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Simple Summary: We developed a new labeled mouse cell line to study ovarian cancer. The STOSE
mouse cell line was engineered to express a luciferase label to enable real-time tumor monitoring by
imaging. We characterized the growth of the cell line in mice and identified the immune cells within
the formed tumors. We treated the mice with immunotherapy, which had no effect on tumor growth.
Overall, the STOSE.M1 luc model closely resembles ovarian cancer in humans and will further aid in
our understanding and treatment of this disease.

Abstract: Despite advances in surgery and targeted therapies, the prognosis for women with high-
grade serous ovarian cancer remains poor. Moreover, unlike other cancers, immunotherapy has
minimally impacted outcomes in patients with ovarian cancer. Progress in this regard has been
hindered by the lack of relevant syngeneic ovarian cancer models to study tumor immunity and
evaluate immunotherapies. To address this problem, we developed a luciferase labeled murine model
of high-grade serous ovarian cancer, STOSE.M1 luc. We defined its growth characteristics, immune
cell repertoire, and response to anti PD-L1 immunotherapy. As with human ovarian cancer, we
demonstrated that this model is poorly sensitive to immune checkpoint modulators. By developing
the STOSE.M1 luc model, it will be possible to probe the mechanisms underlying resistance to
immunotherapies and evaluate new therapeutic approaches to treat ovarian cancer.

Keywords: ovarian cancer; immune profiling; immunotherapy; intraperitoneal; ovarian intrabursal;
murine; high-grade serous; syngeneic; STOSE

1. Introduction

Approximately 90% of all ovarian cancers are of epithelial cell origin [1], with the
high-grade serous ovarian cancer (HGSOC) histological subtype being the most common
and that which has the poorest outcomes [2]. The primary interventions for advanced-stage
HGSOC in the frontline setting include surgery and neoadjuvant or adjuvant platinum
and taxane-based chemotherapies [3]. Anti-vascular endothelial growth factor (VEGF)
therapy and poly (ADP-ribose) polymerase (PARP) inhibitors have emerged as effective
maintenance therapies [4–8]. Additionally, VEGF therapy [9] is also used in the frontline
setting for some patients. Although most patients with HGSOC initially respond well
to these therapies, recurrence and development of resistance impede long-lived remis-
sions [10]. Unfortunately, for patients who progress on existing frontline therapies there
are few effective therapeutic options and the available drugs rarely lead to durable re-
sponses. Thus, there is an unmet need to develop interventions that can be used as single
agents or combined with existing therapies to reduce recurrence and treat drug-resistant
disease. Recently, new targetable vulnerabilities have been identified in HGSOC [11,12],
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and therapies targeting these are currently being evaluated for clinical efficacy. However,
these new drugs/treatment regimens will likely result in only incremental improvements
in outcomes.

Given the successes of contemporary immunotherapies in some solid tumors, includ-
ing melanoma [13,14], non-small cell lung cancer (NSCLC), and kidney cancer [15,16], it
is disappointing that these drugs are only effective in a small number of patients with
HGSOC. Approved immunotherapies for ovarian cancer are based on tumor agnostic
biomarkers. Dostarlimab, an anti PD-1 immunotherapy, is approved for patients with
recurrent solid cancers, including ovarian cancer, whose tumors have a DNA mismatch
repair deficiency (dMMR). Pembrolizumab, a second anti PD-1 therapy, is approved for
patients with recurrent cancer, including patients with HGSOC; if the patient’s tumor has
dMMR, a high tumor mutation burden (defined as ten mutations/megabase), or exhibits
microsatellite instability. Studies of single-agent checkpoint blockade in unselected patients
with HGSOC have shown minimal efficacy [17,18].

Frontline trials in which checkpoint blockade was combined with chemotherapy and
followed by standard of care maintenance therapy have also failed to meet their primary
endpoints [19–21]. As with other solid tumors that respond poorly to immunotherapy, it is
generally believed that epithelial ovarian tumors, and platinum-resistant HGSOC tumors,
in particular, are immunologically cold [22] with a low neoantigen burden and/or an
immunosuppressive tumor microenvironment [23]. Therefore, research priorities include
understanding the molecular basis of resistance and developing approaches to increase
ovarian tumor immunity, particularly in HGSOC. Furthermore, studies exploring new
approaches to favorably manipulate tumor-associated immune cell activity and increase
the clinical utility of existing immunotherapies will significantly benefit this disease.

Notwithstanding the potential differences in the biology of HGSOC in humans and
mice, the lack of tractable syngeneic murine models of this disease has significantly limited
progress. In this study, we have addressed this issue by developing and characterizing
a new model (STOSE.M1 luc) of HGSOC. Specifically, luciferase was stably expressed in
STOSE cells (originally generated by the spontaneous transformation of TP53 wild-type
ovarian surface epithelial (OSE) cells, from Friend leukemia virus B (FVB) mice) [24]. This
engineered cell line was then serially passaged in the ovaries of immunocompetent mice
to generate the stable STOSE.M1 luc model. We characterized this model extensively for
its ability to grow as a primary tumor and metastasize and evaluated the repertoire and
function of immune cells in tumors. This new, well-characterized model, which we will
make available, will be a valuable tool for studying the biology and pharmacology of
therapies in HGSOC.

2. Materials and Methods
2.1. Cell Culture

STOSE cells were cultured in RPMI-1640 media (ThermoFisher Scientific, Waltham,
MA, USA), supplemented with 8% fetal bovine serum (FBS, Sigma, St. Louis, MO, USA),
1mM sodium pyruvate (Invitrogen, Waltham, MA, USA), and 0.1mM nonessential amino
acids (Invitrogen) at 37 °C and supplied with 5% CO2. STOSE cells, a murine ovarian
cancer cell line derived from the ovarian surface epithelium of FVB mice, were a kind
gift from Dr. Barbara Vanderhyden (University of Ottawa). Cell lines were tested using a
PCR-based assay and confirmed to be negative for mycoplasma. Before implantation in
mice, STOSE cells underwent Duke Mouse Impact III cell line screening for pathogens and
were negative.

