or m will

ultimately result in high levels of between-species divergence. We

therefore emphasize time here and focus on ‘recent’ versus ‘old’

species.

Various methods have been proposed to match DNA barcodes

to a reference library for identification, amongst which we

recognize the following:

Tree-based methods assign unidentified (query) barcodes to

species based on their membership of clusters (or clades) in a DNA

barcode tree. This approach is usually based on neighbor joining

[48,49], parsimony [50] or Bayesian inference [51]. Tree-based

methods assume that samples of distinct species form discrete

clusters in a DNA barcode tree [4,49]. It is generally acknowl-

edged, however, that gene trees (i.e. DNA barcode trees) do not

necessarily reflect organismal history [42], and that the incomplete

lineage sorting effects outlined above may lead to incorrect

identifications based on such trees [31,35,37,38,39].

Similarity-based methods assign query barcodes to species

based on how much DNA barcode characters they have in

common. Similarity can be calculated directly from nucleotide

sites (e.g. using MOTU [52], nearest neighbor [35,53], or BLAST

[54]) or from a projection of nucleotides (e.g. Kernel methods

[35,55,56], ATIM [57], BRONX [58]). Similarity-based methods

assume that conspecific samples will be more similar to each other

than to samples of any other species. However, this need not be

true in all cases. For instance, if we consider two hypothetical sister

species that share two polymorphisms and have only one

nucleotide differentiating them from each other, tree- and

similarity-based methods will fail to correctly identify (some of

the) haplotypes in these species, see Figure 1.

Statistical methods estimate confidence measures on DNA

barcode matches for species identification. These methods

typically employ Bayesian estimation based on explicit population

genetic or phylogenetic models [44,59,60]. Obviously, confidence

measures are of great importance when dealing with regulated

species, forensics or disease vectors [44]. However, because

statistical methods for species identification are computationally

intensive and the appropriate model parameters are not known for

the majority of species we will not treat them further.

Diagnostic methods (sometimes included in ‘character-based’

methods [46]) rely on the presence/absence of particular

characters in DNA barcode sequences for identification, instead

of using them all. Diagnostics can be either ‘‘simple’’ when based

on a single unique character or ‘‘compound’’ when based on a

unique combination of characters [61]. Some methods use

nucleotide data and require a multiple sequence alignment (e.g.

CAOS [61,62,63], BLOG [64]. Others use diagnostic nucleotide

strings as diagnostics and are therefore alignment-free (e.g. DNA-

BAR [65]). Diagnostic methods are analogous to classical

taxonomic practices that rely on morphological diagnostic

characters [46,66]. As opposed to other methods, diagnostic

methods have the potential to select the differentiating nucleotide

only and ignore any within-species variation obscuring that signal

[46,67,68]. For example, a diagnostic method could correctly

identify the two hypothetical species in Figure 1 based on the

diagnostic nucleotide at position 1.

Our objective was to compare relative performance of six DNA

barcode matching methods in correctly identifying barcodes of

recently diverged species. Below we provide some motivations for

choosing each of these six methods:

1. Tree-based neighbor joining (NJ) [48] because it is the most

widely used method for classifying DNA barcodes in the

Figure 1. Hypothetical DNA barcode sequences where tree-
based and similarity methods produce incorrect identifica-
tions. A. Alignment where two recently diverged sister species
(species1 and species2) have only one diagnostic nucleotide differen-
tiating them from each other (position 1) and at the same time share
two polymorphisms (positions 2 and 3). Species3 is included as
outgroup; B. Pairwise uncorrected similarities based on the alignment
with highest pairwise similarities in boldface; C. Neighbor joining tree;
D. Strict consensus of all maximum parsimony trees.
doi:10.1371/journal.pone.0030490.g001
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literature, and implemented in, for instance, the Barcode Of

Life Database [69]. Speed being its main advantage, NJ is a

bottom-up clustering algorithm that calculates a single tree

from a distance matrix. Results can be dependent on the

ordering of the matrix, however, making results sometimes less

reproducible. The underlying assumption in NJ barcode

matching is that barcode sequences of distinct species form

discrete clusters in a NJ tree [4]. For identification, query

sequences are included in the NJ tree to see in which cluster

they appear.

2. Tree-based parsimony (PAR) [50] as it outperformed other

tree-based methods (such as the Statistical Assignment Package

SAP [49]), in a published comparative study [58]. PAR adopts

the optimality criterion under which the preferred tree is the

tree that requires the least evolutionary change to explain the

data. Assessing all possible trees for more than 20 sequences is

computationally impossible and therefore PAR methods

employ heuristics to find the preferred tree(s).

3. Similarity-based nearest neighbor (NN) because it gave high

correct identification rates in previous studies [35,53]. Based on

a distance matrix, NN simply assigns a query sequence to the

same species membership as its closest sequence in the

reference data base. It is equivalent to the ‘Best Match’

method by Meier et al. [53] and the ‘1-NN’ method used by

Austerlitz et al. [35].

