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Nowadays, visual encoding models use convolution neural networks (CNNs) with outstanding performance in computer vision to
simulate the process of human information processing. However, the prediction performances of encoding models will have
differences based on different networks driven by different tasks. Here, the impact of network tasks on encoding models is studied.
Using functional magnetic resonance imaging (fMRI) data, the features of natural visual stimulation are extracted using a
segmentation network (FCN32s) and a classification network (VGG16) with different visual tasks but similar network structure.
Then, using three sets of features, i.e., segmentation, classification, and fused features, the regularized orthogonal matching pursuit
(ROMP) method is used to establish the linear mapping from features to voxel responses. The analysis results indicate that
encoding models based on networks performing different tasks can effectively but differently predict stimulus-induced responses
measured by fMRI. The prediction accuracy of the encoding model based on VGG is found to be significantly better than that of
the model based on FCN in most voxels but similar to that of fused features. The comparative analysis demonstrates that the CNN
performing the classification task is more similar to human visual processing than that performing the segmentation task.

1. Introduction

Complex neural circuits in the human brain allow us to easily
understand the external visual world. However, the mecha-
nisms of how visual areas encode visual stimuli have not
yet been elucidated. Therefore, the development of a visual
encoding model to predict the voxel response induced by
any input stimulus, that is, simulating the complex nonlinear
relationship between visual input and evoked voxel
responses, has attracted wide attention [1, 2]. It can explain
how the brain processes visual information through neural
circuits [3]. In visual research based on functional magnetic
resonance imaging (fMRI), linearized encoding has been
widely applied to these models. It consists of a nonlinear
mapping from visual stimuli to features and a linear mapping
from features to voxel responses [4]. Nonlinear mapping is
critical to visual encoding that can be implemented by vari-
ous feature extractors such as Gabor wavelet pyramid
(GWP) [5], histogram of oriented gradient (HOG) [6], local
binary patterns (LBP) [7], scale-invariant feature transform

(SIFT) [8], and convolution neural networks (CNNs). On
the other hand, linear mapping generally uses linear
regression models with specific regularization.

In recent years, CNNs have been widely used in visual
encoding models. CNNs, proposed based on early discoveries
of the network structure and the visual system [9], can be
used in a variety of computer vision tasks such as image
classification [10], target recognition [11], and semantic
segmentation [12]. Studies have shown that a deep network
is comparable to the human visual system, which can auto-
matically learn effective features from large data for specific
tasks and predict voxel responses measured by fMRI in a
multilevel manner [13]. Agrawal et al. [14] first proposed a
CNN to predict human brain activity based on low-level
visual input (pixels). Güçlü and van Gerven [15, 16]
illustrated the similarity between a CNN and the mechanism
of visual processing in both the ventral visual pathway, which
is responsible for object recognition, and the dorsal visual
pathway, which is responsible for motion perception. These
studies demonstrated that a CNN is similar to a visual
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pathway from a low level to a high level. Wen et al. [17]
established an encoding model based on the deep residual
network (DRN), which has been shown to perform better
than the shallow AlexNet for video stimuli. Their study
showed that improvements in prediction accuracy are due
to the better feature expression of the deep network with a
residual structure. Therefore, in computer vision, the choice
of a network to obtain suitable feature transformations is crit-
ical, which directly influences the encoding performance [18].

In 2016, Yamins and DiCarlo [19] proposed a particu-
larly important challenge, which was whether a model opti-
mized for tasks other than classification can better explain
neural data. In particular, task-driven deep networks per-
forming different computer vision tasks can extract different
features from the same image stimuli, resulting in variations
in the performance of encoding models. Currently, studies on
encoding models based on deep networks are limited to the
visual classification task, which is different from the com-
plexity and diversity of the human visual system.

Here, we explore the impact of network tasks on the per-
formance of encoding models by building models based on
the features extracted from a segmentation network, features
extracted from a classification network, and the fusion of the
two features. We use the largest dataset in the published data-
set, BOLD5000 [20], to train and test the encoding model.
We calculate the Pearson Correlation Coefficient between
the predicted and experimental fMRI responses to compare
the prediction performances of the three encoding models.
Using the results, we describe the impact of changes in net-
work tasks on the visual encoding model. We then discuss
the advantages and disadvantages of simulating the human
visual processing.

In this study, our main contributions are as follows: (1)
we analyze the drawbacks of current encoding methods
based on the complexity and diversity of the human visual
system, (2) we propose to employ different task-driven
networks to construct encoding models, and (3) we analyze
the impact of different task-driven networks on the perfor-
mance of encoding models and provide a possible direction
for subsequent research on visual encoding.

2. Materials and Methods

2.1. Experimental Data. We used the public fMRI dataset,
BOLD5000 [20], which can be downloaded from https://
bold5000.github.io/download.html. Details of the visual
stimuli and fMRI protocols of the dataset have been discussed
elsewhere [20]. Hence, we only briefly summarize the details
of the dataset in this subsection.

The dataset comprised fMRI data collected from four
subjects, with three having a full set of data. Hence, we only
used the data of three subjects. A full set of data included
16 MRI scan sessions, with 15 functional sessions and a
session for the acquisition of high-resolution anatomical
and diffusion data. Each functional session lasted 1.5 hours,
consisting of 8 sessions with 9 image runs and an additional
functional localizer run and 7 sessions with 10 image runs.