2.2. Luciferase Labeling of the STOSE Cell Line

Human embryonic kidney (HEK) 293T cells were cultured in 10 cm plates contain-
ing DMEM (ThermoFisher Scientific) + 10% FBS to 30–40% confluence. Transfection
reagents: 263 µL Opti-MEM (31985062, ThermoFisher Scientific), 17 µL of FuGENE-6
(E2692, Promega, Madison, WI, USA), 2.8 µg of lenti-luc-p2a-neo (Addgene 105621),
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2.8 µg of psPAX2 (Addgene 12260) and 0.28 µg of pCMV-VSVG (Addgene 8454) were
mixed and incubated for 30 min prior to adding dropwise to HEK 293T cells followed
by incubation at 37 °C overnight to generate lentivirus. Lenti-luciferase-P2A-Neo was a
gift from Christopher Vakoc (Addgene plasmid # 105621; Accessed on 5 August 2022—
http://n2t.net/addgene:105621; RRID:Addgene_105621 [25], psPAX2 was a gift from
Didier Trono (Addgene plasmid # 12260; Accessed on 5 August 2022—http://n2t.net/
addgene:12260; RRID:Addgene_12260), and pCMV-VSV-G was a gift from Bob Weinberg
(Addgene plasmid # 8454; Accessed on 5 August 2022—http://n2t.net/addgene:8454;
RRID:Addgene_8454) [26]. After 16–18 h, media were replaced with fresh DMEM + 30%
FBS. Virus-containing media were harvested every 24 h for 48 h and filtered through a
0.45 µM filter membrane. A total of 10 mL of virus plus 4 µg/mL polybrene was added to a
10 cm dish containing STOSE cells (P12), 50% confluent, and incubated overnight at 37 °C.
Following viral transduction, luciferase labeled STOSE cells were selected in 750 µg/mL
G418, media were replenished, and cells split as needed over ten days. Luciferase ex-
pression was confirmed by luciferase plate assay following the instruction of Promega
luciferase assay protocol using a non-commercial luciferase buffer as described by Dyer
et al., 2000 [27].

2.3. Mouse Studies

All procedures were approved by the Duke University Institutional Animal Care and
Use Committee (IACUC) under protocols A108-20-05 and A175-19-08.

2.3.1. Pilot Study of STOSE-luc Cells in Mice

FVB female mice were obtained from an in-house breeding colony at the Duke Cancer
Institute. Breeders were originally purchased from The Jackson Laboratory. Mice were
maintained under specific pathogen-free, temperature- and humidity-controlled conditions,
with a 12 h light/12 h dark schedule. During tumor studies, activity level, coat condition,
and changes in behavior, such as guarding and hiding, were monitored daily. Mouse
weight was assessed twice weekly, and tumor growth was assessed weekly by quantifying
the average luminescence intensity by In Vivo Imaging System (IVIS) Lumina XR.

A pilot study was performed to determine the optimal cell number for ovarian tumor
formation by ovarian intrabursal injection. Ten female FVB mice (6–7 weeks old) were
implanted with 1 × 105–1 × 106 STOSE-luc cells. Group 1 (n = 5) mice had 1 × 105 cells
implanted into the left ovary and 1 × 106 cells implanted into the right ovary. Group 2
(n = 5) had 2.5 × 105 cells implanted into the left ovary and 5 × 105 cells implanted into the
right ovary. Cell implantation was into the ovarian bursa under sterile surgical conditions.

Surgery was performed as follows and was the same for all ovarian intrabursal in vivo
studies. Mice were anesthetized in an inhalation chamber (2% Isoflurane, 4% oxygen) and
maintained via a nose cone (1% Isoflurane, 4% oxygen) throughout the surgical process
on a warming blanket. Prior to surgery, mice received a 5 mg/kg dose of carprofen
subcutaneously (SC). The dorsal area below the ribs was shaved with an electronic razor
and the skin was sterilized with betadine and alcohol. A 0.5 cm horizontal incision was
made through the skin above the ovarian fat pad, followed by a vertical incision through
the abdominal muscle wall. The ovary was externalized and 5 µL volume of cell suspension
(luciferase labeled STOSE cells, STOSE- luc, in PBS) was injected into the ovarian bursa
using a Hamilton syringe. The ovary was returned into the abdomen and abdominal wall
layers were reapproximated and sutured. One drop of bupivacaine (0.25%) was added on
top of the incision site. A wound clip was placed on the incision site. This was repeated for
the contralateral ovary. The mouse was then removed from anesthesia and kept in a clean
cage and monitored until conscious. Post-surgery, mice were administered a 5 mg/kg dose
of carprofen subcutaneously daily for the following 48 h. The mice were monitored for
recovery for ten days and the wound clips were removed when the incision healed.

http://n2t.net/addgene:105621
http://n2t.net/addgene:12260
http://n2t.net/addgene:12260
http://n2t.net/addgene:8454
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2.3.2. Repassage STOSE.M1 luc Cells in Mice

Tumors from the STOSE.luc pilot study were harvested, dissociated, and combined
into a single cell suspension under sterile conditions and re-implanted, as described above,
in five new FVB female mice (6–7 weeks of age) into the right ovary. Due to the small
number of cells harvested from these tumors, the cell number injected was unknown. The
remaining cells after implantation were cultured under normal tissue culture conditions,
expanded and frozen down in 10% DMSO for future studies, named STOSE.M1 luc. The
STOSE.M1 luc tumors that developed were harvested at the study end, combined into a
single cell suspension, cultured under normal tissue culture conditions, expanded and
frozen down in 10% DMSO for future studies, named STOSE.M2 luc.