4. Similarity-based BLAST [54] as it is probably the most

commonly used method for classifying DNA sequences in

practice. It is an algorithm for comparing query sequences with

an unaligned reference data base calculating pairwise align-

ments in the process. It is faster than NN, but can give

incorrect matches in some cases, especially with incomplete

reference data bases [70].

5. The diagnostic method DNA-BAR [65] because it showed

higher levels of accurate species identification in previous

studies [57,58] compared to the other diagnostic method

CAOS [61]. DNA-BAR first selects sequence substrings

(distinguishers) differentiating the sequences in the reference

data set, and then records presence/absence of these

distinguishers. An advantage of using substrings is that the

method does not require an alignment.

6. The recently developed diagnostic logic mining method BLOG

[64] because it has not been used in any comparative test

before (except [71]). BLOG first selects a number of characters

(‘features’) from the reference data set that optimize discrim-

ination of a particular species, based on an integer program-

ming feature selection method. It then uses the selected features

to search for the simplest logic formula that discriminates that

species from all others using a learning method based on

decomposition techniques [64,71]. This process is reiterated for

every species in the reference data set. Subsequently, query

sequences are screened for their recognition by the formulas for

identification. The reader may refer to [64,72,73] and [74] for

a complete description of the mathematical models that

constitute the main characteristics of BLOG.

We use simulated and empirical DNA barcode datasets, the

latter from published studies. In general, data simulations allow for

replication and, hence, statistical testing of method performance.

For instance, Austerlitz et al. [35] assessed relative performance of

NJ, NN, classification and regression trees, random forest, and

kernel methods in correctly assigning query barcodes to predefined

species. They concluded that, although NN was the most reliable

method overall, none was found to be best under all circumstanc-

es. However, the authors simulated datasets with only 2–5 species

and assumed simultaneous divergence of all species which seems

biologically unrealistic [35]. Here, we simulated more realistic

DNA barcode datasets comprising 50 species along a phylogenetic

tree, thus producing more typical levels of sequence divergence. In

this regard our approach is similar to that of Ross et al. [37] who

tested similarity and tree-based methods of species identification

using ‘realistic’ simulated datasets. They concluded that tree-based

methods returned ambiguous identifications. However, they did

not take species divergence times explicitly into account, nor did

they include diagnostic methods, which we do here.

Our results show that, even though recently diverged species

pose a significant problem for effective DNA barcoding, sensitive

similarity-based and diagnostic methods can significantly improve

identification performance compared with the commonly used

tree-based methods such as NJ.

Materials and Methods

Our analytical pipeline started with generating simulated DNA

barcode data sets and selection of published empirical data sets.

Subsequently, we assessed both ‘barcode gap’ and monophyly of

species and performed matching analyses with tree-based

(NJ,PAR), similarity-based (NN, BLAST) and diagnostic (DNA-

BAR, BLOG) methods on both types of data. The pipeline

concluded with a comparative evaluation of methods used in terms

of accuracy of species identification.

Data simulation
DNA barcode datasets were simulated using the Coalescent

package in Mesquite version 2.73 build 544 [75,76]. We simulated

along two axes: time of species divergence and effective population

size (Ne). We started by simulating a random ultrametric species

tree for 50 species using the Yule model [77], with a total tree

depth of 1 million generations. Species were divided into two

equally-sized groups (N = 25) based on their rank in divergence

times: one with ‘recently diverged’ species and another with ‘old’

species.

Ultrametric gene trees were simulated on the ultrametric species

tree according to the coalescence model, generating 20 individuals

per species. Gene trees were simulated using Ne = 1,000 10,000

and 50,000 with each simulation replicated 100-fold, resulting in

300 gene trees in total. Additive gene trees were then obtained by

adding noise to the branch lengths of gene trees in order to ensure

more realistic (i.e. non-ultrametric) data structure. Thereby we

effectively mimicked heterogeneity of the effective mutation rate

(m) over branches of the gene trees. Noise was normally distributed,

with a variance s of 0.7 times the original branch length.

DNA barcode sequences were then simulated on the additive

gene trees according to a HKY substitution model [78], the choice

of which was based on the best-fitting model for a representative

empirical dataset of 527 Nymphalidae DNA barcodes as selected

using JModelTest 0.1.1 [79] applying the AIC criterion. Model

parameters encompassed a transition/transversion ratio k of 8.3,

nucleotide frequencies of 0.30 (A), 0.15 (C), 0.10 (G), 0.45 (T), and

gamma-distributed rate variation over sites with 4 rate categories

and a shape parameter a of 0.2. Sequence length was 650 base

pairs, approximating the length of the standard DNA barcode for

animals (COI ). Simulated sequences were divided over reference

data sets (16 sequences per species) and query data sets (4

sequences per species). The reference data sets were considered as

DNA barcode reference libraries containing sequences with a priori

assigned species membership. The query data sets were considered

to comprise unknown DNA barcodes, although in our case species

DNA Barcoding of Recently Diverged Species

PLoS ONE | www.plosone.org 3 January 2012 | Volume 7 | Issue 1 | e30490



membership was known because they were simulated together

with the reference data set. Consequently, accuracy of their

identification could be evaluated a posteriori.

Empirical data sets
We selected three published empirical DNA barcode data sets

based on the following criteria: 1. Data contain species that are

problematic to identify using DNA barcodes because of incom-

plete clustering in barcode trees; 2. Data encompass high

phylogenetic diversity, i.e. from different phyla (Plantae, Mollusca

and Arthropoda), to ensure the general applicability of our

outcomes; 3. Data come from different markers, i.e. from all three

genomic compartments. A summary of the selected data can be

found in Table 1; details are below:

Drosophila. Lou and Golding [33] used this data set to test the

ability of algorithms to assign sequences to species in the absence

of a barcode gap. They found that many species are siblings with

low between-species distances and some have no ‘barcode gap’

[23,33]. Drosophila species are also known to have relatively large

Ne’s and associated high within-species divergence [80,81]. The

data set comprised 615 barcodes from 19 species.

Inga (Fabaceae) is a large genus of tropical leguminous trees.

Many morphologically distinct Inga species collected in the

southwestern Amazon are incompletely sorted in DNA barcode

trees [1]. No Ne estimates for Inga are available. We selected the

data set from Dexter et al. [1] who linked cpDNA trnTD intron and

nrDNA Internally Transcribed Spacer (ITS) sequences into a

multi-locus DNA barcode of 1713–1771 nucleotides in total. The

data set comprised 913 barcodes from 56 species

Cypraeidae (Mollusca) are taxonomically one of the most

extensively studied marine gastropods. Although Meyer & Paulay

showed that subspecies rather than species best represent diversity

in these DNA barcodes [31] we adhered to species names, mainly

because subspecies were generally less well sampled. No Ne

estimates for Cypraeidae are available. The data set comprised

2008 mtDNA COI sequences of 211 species and had almost

complete coverage of sister-species, some of which are reported to

have diverged only recently [31].

Only those species represented by 5 or more sequences were

evaluated in the identification assessments. Their sequences were

randomly distributed over a reference data set (80% per species)

and a query data set (20% per species). Species represented by less

than 5 sequences were kept in the reference data set, but not

evaluated in the identification assessments (i.e. their sequences

could therefore only contribute to the false positive rate of the

query sequences that were evaluated).

Species ‘barcode gap’ and monophyly
To assess the existence of a ‘barcode gap’ in our data sets, we

extracted within- and between- species K2P [82] distances from all

50 species in all 300 simulated reference data sets (100 of each Ne)

and made comparisons between Ne’s. We are aware that using K2P

implies effective under-parameterization [83] as we used HKY in the

simulations, but we chose K2P as it is typically used in DNA barcode

analyses (e.g. [10,15,17,25,84]). Repeating the analysis using HKY

did not give different results (not shown). We evaluated the existence

of ‘barcode gaps’ at species level by scoring a species as having a

‘barcode gap’ when the minimum between-species sequence

distance exceeded the maximum within-species distance [31,85].

We assessed species-monophyly in DNA barcode trees of all 50

species in all 300 simulated reference data sets and subsequently

compared results between Ne’s. DNA barcode trees were

reconstructed using NJ and parsimony using settings described

below, and species were scored as either monophyletic or non-

monophyletic based on the DNA barcode tree topologies.

Method performance
Neighbor joining (NJ). We used the neighbor joining

algorithm [48] implemented in the R. package APE 2.5–3 [86]

and applied randomly shuffling of input order of sequences. We

assessed tree topology in two ways, following Ross et al. [37]. 1.

‘Strict assessment’ meant that if the query was nested within a

mono-specific cluster or clade it was identified as that species.

Otherwise its identification was considered uncertain. This is

equivalent to the ‘Tree based identification, revised criteria’ used

by Meier et al. [53] and is reported to have significantly lower false-

positive rates [37]. 2. ‘Liberal assessment’ meant that if the query

was sister to a mono-specific cluster it was identified as that species.

Otherwise its identification was considered uncertain.

Parsimony (PAR). Maximum parsimony trees were

estimated using TNT version 1.1 [87]. Heuristic searches

consisted of iterations of ratchet, sectorial searches, tree drift and

tree fusing algorithms [88] through the TNT built-in function

‘xmult’, holding 1000 trees during search (‘hold 1000’). Searches

were stopped when four independent replicates found shortest

trees of the same length (‘xmult = hits 4’). Identical sequences were

excluded before analysis and later restored to save computation

time (‘riddup’). Only one maximum parsimony tree was held after

each analysis to make results comparable to NJ. We assessed tree

topology in the same way as described for NJ above.

Nearest neighbor (NN). Nearest neighbors were calculated

using the ‘dist.dna’ function in the R. package APE version 2.5–3

[86] based on the K2P model of sequence evolution [82]. A query

was identified as the species associated with its nearest neighbor

(reference sequence with lowest distance to that query). In case

nearest neighbors were from more than one species the query’s

identification was considered uncertain.

BLAST. Identification based on BLAST was performed using

NCBI software version 2.2.25+ [89]. Reference data sets were

stored in a BLAST database for subsequent matching with query

sequences. Up to 100 hits with at least 80% identity were returned

for each query, which was identified as the species associated with

Table 1. Summary of selected empirical data sets used.