2.3.3. Pilot Cell Number Study of STOSE.M1 luc

A pilot study was performed to determine the optimal cell number for ovarian tumor
formation from ovarian intrabursal injection of the STOSE.M1 luc cell line. Ten female FVB
mice 6–7 weeks old were implanted with 1 × 104–1 × 105 STOSE.M1 luc cells. Group 1
(n = 5) mice had 1 × 104 cells implanted into the left ovary and 1 × 105 cells implanted
into the right ovary. Group 2 (n = 5) had 2.5 × 104 cells implanted into the left ovary
and 5 × 104 cells implanted into the right ovary. Cell implantation was into the ovarian
bursa under sterile surgical conditions described above, and tumor growth was monitored
weekly by IVIS imaging. At the completion of the study, tumors were dissociated into
single cell suspension for immune profiling, described below.

2.3.4. Intraperitoneal STOSE.M1 luc Growth Study

STOSE.M1 luc cells, 1 × 106 in 200 µL of Hank’s Balanced Salt Solution (HBSS), were
injected intraperitoneally (n = 5 female FVB mice 6–7 weeks of age). Tumor growth was
monitored by IVIS imaging as described below.

2.3.5. Subcutaneous STOSE.M1 luc Growth Study

STOSE.M1 luc cells, 1 × 106 in 200 µL HBSS, were injected subcutaneously into the left
and right flank (n = 5 female FVB mice 6–7 weeks of age). Tumor growth was monitored by
IVIS imaging and caliper measurement.

2.4. IVIS Imaging

Growth of STOSE- luc and STOSE.M1 luc in ovarian bursa (intrabursally), intraperi-
toneally, and subcutaneously was monitored by IVIS Lumina XR imaging system 1–2 times
per week. To image tumors, mice were injected intraperitoneally with 100 µL of D-
luciferin sodium salt (Regis Technologies 103404-75-7) reconstituted in PBS (15.1 mg/mL).
Five minutes post luciferase injection, mice were anesthetized in an inhalation chamber (3%
Isoflurane, 4% oxygen) and maintained in half the dose of isoflurane (1.5%) via nose cone
throughout the imaging procedure on a 37 °C stage. Images were taken using exposure
times of 1, 30, 60 and 180 s and region of interest (ROI) drawn for each tumor or metastatic
area and calculated as average radiance [p/sec/cm2/sr] or total flux [p/s]. Images from
each study were normalized to the same color range.

2.5. Tumor Dissociation to Generate Single Cell Suspension

Tumors were isolated, minced on a petri dish in media (DMEM with 5% FBS) and di-
gested enzymatically with 100 µg/mL DNase I (D5025-150KU, Sigma-Aldrich) and 1 mg/mL
collagenase (Collagenase A, Cat 10103586001, Sigma–Aldrich, St Louis, MO, USA), then
shaken (250 rpm) at 37 °C for 45 min to 1 h. The resulting cell slurry was filtered through a
40 µM strainer (Cat 431750, Corning, Corning, NY, USA) to produce single cell suspensions.
The digestive enzymes were diluted by adding media and then cells spun down to remove
media. Red blood cells were lysed with ammonium chloride potassium (ACK) lysis buffer
(Cat A1049201, ThermoFisher Scientific, Waltham, MA, USA) for 4 min at room temperature.
Following red blood cell lysis, cells were washed with PBS before counting on a hemocytome-
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ter using trypan blue and then stained for flow cytometry staining, expanded in cell culture,
or re-implanted in mice. To dissociate the metastases, metastases visible by eye were excised
from the peritoneum and all organs contained within the peritoneal cavity. The metastases
were then pooled and processed as described above.

2.6. Flow Cytometry of Tumor and Immune Cells

Single cell suspensions (1 × 106 cells in 50 µL) generated as described above were
incubated with Live/dead cell stain (see Table S1) in PBS for 10 min at 4 °C. Cells were spun
down at 2000 rpm and incubated with anti-CD16/32 (Catalog 14-0161-85, ThermoFisher
Scientific) in flow buffer (10 g BSA and 0.2 g NaN3 in 1L PBS) for 15 min at 4 °C. Following
this, cells were stained with an extracellular antibody cocktail in Brilliant Stain Buffer
(Cat 566349, ThermoFisher Scientific) for 30 min at 4 °C. The antibodies used are listed
in Table S1. For intracellular staining, cells were fixed and permeabilized using 50 µL
of Fix Perm solution from eBioscience Foxp3 Transcription Factor Staining Buffer Set
(Cat 00-5523-00, ThermoFisher Scientific) for 30 min at 4 °C. Cells were spun down and
intracellularly stained with desired antibody prepared in Perm buffer for 30 min at 4 °C.
Cells were then fixed in fix buffer for 30 min at 4 °C, spun down and re-suspended in 200 µL
in flow buffer for flow cytometry. Multicolor flow cytometry was performed in BD Fortessa
16 color analyzer. The flow cytometry data were analyzed by FlowJo V10 software (FlowJo,
LLC, Vancouver, BC, Canada). To identify immune cell populations and changes between
the ovarian intrabursal model cancer sites (primary tumor, ascites, and metastases), we
utilized Uniform Manifold Approximation and Projection (UMAP) for dimension reduction
and FlowSOM plugins for population clustering in the FlowJo software. Before running
UMAP, the cells in each sample were downsampled to a smaller number of cells to enable
data processing. In most metastatic samples, all cells were included in the down sampling
due to the low number. After downsampling, each sample was labeled with a keyword
(1—primary, 2—ascites, 3—metastasis) to enable deconvolution post concatenation. The
samples from each site were concatenated together, followed by the concatenation of the
site files. UMAP algorithm was run on the concatenated file to identify clusters while
maintaining global structure, then the FlowSOM plugin was utilized to visualize the
population clusters and identify the delineating markers. From the concatenated file, each
site was pulled out using the keyword, and the individual FlowSOM clusters were overlaid
onto the individual site UMAP to show differences in the same populations between sites.

2.7. Anti-PD L1 Treatment of STOSE.M1 luc Tumors
2.7.1. Intraperitoneal

STOSE.M1 luc cells were injected intraperitoneally, 1 × 106 cells in 200 µL HBSS, as
described for the pilot study. Once tumors were established, as observed by IVIS nine days
post injection, mice were randomized into groups, n = 8 for PBS control, and n = 4 for anti
PD- L1 (Cat BE0101, Bio XCell, Nusajaya, Malaysia). PBS group was injected with 100 µL
PBS intraperitoneally on days 12 and 15 and the anti PD-L1 group was injected with 200 µg
of anti PD-L1 in 100 µL PBS intraperitoneally on days 15, 18, 22, and 26. Tumor growth
was monitored weekly by IVIS imaging. Mice were euthanized on day 28 and necropsy
was performed. Tumors were then dissociated for immune profiling.

2.7.2. Subcutaneous

STOSE.M1 luc cells were injected subcutaneously, 1 × 106 cells in 200 µL HBSS per
flank, as described for the pilot study. Once palpable, tumors were measured by calipers
until 50 mm2 (Day 18 post-injection), then mice were randomized into groups, n = 10 for
PBS control, and n = 5 for anti PD-L1 (Cat BE0101, Bio XCell). PBS group was injected with
100 µL PBS intratumorally in the largest flank tumor (D19, D22) and the anti PD-L1 group
was injected with 200 µg of anti PD-L1 in 100 µL PBS intraperitoneally (D22, D26, D29,
D33). Tumor growth was monitored weekly by IVIS imaging. Mice were euthanized on
day 35 and necropsy performed. Tumors were then dissociated for immune profiling.
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2.8. Statistical Analyses

Experiments were performed with a minimum of three biological replicates for each
experimental group. For all statistical analyses, GraphPad Prism software was used. Statistical
tests utilized included unpaired t-test, Mann–Whitney test, and Kruskal–Wallis test followed
by Dunn’s multiple comparisons test, two-way ANOVA followed by Tukey’s post hoc test or
Šidák’s multiple comparisons test. Statistical significance was defined as p < 0.05.

3. Results
3.1. Development and Characterization of the Syngeneic STOSE.M1 luc HGSOC Model

The STOSE mouse cell line models human HGSOC and has been propagated as
tumors in syngeneic hosts [24]. However, palpation of orthotopic ovarian tumors allows
only a semi-quantitative assessment of tumor growth, and real-time measurements of
metastasis are not possible. Therefore, there is a need for a tractable syngeneic model to
quantitatively track tumor progression. To enable time-resolved, quantitative assessments
of tumor burden, we developed the STOSE-luc cell line, a luciferase-labeled version of
the well-characterized STOSE cell line. To this end, STOSE cells were stably transduced
with lentivirus expressing luciferase. The tumorigenicity of the resulting cells was assessed
in vivo following ovarian intrabursal injection of 1 × 105 to 1 × 106 cells into ten mice.
Successful implantation of the STOSE-luc cells in the mouse ovaries was confirmed by
IVIS imaging (Figure S1A), and after approximately four months, tumors formed in three
mice (Figure S1B). The resultant tumors were harvested, and the cells, termed STOSE.M1
luc, were derived from the dissociated tumors (Figure S1C). These cells were re-implanted
into mice, and tumorigenicity was confirmed by IVIS imaging after 28 days (Figure S1D).
By study end on day 55, mice developed primary tumors (Figure S1E,F), ascites fluid in
the peritoneal cavity (Figure S1G,H), and metastases (Figure S2). These metastatic sites
included the peritoneum, contralateral un-implanted ovary, adnexa, uterus, bowel, liver,
ureter, mesentery, omentum, spleen, kidney, diaphragm, and lungs.

The growth of the STOSE.M1 luc cell line implanted in either the ovarian bursa, in-
traperitoneally, or subcutaneously was also evaluated. Implantation of as few as 1 × 104 cells
into the ovarian bursa resulted in the formation of approximately 0.5 g primary tumors
and metastases (with ascites) after five weeks (Figure 1A–C). Implantation of 1 × 106 cells
intraperitoneally or subcutaneously resulted in intraperitoneal (Figure 1D–F) or subcu-
taneous (Figure 1G–I) tumor formation, respectively. However, the subcutaneous model
developed less ascites and fewer metastases when compared to the intraperitoneal or
intrabursal models. Overall, the growth characteristics of this immunocompetent model
(Table 1 afford the possibility of assessing the impact of therapeutics/manipulations on
HGSOC in real-time.

Table 1. Characteristics of the Ovarian Cancer Models that were Developed.

Model Injection Site Cell # Injected
# of Mice

Developing
Tumors

# of Days to
Tumor

Formation

Ascites Volume
(mL)

Metastases
Formation

STOSE-luc Ovarian
Intrabursal 1 × 105 to 1 × 106 3/10 26 0 No

STOSE.M1 luc Ovarian
Intrabursal 1 × 104 to 1 × 105 9/10 21 3–9 Yes 1

Intraperitoneal 1 × 106 5/5 12 1–3 Yes 2

Subcutaneous 1 × 106 5/5 12 0–5 Yes 3

STOSE.M2 luc Not tested in vivo NA NA NA NA NA

1 Subcutaneous, peritoneum, ovary, adnexa, uterus, bowel, liver, ureter, mesentery, omentum, spleen, kidney,
diaphragm, lungs. 2 Subcutaneous, pelvis, peritoneum, omentum, bowel, mesentery, adnexa. 3 Bilateral subcuta-
neous, ovary, omentum, pelvis, peritoneum, spleen.
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3.2. Lymphoid Cell Infiltration at Sites Where STOSE.M1 luc Cells Reside during
Tumor Progression

Intratumoral lymphoid cell infiltration is prognostic for improved outcomes in multi-
ple cancers, including ovarian cancer [28–30]. However, the lack of validated syngeneic
ovarian cancer models has made it challenging to study the biology of lymphoid cells
in the context of tumors. To address this issue, we evaluated the lymphocyte cell reper-
toire/functionality in immune cells isolated from the primary tumor, ascites, and metastases
in the STOSE.M1 luc model. To survey the global changes in lymphoid markers on the
CD45+ immune cells and to identify phenotypic changes in tumor associated immune pop-
ulations not accessible using traditional gating strategies, we performed uniform manifold
projection analysis (UMAP) combined with FlowSOM clustering (Figure S3). In this manner,
it was determined that the primary tumor, ascites, and metastases each harbored lymphoid
cells but that the populations (denoted by individual colors) and the number of cells
contained within individual populations differed between sites (Figures 2A–C and S3).