Data set ref. marker seq. length #sequences #spp. #spp. $ 5 seq.

Drosophila [33] COI 663 615 19 15

Inga [1] trnTD, ITS 1838 913 56 35

Cypraeidae [31] COI 614 2008 211 112

Ref. = Reference to original publication, seq.length = sequence length, #sequences = number of sequences, #spp. = total number of species in the data set, #spp. $

5 seq. = number of species represented by 5 or more sequences.
doi:10.1371/journal.pone.0030490.t001
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its best hit (highest bit score). In case more than one species were

associated the query’s identification was considered uncertain.

DNA-BAR. Reference data sets were converted to a matrix

comprising presence/absence of distinguishers (sequence

substrings) using the software ‘degenbar’ [65]. Input parameters

were as follows: distinguishers of length 5–50 nucleotides (‘l-min 5’,

‘l-max 50’), up to 100 redundant distinguishers (‘Redundancy

100’), GC content 0–100% (‘MinCandidGC 0’, ‘MaxCandidGC

100’), annealing temperature 0–100uC (‘MinCandidTemp 0’,

‘MaxCandidTemp 100’), salt and DNA concentration 50 nM

(‘SaltConc 50’, ‘DNAconc 50’), and a maximum common

substring weight of 100 (‘MaxCommSubstrWt 100’) (note that

degenbar was originally designed to pick DNA probes). In case of

multi-locus DNA barcodes (i.e. Inga data set) loci in the reference

alignment were separated by 50 ‘N’ positions. The presence/

absence matrix of distinguishers was then used as reference data

set. Each query sequence was scored for presence/absence of

distinguishers and identified as the species associated with the

reference sequence with the greatest number of matching

presence/absences. In case more than one reference sequence of

the same species membership shared the greatest number of

matches the query was identified as that species. In case reference

sequences associated with different species shared the greatest

number of matches identification was considered uncertain.

BLOG. Diagnostic logic mining analyses were performed with

BLOG software version 2.4 [64] which is available online [90] and

on the Barcode Of Life Data Portal [91,92] (an off-line version is

available from EW upon request). Input parameters for feature

selection were as follows: a maximum number of 35 features chosen

(‘BETA = 35’), a maximum of 200 iterations (‘GRASPITER =

200’), and a maximum time of 500 minutes for analysis

(‘GRASPSECS = 30000’). Each query sequence was scanned to

see if it satisfied any of the logic formulas generated by BLOG and

identified as the species associated with the matching logic formula.

In case a query satisfied more than one logic formula the logic

formula having lowest false positive rate on the reference data set was

taken as the identification. In case error rates of logic formulas were

equal identification was considered uncertain.

Statistical tests
We assessed relative performance of the six methods in terms of

their identification success with simulated and empirical data.

Identification success was defined in two ways: 1. ‘Species

identification success’ was scored as the number of species for

which all query sequences were correctly identified. 2. ‘Sequence

identification success’ was scored as the number of correctly

identified query sequences per data set, which is equivalent to

sensitivity (i.e. true positives/[true positives + false negatives]).

We evaluated the influence of i) species divergence times (recently

diverged versus old), ii) method used, and iii) Ne on species

identification success, using Friedman tests [93] in which the sum of

identification success measures per replicate was used as the

observation. Significant differences between methods were revealed

in post-hoc pairwise Wilcoxon signed rank tests based on paired

observations [94]. To account for the large number of comparisons

we applied Bonferroni correction [95] to all tests combined (i.e.

multiplying p-values by total number of tests performed). A

corrected value of P,0.01 was considered statistically significant.

Results

Data simulation
The 50 species in the simulated ultrametric species tree had

divergence times between 98 and 553116 generations (see Figure

S1). We classified half the species (with divergence times between

98 and 76621 generations) as ‘recently diverged’ and the other half

(with divergence times between 76621 and 553116 generations) as

‘old’, see figure S1.

Species ‘barcode gap’ and monophyly
Maximum within-species distance equals or exceeded minimum

between species distance for a substantial proportion (37%) of the

species in the simulated data sets, indicating absence of a barcode

gap. This proportion positively correlates with effective population

size (Ne), which is explained mainly by an increase of the within-

species distances under larger Ne, see Figure 2. On the contrary,

with 54% for old species and 20% for recently diverged species this

proportion decreases with increasing divergence time (mostly dark

dots fall below the ‘barcode gap’ line in Figure 2).

As expected, percentage of species-monophyly was lower for

species that had diverged more recently (Figure 3). While the

oldest species (553116 generations) was always monophyletic the

two youngest species (98 generations) were never. Between these

extremes, percentages increased more rapidly for data sets

simulated under coalescence with smaller Ne (Figure 3).