Compared to other sites, and even after considering tumor weight as a variable, we
observed reduced immune cell and lymphocyte infiltration in metastases (Figure S4A–D).
Lymphocyte infiltration was further quantified using traditional gating strategies to profile
B and T cell subsets (Figure S5 and Table S2). It was determined in this manner that B
cells (Figure 2D,E) were the predominant lymphoid cell, with T cells comprising less than
ten percent of all immune cells present (Figure 2D). The infiltration of memory B cells
was reduced in metastases compared to the primary tumor (Figure 2F). MHCII was not
expressed equivalently in B cells indicating reduced antigen presentation, likely resulting
in impaired T cell activation in the ovarian tumor microenvironment (Figure 2G) .

Analysis of the T cell subtypes revealed that CD4+ T cell infiltration was highly variable
(Figure 2H–L) and that CD8+ T cells comprised approximately 5% of CD3+ lymphocytes
in the primary tumor, ascites, and metastases (Figure 2K). Gamma delta+ T cells are the
main T-cell subtype identified in the tumors from patients with HGSOC [31] and are
likewise dominant in this model (Figure 2L). The expression of T cell activation markers
was also evaluated to assess T cell functionality. Notable was the observation that CD27,
a co-stimulatory marker involved in T cell activation and survival, was expressed in
more CD4+ and CD8+ T cells isolated from metastases compared to primary tumors
(Figure 2M–O). In contrast, ICOS expressing CD4+ and gamma delta T cells were decreased
in metastases compared to primary tumors (Figure 2M–O). Intratumoral CD4+ and CD8+ T
cells expressed varying levels of the activation markers, CD44 and CD69 (Figure S6).

Figure 1. Cont.
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Figure 1. In vivo growth characteristics of luciferase labeled STOSE murine ovarian cancer cells:
(A) Syngeneic ovarian intrabursal tumor growth of STOSE.M1 luc cells (1 × 104–1 × 105) in female
FVB/NJ mice (n = 4–5 per group) measured by IVIS Lumina XR. (B) Weights of STOSE.M1 luc
tumors, resulting from experiments in 1A. (C) Representative images of intrabursal tumor growth
over course of experiment in 1A. (D) Syngeneic intraperitoneal tumor growth of STOSE.M1 luc
(1 × 106) cells in female FVB/NJ mice (n = 5, mouse # 556–560) measured by IVIS Lumina XR.
(E) Total weight of intraperitoneal STOSE.M1 luc tumors per mouse, resulting from experiments
in 1D. (F) Representative images of intraperitoneal tumor growth over course of experiment in 1D.
(G) Syngeneic subcutaneous tumor growth of STOSE.M1 luc (1 × 106) cells in left (L) and right (R)
flank of female FVB/NJ mice (n = 5, mouse # 551–555) measured by IVIS Lumina XR. (H) Weights of
STOSE.M1 luc tumors, resulting from experiments in 1G. (I) Representative images of subcutaneous
tumor growth over course of experiment in 1G. Quantitative analysis of Avg Radiance (Figure 1A,D,G)
refers to average radiance in ROI drawn around the individual tumor of each mouse.

Figure 2. Cont.



Cancers 2022, 14, 4219 9 of 18

Figure 2. Lymphoid cell profiling of immune cells isolated from different sites in the STOSE.M1 luc
murine ovarian intrabursal cancer model: (A–C) Uniform manifold approximation and projection
(UMAP) plots overlayed with FlowSOM (Flow self-organizing map) of tumor infiltrating immune
cells (CD45+) isolated from STOSE.M1 luc ovarian intrabursal model, propagated in FVB/NJ mice.
Clustering was based on expression profiles of lymphoid cell surface markers. (A) Primary ovarian
tumors (n = 10). (B) Ascites (n = 5). (C) Metastases (n = 5). Each dot represents an individual
cell. (D) Percentages of T and B cells in each site of STOSE.M1 luc model. (E) Percentage of B cells
(CD3−CD19+B220+). (F) Percentage of Memory B cells (CD3−CD19+B220+CD27+). (G) Percentage of
MHCII+ B cells. (H) Percentage of T cells subsets in each site of STOSE.M1 luc model. (I) Percentage
of CD3+ cells. (J) Percentage of CD4+ T cells. (K) Percentage of CD8+ T cells. (L) Percentage of
γ δ+ T cells. (M–O) Functional markers CD27 and ICOS in T cell subsets. Data are presented as
mean ± standard deviation. Significance was calculated by Kruskal–Wallis test (E–G,I–L) followed
by Dunn’s multiple comparisons test or two-way ANOVA (M–O) followed by Tukey’s multiple
comparisons test. * p < 0.05, ** p < 0.01 and *** p < 0.001, **** p < 0.0001.

3.3. T Cell Subsets and Functional Markers Are Altered between Tumor Sites

T cell subsets, including T helper (Th), T regulatory (T reg), and memory T cells, can
be pro or anti-tumorigenic. Therefore, we sought to determine the function of these cells
in this model by analyzing immune cells isolated from the primary tumor, ascites, and
metastases. The T reg and T helper markers on CD4+ CD8- T cells were first assessed
(Figures 3A and S7, and Table S2). T reg cells were present in primary tumors and metas-
tases, likely a reflection of the immunosuppressive environment in HGSOC (Figure 3B).
However, T reg and T helper cells were absent in the ascites (Figure 3A). Th1 cells were
absent in all sites of this model, and Th2 was the predominant population in metastases
(Figure 3C). Conversely, Th2 and Th17 cells were present in the primary tumor at similar
levels (Figure 3C,D). Some CD4+ T cells expressed multiple T helper markers, making it
difficult to assign them to a distinct T helper subset (data not shown).