Method performance
The comparative evaluation of methods shows, as expected, that

species identification success generally decreased with increasing Ne,

see Figure 4 for results across all methods (results for all methods

separately are in Table S1). Data sets that were simulated according

to the smallest Ne (1,000 individuals) had highest average success

score with 89% (P,0.00001). With an average success score of

81%, datasets that were simulated according to the largest Ne

(50,000 individuals) were most challenging in terms of species

identification (P,0.00001). Similarly, species identification success

rates of all methods are lower for species that have diverged more

recently, see Figure 5 for results across all methods (results for all

methods separately are in Table S2). On average, the 25 recently

diverged species were correctly identified in 75% of cases,

significantly less than 97% for the 25 old species (P,0.00001).

Query identification success showed the same pattern, where scores

for old species were generally higher than for recently diverged

species and showed less variation (data not shown). We therefore

report relative performance of methods compared for recently

diverged species only (results for all species are given as supporting

information in Table S3 and Figure S2).

Diagnostic method BLOG performed best (86.2%) in terms of

overall query identification success for recently diverged species

based on simulated data (Table 2, Figure 6), although not

significant (p = 0.033). Diagnostic method DNA-BAR (86.1%) as

well as similarity-based methods NN (85.7%) and BLAST (85.6%)

performed only slightly worse than BLOG and significantly better

than tree-based methods (P,0.00001). Of the two tree-based

methods NJ generally performed better than PAR and liberal

assignment performed better than strict assignment for both

methods (all P,0.00001).

Empirical data sets
Based on empirical data diagnostic method BLOG performed

best (93.1%) in terms of overall query identification success (see

Table 3). Diagnostic method DNA-BAR performed only slightly

worse (90.4%) and had the best score for two out of three

empirical data sets (Inga and Cypraeidae). Detailed results per

empirical data set can be found in Tables S4, S5, and S6.
Drosophila. The most divergent Drosophila sequences had

19.5% pairwise distance, and the largest within-species divergence

was 17.5% for D. angor. Fifteen of 19 species had sufficient
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coverage (i.e. were represented by 5 or more sequences). Based on

the reference data set comprising 497 sequences, 11 species were

monophyletic in a NJ tree (73.3%) and 9 had a ‘barcode gap’

(60.0%). Based on the query data set (118 sequences) BLOG

outperformed all other methods in terms of query identification

success (114 query sequences correctly identified). DNA-BAR and

BLAST identified 99 query sequences correctly as did NJ and

PAR based on liberal assignment; NN identified 97 query

sequences correctly; NJ and PAR identified 95 query sequences

correctly based on strict assignment; see Table 3.

Inga. The two most divergent Inga sequences had 1.5%

pairwise distance, and largest within-species divergence was 0.7%

for I. capitata. Thirty five of 56 species had sufficient coverage (i.e.

were represented by 5 or more sequences). Based on the reference

data set (736 sequences) 25 species were monophyletic in a NJ tree

(71.4%) and only 16 had a ‘barcode gap’ (45.7%). Based on the

Figure 2. Species ‘barcode gap’. Scatterplots of minimum between-
over maximum within-species distance for 5000 simulated species in
the reference data sets with 16 samples per species. Simulations under
coalescence with effective population sizes (Ne) of 1000 (yellow, top),
10000 (purple, middle) and 50000 (blue, down) individuals. Brightness
of the dots correlates with species divergence times, i.e. recently
diverged species are dark and old species are light. Species plotted
above the diagonal lines have a barcode gap.
doi:10.1371/journal.pone.0030490.g002

Figure 3. Species monophyly over time of divergence.
Scatterplot of percentage species monophyly (N = 100) based on NJ
DNA barcode trees for 50 simulated species from the reference data
sets (16 individuals per species) plotted against their divergence times.
Simulations under coalescence with effective population sizes of 1000
(yellow squares), 10000 (purple dots) and 50000 (blue triangles)
individuals.
doi:10.1371/journal.pone.0030490.g003

Figure 4. Influence of Effective population size (Ne) on species
identification success. Boxplots of percent species identification
success (N = 100) based on query data sets simulated under coalescence
with effective population sizes of 1000 (yellow), 10000 (purple) and
50000 (blue) individuals.
doi:10.1371/journal.pone.0030490.g004
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query data set (172 sequences) DNA-BAR outperformed all other

methods in terms of query identification success (162 query

sequences correctly identified). NJ identified 157 query sequences

correctly based on liberal assignment; BLOG identified 155 query

sequences correctly as did NJ based on strict assignment. NN

identified 152 query sequences correctly; BLAST identified 142

query sequences correctly; PAR identified 140 query sequences

correctly based on liberal assignment and 138 based on strict

assignment.

Cypraeidae. The most divergent Cypraeidae sequences had

28.5% pairwise distance, and largest within-species divergence was

17.1% for Leporicypraea mappa. Hundred twelve of 211 species had

sufficient coverage (i.e. were represented by 5 or more sequences).

Based on the reference data set (1654 sequences) only 81 species

were monophyletic in a NJ tree (38.4%) and only 77 had a

‘barcode gap’ (36.5%). Based on the query data set (354 sequences)

DNA-BAR outperformed all other methods in terms of query

identification success (330 query sequences correctly identified).