Figure 3. Cont.
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Figure 3. Profiling of Helper, Regulatory, and Memory T cell subsets in immune cells iso-
lated from the different sites in STOSE.M1 luc murine ovarian intrabursal cancer model: (A) T
Helper (Th) and T regulatory (T Reg) subsets as a % of CD4+ T cells in each site of STOSE.M1
luc ovarian intrabursal model, propagated in FVB/NJ mice. (B) Percentage of T Reg ( CD25+

FoxP3+) cells. (C) Percentage of Th2 cells (GATA3+). (D) Percentage of Th17 cells (RORγT+).
(E,F) Functional markers in T helper subsets. (E) Th2. (F) Th17. (G) CD4+ Memory T cell
subsets in each site of STOSE.M1 luc model. (H) Percentage of CD4+ Effector Memory T cells
(CCR7(lo)/CD62L(lo)/CX3CR1(hi)/CD27(lo)/CD127(hi)). (I) Percentage of CD4+ Resident memory
T cells (CCR7(lo)/CD62L(lo)/CX3CR1(lo/int)/CD44(hi)/CD127(hi)/CD103(hi)). (J) CD8+ Memory T
cell subsets in each site of STOSE.M1 luc ovarian intrabursal model. (K) Percentage of CD8+ Effector
Memory T cells (CCR7(lo)/CD62L(lo)/CX3CR1(hi)/CD27(lo)/CD127(hi). (L) Percentage of CD8+

resident memory T cells (CCR7(lo)/CD62L(lo)/CX3CR1(lo/int)/CD44(hi)/CD127(hi)/CD103(hi)).
(M) Percentage of CD8+ Peripheral Memory T cells (CCR7(+/−)/CD62L(+/−)/ Cx3CR1(int)/CD27
(hi) /CD127 (hi)). (N) CD62L and CX3CR1 expression of CD8 memory populations. Data
are presented as mean ± standard deviation. Significance was calculated by Kruskal–Wallis test
(B–D,H,I,K–M) followed by Dunn’s multiple comparisons test or two-way ANOVA (E,F,N) followed
by Tukey’s multiple comparisons test. * p < 0.05, ** p < 0.01 and *** p < 0.001, **** p < 0.0001.

The expression of markers associated with T helper function were also assessed. Th17
cells expressed more functional markers than Th2 cells (Figure 3E,F). Although most Th2
cells expressed granzyme B, they also expressed the inhibitory receptor PD-1, suggesting
that the antitumor activity of these cells was likely inhibited. The Th17 subsets lacked
expression of PD-1, and in metastases, Th17 cells exhibited broad expression of functional
markers (Figure 3F).

Memory T cells are engaged to maintain tumor regression and are required for sus-
tained response to immunotherapies [32–34]. Thus, the infiltration of effector, central,
resident, and peripheral CD4+ and CD8+ memory T cells [35] was assessed (Figure S8 and
Table S2). CD4+ memory T cells were present in the primary tumor, ascites, and metastases
(Figure 3G–I), whereas CD8+ memory T cells were only present in primary tumors and
metastases (Figure 3J–M). The number of central memory T cells was extremely low in this
model (Figure 3G,J), with effector memory cells being the predominant T memory subset
(Figure 3H,K). CD4+ resident memory cells were predominantly found in the ascites
(Figure 3I), whereas CD8+ resident memory cells were only present in the primary tu-
mor (Figure 3L). CD8+ peripheral memory T cells were only present in the primary
tumor (Figure 3M). A recent study identified four distinct CD8+ memory populations
using CD62L and CX3CR1 markers [36]. In this model, we identified two populations,
CD62L− CX3CR1+ and CD62L− CX3CR1−, in the primary tumor, ascites, and metastases
(Figure 3N). CD62L− CX3CR1+ memory cells, which are more cytotoxic but less prolifera-
tive, and CD62L− CX3CR1− memory cells, which are less cytotoxic and more proliferative,
were increased and decreased in metastases, respectively.

3.4. Pro and Anti-Tumorigenic Myeloid Cells Are Present in All STOSE.M1 luc Tumor Sites

Myeloid cells can be pro- or anti-tumorigenic, for example, intratumoral myeloid-
derived suppressor cells (MDSCs) are associated with decreased survival in patients with
ovarian cancer [37]. Thus, we assessed the myeloid cell repertoire/functionality utilizing
UMAP and FlowSOM analysis in the STOSE.M1 luc model (Figures 4A–C and S9). These
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analyses highlighted multiple myeloid populations that differ between the primary tu-
mor, ascites, and metastases and established that there were fewer myeloid cells in the
metastases. Further characterization revealed that the myeloid cells were predominant
over lymphoid cells in the primary tumors and ascites (Figures 4D and S10, and Table S2).
Unexpectedly, given their positive role in immunity, M1 polarized macrophages dominated
over those that were polarized towards an M2 phenotype in primary tumors (Figure 4E,F).
In metastases, the ratio of M1:M2 macrophages was reduced and more reflective of an
immunosuppressed microenvironment. We further assessed macrophage function by mea-
suring the expression of CD80 a co-stimulatory molecule used for T cell activation. The
majority of M1 macrophages expressed CD80. However, CD80 expression, which is most
commonly reduced on M2 macrophages, was expressed on the majority of M2 cells in the
ascites (Figure 4G).

MDSCs are myeloid cells that can be stratified into granulocytic/polymorphonuclear
(G- or PMN-MDSCs) and monocytic (M-MDSCs). Both subtypes of MDSCs were found in
the STOSE.M1 model (Figure 4H,I), with M-MDSCs being predominate in all three sites
and enriched in the ascites.

Finally, in our evaluation of myeloid cells, we evaluated the dendritic cell (DC) reper-
toire (Figure S11 and Table S2), which comprises a small percentage of tumor infiltrating
immune cells in our model (Figure 4J). Most DCs present were classified as “mature”
expressing both MHCII and CD80 [38,39], as well as functional markers ICOS-L and
OX40L (Figure 4K). OX40L was significantly reduced in metastasis compared to the ascites
(Figure 4L) .The representation of the three major DC subsets, conventional (cDC1, cDC2)
and plasmacytoid (pDC) was also examined, revealing, as is the case in most tumors, that
the cDC2 subset was dominant (Figure 4M–O).

Figure 4. Myeloid cell profiling of immune cells isolated from different sites in the STOSE.M1 luc
murine ovarian intrabursal cancer model: (A–C) UMAP plots overlayed with FlowSOM (Flow self-
organizing map) of tumor infiltrating immune cells (CD45+) isolated from STOSE.M1 luc ovarian
intrabursal model, propagated in FVB/NJ mice. Clustering was based on expression profiles of
myeloid cell surface markers. (A) Primary ovarian tumors (n = 10). (B) Ascites (n = 5). (C) Metastases
(n = 5). Each dot represents an individual cell. (D) Myeloid cells as a % of CD45+ immune cells in each
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site of STOSE.M1 luc model. (E) Percentage of M1 macrophages (CD206+ MHCII+). (F) Percentage
of M2 macrophages (CD206+ MHCII−/low). (G) Frequency of CD80+ M1 and M2 macrophages.
(H) Percentage of monocytic myeloid derived suppressor cells (Ly6C+ Ly6G−). (I) Percentage of
granulocytic MDSCs (Ly6G+ Ly6C+). (J) Dendritic cells (DCs) as a % of CD45+ immune cells in each
site of STOSE.M1 luc model. (K) Percentage of functional markers in CD11c+ DCs in each site of
STOSE.M1 luc model. (L) Percentage of OX40L+ DCs. (M) Percentage of cDC1 cells (CD103+ CD11b−

B220−). (N) Percentage of cDC2 cells (CD11b+ CD103− B220−). (O) Percentage of plasmacytoid
DCs (B220+ CD103− CD11b−). Data are presented as mean ± standard deviation. Significance was
calculated by Kruskal–Wallis test (E–G,N,P–R) followed by Dunn’s multiple comparisons test or
two-way ANOVA (H–K) followed by Tukey’s multiple comparisons test. * p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001.

3.5. Subcutaneous and Intraperitoneal STOSE.M1 luc Models Are Poorly Responsive to Anti
PD-L1 Immunotherapy

In general, ovarian cancers do not respond well to immunotherapy, and there is an
unmet need for animal models that can be used to understand this biology and evaluate
new therapeutic modalities. Thus, we evaluated the efficacy of anti PD-L1 immunotherapy
on the STOSE.M1 luc model in vivo. We found that the drug was without effect in the IP
(Figure 5A–C) and SC models (Figure 5D–F) when assessed using IVIS or by measuring
post necropsy tumor weight. We also performed immune cell profiling of the tumors in
these studies. In the IP model, T cell infiltration was unchanged (Figure 5G,H), but some T
cell subset markers did change (Figure 5I–L). Specifically, on CD8+ T cells, the inflammatory
cytokine IFN-Gamma increased (Figure 5I), and the inhibitory marker TIM3 decreased
(Figure 5J) with anti-PDL1 treatment. However, granzyme B and PD-1 did not change
(Figure 5K–L). The most notable changes observed in the SC model were that gamma delta
T cell infiltration decreased (Figure 5M), and the inhibitory receptor PD-1 increased in CD8+

T cells (Figure 5M–R) with anti PD-L1 treatment. The importance of these changes remains
to be determined.

Figure 5. Cont.
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Figure 5. Response of subcutaneous and intraperitoneal STOSE.M1 luc models to immunotherapy,
anti PD-L1: (A) Syngeneic intraperitoneal tumor growth of STOSE.M1 luc (1 × 106) cells in female
FVB/NJ mice (n = 4–8 per group) treated with control (PBS) or anti PD-L1 measured by IVIS Lumina
XR . (B) Total weights of intraperitoneal STOSE.M1 luc tumors, resulting from experiments in
5A. (C) Representative images of intraperitoneal tumor growth over course of experiment in 5A.
(D) Syngeneic subcutaneous tumor growth of STOSE.M1 luc (1 × 106 per flank) cells in female
FVB/NJ mice (n = 8–14 tumors per group) treated with control (PBS) or anti PD-L1 measured by
IVIS Lumina XR . (E) Sum total weight of both subcutaneous flank STOSE.M1 luc tumors per mouse,
resulting from experiments in 5D. (F) Representative images of subcutaneous tumor growth over
course of experiment in 5D. (G–L) Immune cell profiling of intraperitoneal tumors treated with PBS
or anti PD-L1 from 5A. (G) Percentage of T cells subsets in each treatment group. (H) Percentage of
T Regulatory (FoxP3+ CD4+) cells. (I) Percentage of IFN-Gamma+ CD8+ T cells. (J) Percentage of
Tim3+ CD8+ T cells. (K) Percentage of Granzyme B+ CD8+ T cells. (L) Percentage of PD1+ CTLA4−

CD8+ T cells. (M–R) Immune cell profiling of subcutaneous tumors treated with PBS or anti PD-L1
from 5D. (M) Percentage of T cells subsets in each treatment group. (N) Percentage of T Regulatory
(FOXP3+ CD4+) cells. (O) Percentage of IFN-Gamma+ CD8+ T cells. (P) Percentage of Tim3+ CD8+ T
cells. (Q) Percentage of Granzyme B+ CD8+ T cells. (R) Percentage of PD1+ CTLA4− CD8+ T Data
are presented as mean ± standard deviation. Significance was calculated by Mann–Whitney test
(B,E,H–L), unpaired T-test (N–R) or two-way ANOVA followed by Šidák’s Multiple Comparisons
test (G,M). ns, p > 0.05 * p < 0.05, ** p < 0.01.