BLOG and BLAST identified 328 query sequences correctly; NJ

identified 324 query sequences correctly based on strict

assignment; NN identified 323 query sequences correctly; NJ

identified 320 query sequences correctly based on strict

assignment; PAR identified 302 query sequences correctly based

on liberal assignment and 297 based on strict assignment.

Discussion

DNA barcoding works well for most species, although

significant differences in population dynamics probably exist

between, e.g. vertebrates, insects and plants. Indeed, DNA

barcoding success rates have been estimated to be around 98%

for animals and 70% for plants [96,97,98] with the relatively low

success rate for the latter having been attributed to various causes

such as high incident of hybrid species in angiosperms [99], long

generation times or slow mutation rates of woody species [100]

and limited dispersal of seeds [100,101]. Overall, the fact that

DNA barcoding works so well is considered to be mainly due to

conspecific sequences generally having their coalescent well after

time of species divergence [5].

Our results corroborate this notion in that, although our data sets

contained incompletely-sorted species, identification success rates

were generally high (.80%). Nevertheless, species that are recently

diverged pose a consistent problem for identification based on DNA

barcodes [1,2,31,32,33,34,39], as indicated by our findings in which

methods proved not to be equally robust with regard to incomplete

lineage sorting effects in recently diverged species (Figures 3 and 5).

As such species are usually of special interest scientifically or from

regulatory perspective [1,2,3,12,13,14,27,28,29], yet also difficult to

identify using morphology [1,11,24,27,32,84], finding robust

analytical methods is warranted, and commonly used methods

such as neighbor joining may not suffice.

Method performance
Tree-based methods. Our results based on simulated data

of recently diverged species show that DNA barcode identification

of recently diverged species can be significantly improved by

applying methods that do not rely on tree representation. The two

tree-based methods tested here, i.e. neighbor joining (NJ) and

parsimony (PAR), perform worst in terms of query identification

success, even with liberal assignment. This finding is in

concordance with results from other studies comparing relative

performance of DNA barcoding methods [53,57,58,102], as well

as with the generally accepted notion that gene trees (i.e. DNA

barcode trees) do not necessarily reflect organismal history [42].

PAR consistently and significantly achieved the lowest identi-

fication rates here. We see two possible explanations for this result:

First, heuristic searches are not guaranteed to find the shortest (i.e.

most parsimonious) tree(s) and our search settings may have been

insufficiently thorough [88]. Further analysis of some data sets

with more thorough search settings did not result in shorter trees

Figure 5. Influence of species divergence on species identifi-
cation success. Boxplots of percent species identification success
(N = 300) based on query data sets for species that were either recently
diverged (divergence times between 98 and 76621 generations) or old
(divergence times between 76621 and 553116 generations).
doi:10.1371/journal.pone.0030490.g005

Table 2. Relative method performance based on simulated data for recently diverged species.

Data set NJ (liberal) NJ (strict) PAR (liberal) PAR (strict) NN BLAST DNA-BAR BLOG

Ne = 1,000 83.69 83.58 73.31 73.14 86.18 86.18 86.25 85.96

Ne = 10,000 85.53 84.27 79.79 78.38 86.11 86.09 86.83 88.15

Ne = 50,000 84.20 77.35 79.53 72.32 84.76 84.56 85.24 84.58

overall 84.47a 81.73b 77.54c 74.61d 85.68e 85.61 e 86.11 e 86.23 e

DNA barcode query identification success scores (%, N = 100) of six methods applied to barcode sequence datasets simulated under three different effective population
sizes (Ne). NJ = neighbor joining, PAR = parsimony, NN = nearest neighbor. Highest scores are in boldface. Overall success scores (%, N = 300) not significantly
different in post-hoc pairwise Wilcoxon tests are indicated by same superscripts.
doi:10.1371/journal.pone.0030490.t002
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being found, however (data not shown), indicating that settings

were in fact adequate. Second, several equally parsimonious trees

may exist of which only one was used for identification here.

Having chosen randomly among equally parsimonious trees may

therefore have affected results negatively. NJ will always find a

single, fully resolved tree [48] which may have more biological

relevance than a randomly chosen maximum parsimony tree,

hence resulting in more correct identifications using NJ. We did

not include barcode query identification based on a consensus of

all most parsimonious trees, but because a consensus tree by

definition has reduced resolution we do not expect this could

increase performance based on PAR.

For both tree-based methods (i.e. NJ and PAR) strict assignment

(i.e. requiring a query to be nested within a monospecific clade for

identification) significantly reduced identification success com-

pared to liberal assignment (i.e. allowing identification of a query

that is sister to a monospecific clade). This was as expected because

when a query is sister to a monospecific clade strict assignment

yields an uncertain identification whereas liberal assignment will

assign it to the species associated with that clade [37]. Although

identification can be wrong in some of these cases, even few

correct identifications will result in a higher success rate for liberal

assignment compared with strict assignment [37,57].

There are other tree-based methods for matching DNA

barcodes available but we expect that these do not outperform

NJ as tested here. For example, Bayesian methods for tree

inference [51] do not find a single, fully resolved tree and will

therefore share the drawbacks of PAR. The Statistical Assignment

Package (SAP) [49] was already found to perform less well than NJ

on a Gymnosperm multi-locus DNA barcode data set, even when

using the ‘constrained NJ’ algorithm for tree estimation [58].