4. Discussion

There is an urgent need for syngeneic models of ovarian cancer as few currently
available models reflect the known biology of the disease. Further, few existing models are
labeled in a manner that allows real-time assessments of tumor growth and metastasis. The
immunocompetent STOSE.M1 luc model was developed to address these shortcomings
and recapitulates many facets of human HGSOC, albeit without a TP53 mutation. One
limitation of the STOSE model is the cells were derived from ovarian surface epithelium
(OSE) cells, and it is a widely held opinion that fallopian tube epithelium (FTE) is the origin
of ovarian cancer [40,41]. However, it has been established that mutations in FTE or OSE
cells can lead to metastatic HGSOC [42], necessitating the development of models derived
from both cell types. Another benefit of this model is that it is derived from FVB mice.
FVB is a different genetic background than C57BL/6J from which the common ovarian
cancer models, ID-8 and IG-10, were derived. The different mouse strains allow hypothesis
testing with confidence that any results are ovarian cancer specific rather than mouse
strain specific.

One significant practical advantage of the STOSE.M1 model is the relatively short
time it takes to achieve useful tumor growth endpoints following ovarian intrabursal
injection (23 to 44) days or intraperitoneal injection (12 to 33 days). This is considerably
faster than the time required for tumor growth in the ID-8 and IG-10 models [43,44].
Intrabursal models are the gold standard for mouse ovarian cancer studies but require
more time and specialized technical expertise. Therefore, intraperitoneal (IP) models
are more commonly used to bypass those challenges, with subcutaneous (SC) models
also having some utility [45,46]. Importantly, we have shown that the STOSE.M1 model
forms tumors after IP or SC injection but that SC tumors grow slower with unpredictable
metastatic spread. Tumors in the peritoneal cavity undergo mechanical sloughing, which
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contributes to metastasis [47–49], whereas this does not occur in the SC model limiting
intraperitoneal metastasis. We have shown that IP injection of STOSE.M1 cells leads to
intraperitoneal tumor development highlighting its likely utility in studying ovarian cancer
biology and drug efficacy.

One caveat of labeled cell models, such as those expressing luciferase, green fluorescent
protein (GFP), or red fluorescent protein (RFP), is that the marker can in and of itself be
immunogenic [50,51]. However, by repeated passaging of cells through immunocompetent
mice, we have selected a subline of luciferase expressing cells that are not cleared by the
immune system. This is likely due to the selected cells having a particularly low level of
luciferase expression compared to the initial STOSE-luc, which we have observed in other
models we have established.

We developed several myeloid and lymphoid panels to profile the immune cell reper-
toire and function in our model of ovarian cancer. In human ovarian cancer, the abundance
of tumor infiltrating lymphocytes (TIL) [52–54], T Regs [55], M-MDSCs [37], and natu-
ral killer (NK) cells [56] have been shown to be clinically meaningful. Indeed, ovarian
tumors are generally considered immunologically cold and immunosuppressive [57], a
state echoed in the STOSE.M1 model, where tumors were infiltrated with MDSCs and T
regs. In the lymphoid compartment, T cells expressed low granzyme B and the major-
ity of these cells did not express activation markers, but did express inhibitory markers,
indicating T cell exhaustion/inactivity [58]. T cell activation is also likely impaired as
indicated by the variable MHCII expression on B cells. Th1 cells commonly classified
as anti-tumorigenic were absent in this model. In the myeloid compartment, CD80, a
known immunosuppressive marker, was expressed and this protein is associated with
tumor progression and immune tolerance in ovarian cancer [59]. Given that M2 polarized
macrophages are the dominant type in metastases of patients with HGSOC [60], we were
surprised to find similar M1 and M2 numbers in the metastases of our model. Whereas in
the primary tumor of our model, there was a bias towards M1 polarized macrophages [61].
However, M1 and M2 macrophages exist on a continuous spectrum, and standard gating
protocols may not be optimal for ovarian cancer as macrophages with markers for both
have been observed in patients [62]. We were technically limited in our efforts to probe NK
cell biology in this study. It is important to note that all of our immune profiling, except
for the immunotherapy studies, was performed on material collected from the ovarian
intrabursal model. Although surgical injection may cause a localized inflammatory and
immune response, the effects of this acute injury are likely mitigated by over the long time
course of this model.

Finally, our immunotherapy studies indicated that this model is poorly responsive
to immunotherapy. Given how this mirrors the clinical picture in ovarian cancer, this
model will have substantial utility in understanding and enhancing response to current
and future immunotherapies.

5. Conclusions

The development of the STOSE.M1 luc model offers another pre-clinical model for
conducting translational ovarian cancer research. This model grows in immunocompetent
mice, and the luciferase label enables tracking in vivo and quantitation of tumor growth.
By developing and characterizing this model, we can identify mechanisms responsible
for poor immunotherapy response in patients, test new immunotherapies, and identify
immunotherapy re-sensitization strategies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers14174219/s1, Figure S1: Generation of STOSE. M1 luc model, Figure S2: Images
of mice from the STOSE.M1 luc re-implantation study, Figure S3: FlowSOM analysis of lymphoid
markers on CD45 + immune populations, Figure S4: Immune infiltration in intrabursal model sites,
Figure S5: Representative Lymphoid Panel Gating Strategy used to assess primary tumor, ascites
and metastases STOSE.M1 luc samples, Figure S6: Expression of T cell activation markers CD44
and CD69, Figure S7: Representative T Helper Panel Gating Strategy used to assess primary tumor,
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ascites and metastases STOSE.M1 luc samples, Figure S8: Representative T Memory Panel Gating
Strategy used to assess primary tumor, ascites and metastases STOSE.M1 luc samples, Figure S9:
FlowSOM analysis of myeloid markers on CD45+ immune populations, Figure S10: Representative
Myeloid Panel Gating Strategy used to assess primary tumor, ascites and metastases STOSE.M1 luc
samples, Figure S11: Representative DC Panel Gating Strategy used to assess primary tumor, ascites
and metastases STOSE.M1 luc samples, Table S1: Antibodies used in this paper, Table S2: Immune
cell markers used to gate sub-populations of immune cells.
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