Similarity-based and diagnostic methods. These methods

perform significantly better with 31% reduction of error rates

compared to tree-based methods (26% when counting tree-based

results using liberal assignment only), see Table 2 and Figure 6.

Although not significant, diagnostic methods (i.e. BLOG and

DNA-BAR) outperformed all other methods tested here. This

confirms their suspected superiority as they allow selecting

differentiating characters whilst ignoring any obscuring within-

species variation [46]. Obviously, diagnostic methods are not

guaranteed to have this advantage in all cases. For example, in

another study [58] the diagnostic method CAOS [61] did not

perform well; possibly because it is dependent upon tree topology

for extracting diagnostic characters. The two similarity-based

methods (i.e. NN and BLAST) performed only slightly worse

compared to the diagnostic methods. This may seem surprising

Table 3. Relative method performance based on empirical data.

Data set NJ (liberal) NJ (strict) PAR (liberal) PAR (strict) NN BLAST DNA-BAR BLOG

Drosophila (118) 83.90 80.51 83.90 80.51 82.20 83.90 83.90 96.61

Inga (172) 91.28 90.12 81.40 80.23 88.37 82.56 94.19 90.12

Cypraeidae (354) 91.53 90.40 85.31 83.90 91.24 92.66 93.22 92.66

Overall 88.90 87.01 83.53 81.55 87.27 86.37 90.43 93.13

DNA barcode query identification success scores (%) of six methods applied to three empirical data sets. NJ = neighbor joining, PAR = parsimony, NN = nearest
neighbor (liberal) = liberal assessment, (strict) = strict assessment. Number of query sequences in each data set is in brackets. Overall success scores (bottom line) are
averaged over the three data sets. Highest scores are in boldface.
doi:10.1371/journal.pone.0030490.t003

Figure 6. Method performance. Boxplots of sequence identification success (N = 300) of six methods that were applied to recently diverged
species in simulated query data sets. NJ = neighbor joining, PAR = parsimony, NN = nearest neighbor. Success scores not significantly different in
post-hoc pairwise Wilcoxon tests are indicated by same superscripts.
doi:10.1371/journal.pone.0030490.g006
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because of the large overlap of within- and between-species

distances in our data sets (see Figure 2). But even when there is

no ‘barcode gap’ for a particular species, the closest match for a

query sequence can well be conspecific, resulting in correct

identification [53]. The two methods tested here either require

(NN) or produce (BLAST) a sequence alignment, but reliable

homology assessment and alignment can be problematic when

sequences are variable in length [55,57]. Alternative similarity-

based methods have been proposed that make a projection of

sequences based on the decomposition of sequence strings and are

therefore in effect alignment-free [35,55,56,57,58]. String

decomposition can be performed in various ways, however, and

optimal settings may differ between data sets. For example,

preliminary tests of query identification using the recently

proposed alignment-free method BRONX [58] showed high

success rates for the multi-locus Inga data set (90.1%) but very low

success rates for the Drosophila (53.4%) and Cypraeidae (74.6%) data

sets, using the same (default) settings (data not shown).

Although diagnostic and similarity-based methods show similar

performance in terms of correct query identification, they

markedly differ in their computational cost. Similarity methods

such as NN and BLAST are computationally relatively inexpen-

sive because they only involve finding a query’s closest match [37].

By contrast, diagnostic methods must select and extract diagnostic

characters, which is computationally expensive [64]. As an

example, while the NN analysis of a simulated data set took only

,2 seconds on a 3GHz dual core desktop computer, analyzing the

same data set with BLOG required ,7 minutes of computation

(both analyses using one thread only). Nevertheless, a similarity

analysis such as NN has to be repeated for every query sequence

requiring identification, thus multiplying the computation time by

the number of queries. Diagnostic characters, once they are

extracted, can be used to identify any query sequence by simply

matching it to these diagnostics – which is much faster than

similarity matching in the case of BLOG.

An essential advantage of BLOG over all other methods tested

here is that the diagnostic logic formulas extracted by BLOG

contain additional information with regards to species identification

[64]. Such formulas list the nucleotide(s) by which a species can be

differentiated from others and as such can be compared with species

descriptions in the traditional taxonomic sense [66]. Other methods

can then be compared with trying to match an unknown specimen

to all specimens in a collection. We envision that the logic formulas

can provide valuable information for other applications. For

example, the formulas can be included in species descriptions and

taxonomic revisions [103], whereas relative similarities cannot.

Obviously, diagnostic formulas exist only relative to a particular

alignment but the same is true for morphological characteristics

traditionally used for describing species, and in well-sampled clades

this problem may well disappear. Diagnostic logic formulas can also

be used for designing detection assays based on species-specific

nucleotides (e.g. DNA chips and microarrays) and hence assist the

development of tools for monitoring and regulation of species. For

this purpose DNA-BAR is potentially even better suited than BLOG

because it extracts diagnostics that are (combinations of) actual

sequence strings that can be used as DNA probes [65]. However,

DNA-BAR does not incorporate species-level information in its

analysis and selects diagnostics for sequences rather than for species

[65]. Moreover, diagnostics selected by DNA-BAR appear to be

much more complex than the diagnostic logic formulas extracted by

BLOG (personal observations), making DNA-BAR less suitable for

extracting species-specific information.

The greatest challenge for diagnostic methods is scalability.

Because diagnostic characters are dependent on their context,

finding simple diagnostics becomes more difficult with increasing

size of the reference database. For example, preliminary analysis of

a large data set with 3000 DNA barcodes from over 600 bird

species (data not shown) indicate that an alignment of such size is

prohibitive for finding simple species-specific logic formulas using

the current version of BLOG. Because datasets are ever increasing

in size this is an important problem that can be in general tackled

in different ways. With reference to this specific application, we see

two solutions: 1. A similarity approach with some species groups

flagged as ‘problematic’: Identification of a member of such group

would then need to be confirmed with diagnostics specific for

species in that group. 2. A combined similarity- and diagnostic

approach where sequences are first binned into local alignments

(e.g. at the level of families or genera) based on similarity;

subsequently, diagnostics are applied only within these local

alignments.

Statistical methods. We did not test any statistical methods

for identification based on DNA barcodes. Nevertheless, when

species identifications have economic or legal implications (e.g. in

detection of quarantine organisms or forensics) there is an obvious

need for probabilities associated with barcode matches. However,

DNA barcode sequences are essentially short, meaning that they

typically contain insufficient information to feed probabilistic

models, especially when recently diverged species are concerned.

We would therefore advocate confirmation of identifications based

on DNA barcodes by other lines of evidence (e.g. multiple

independent loci, serological tests or morphological expert

opinion) rather than relying on DNA barcodes only in such cases.

Empirical data sets
Our results based on empirical data are largely consistent with

results based on simulated data. Few differences in overall results

exist, however: Where scores for tree-based NJ were suboptimal

based on simulated data, they were comparable to at least some of

the similarity-based and diagnostic methods when applied to the

empirical data sets. For the Drosophila data set PAR performed

equally well as NJ. It should be noted that with only three data sets

assessing significance of differences in method performance is

limited, underlining the advantage of using simulated data. In

addition, DNA barcode identification success can depend on

taxonomic sampling. In ‘regional’ data sets (i.e. samples from a

particular geographic region only) within-species variation is

usually underestimated because of un-sampled haplotypes, while

between-species differences are usually overestimated because of

un-sampled taxa [31,38,39,53,104]. Therefore, regional data sets

such as Inga are expected to inflate DNA barcode identification

success rates in contrast to ‘clade-based’ data sets (i.e. sampling all

extant species across their entire distribution) such as Cypraeidae.

Nevertheless, because the selected data sets comprise genetic

markers from all three genomic compartments, result from

different sampling efforts and represent broad phylogenetic

diversity (i.e. insects, plants and gastropods) we interpret

consistency in our findings as an indication that they will equally

apply to other genetic markers and clades.

Conclusion
We found similarity-based (NN, BLAST) and diagnostic

methods (BLOG, DNA-BAR) to significantly outperform tree-

based methods (NJ, PAR), when applied to simulated DNA

barcode data of recently diverged species. Diagnostic methods

BLOG and DNA-BAR performed best on both simulated and

empirical data and BLOG had the highest correct query

identification rate overall. Although similarity-based methods

have better scalability compared to BLOG they do not reveal
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any species-level information that can be used outside the realm of

DNA barcoding. Diagnostic logic formulas extracted by BLOG

provide information that can be used for e.g. taxonomy and

species detection assays. Method choice therefore should depend

on requirement of either computation speed or information

content. In the end, recently diverged species remain difficult to

identify, but we expect that our results contribute to alleviating this

problem.

Supporting Information

Figure S1 Simulated ultrametric species tree. Tree with

50 species simulated under the Yule model and with a total tree

depth of 1 million generations. Terminal branches subtending

species considered as ‘recently diverged’ are in red, those

subtending species considered as ‘old’ are in blue.

(TIF)

Figure S2 Relative method performance based on
simulated data for all species. Boxplots of query identifica-

tion success (N = 300) of six methods that were applied to ‘recently

diverged’ species in simulated query data sets. NJ = neighbor

joining, PAR = parsimony, NN = nearest neighbor. Success

scores not significantly different in post-hoc pairwise Wilcoxon

tests are indicated by same superscripts.

(TIF)

Table S1 Influence of effective population size (Ne) on
species identification success per method compared.
(PDF)

Table S2 Influence of divergence time on species
identification success per method compared.
(PDF)

Table S3 Method performance based on simulated data
for all species.

(PDF)

Table S4 Results for all 15 species represented by 5 or
more sequences in the Drosophila empirical data set.

(PDF)

Table S5 Results for all 35 species represented by 5 or
more sequences in the Inga empirical data set.

(PDF)

Table S6 Results for all 112 species represented by 5 or
more sequences in the Cypraeidae empirical data set.

(PDF)
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