The stimuli included 5254 images, 4916 of which were
unique. The images were obtained from three computer

vision datasets: Scene UNderstanding (SUN) [21], Common
Objects in Context (COCO) [22], and ImageNet [23]. They
were downsampled to 375 × 375 pixels and subtended a
visual angle of approximately 4.6 degrees. The stimuli were
presented using an event-related design. Each run comprised
37 stimuli, with approximately 2 from repeated images. Each
image was presented for 1 second followed by a fixation cross
for 9 seconds. At the beginning and end of each run, a fixa-
tion cross was displayed for 6 seconds and 12 seconds,
respectively. fMRI data were acquired using a 3T Siemens
Verio MR scanner at the Carnegie Mellon University campus
with a 32-channel phased array head coil. The repetition time
(TR) was 2000ms, the echo time (TE) was 30ms, the field of
view was 212mm, and the slice thickness was 2mm.

The data we used covered five visual areas in the human
visual cortex, i.e., early visual area (EarlyVis), the lateral
occipital complex (LOC), the occipital place area (OPA),
the parahippocampal place area (PPA), and the retrosplenial
complex (RSC). Note that different visual areas perform
different visual functions. EarlyVis in this dataset goes
beyond the typical V1 and V2 areas. Human visual cortex
V1 is mainly responsible for the detection of local features
and provides this information to the middle or even higher
visual areas [24, 25]. V2 has a slightly complex modulation
for positioning, spatial frequency color, and moderate
modulation for complex shape [26, 27]. The other four areas
belong to advanced visual areas, which perform more
complex visual tasks such as perceiving the boundaries of a
scene [28], processing shape [29], encoding and recognizing
an environmental scene [30], and dealing with scenarios [31].

2.2. Overview of the Proposed Method. In general, linearized
encoding adopts a two-step strategy, requiring two computa-
tional models to encode voxels. The first one is feature trans-
formation, which is a nonlinear mapping from input space to
feature space using feature extractors. The other is a linear
regression model, which is a linear mapping from feature
space to voxel space. The parameters of the feature transfor-
mation model are typically fixed and do not need further
training. On the other hand, the linear weights of the linear
regression model need to be trained. In this paper, we con-
structed CNN-based visual encoding models that use the
classification network VGG and the segmentation network
FCN to extract features of the input stimuli. Figure 1 shows
the overall process.

5254 natural images were randomly divided into a group
of 4754 images and a group of 500 images. Two groups of the
images and their corresponding voxel responses were consid-
ered, with one group used as the training set and the other as
the test set. We employed pretrained VGG16 and FCN32s to
accomplish feature transformation and then used ROMP to
construct a linear regression model. We mapped the features
extracted by the two networks and the fused features to the
voxel responses of visual areas to learn the weight coeffi-
cients. Hence, we attained three encoding models based on
different CNN features. The encoding models were then
tested on the test set to obtain the prediction accuracy for
each voxel. Here, we defined the prediction accuracy as the
Pearson Correlation Coefficient between the observed and
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predicted responses across the test set. A high correlation
coefficient corresponds to a high prediction accuracy of the
encoding model, which means that the features and voxel
responses are more linearly related.

2.3. Extracting Hierarchical Visual Features Based on VGG16.
To extract the features of natural images using a classification
network, we employed the pretrained model of VGG16 based
on the open-source deep learning framework of PyTorch
[32]. VGG16, which is a classification model proposed by
Oxford University in 2014 [33], comprises of 16 hidden
layers (13 convolutional layers and 3 fully connected layers).
Each artificial neuron in the convolutional layer corresponds
to a feature detector, called a feature map, which represents
the characteristics of the input stimuli. Each convolutional
layer has 64, 64, 128, 128, 256, 256, 256, 256, 512, 512, 512,
512, 512, 512, 512, and 1000 (class of the dataset) kernels.
In order to make the gradient descent and reverse propaga-
tion more effective, the activation function called the
Rectified Linear Unit (ReLU) [34] is used by the artificial
neurons at layers 1–15. The pooling layer that reduces redun-
dancy can also be interpreted as a form of the nonlinear
downsampling operation. The most common form of
pooling layer is maximum pooling and average pooling. In
the VGG16 architecture, layers 2, 4, 7, 10, and 13 adopt max-
imum pooling, while layers 14 and 15 adopt a nonlinear
transformation to eliminate regularization. The architecture
of VGG16 is shown in Table 1.

2.4. Extracting Hierarchical Visual Features Based on
FCN32s. To extract the features of natural images using a
segmentation network, we employed pretrained FCN32s for
semantic segmentation [11]. In this structure, the FCN

converts fully connected layers into convolutional layers.
The output image of the last layer is sampled 32 times to
obtain the image with the same size as the original input
image. FCN32s initializes the network with the structural
parameters of VGG16, discards the final classification layer,
and converts all fully connected layers into convolutional
layers; hence, it is called a fully convolutional network. We
used a 1 × 1 convolution with a channel size of 21 to predict
the score of each location (including background) of the
Pascal class. Then, the deconvolution layer was added to
the output at the pixel level to sample the output upwards.

FCN32 comprises 16 convolutional layers with each
having 64, 64, 128, 128, 256, 256, 256, 256, 512, 512, 512,
512, 512, 512, 4096, 4096, and 21 (class of the dataset) ker-
nels. In the architecture of FCN32s, ReLu is used in layers
1–16. Layers 2, 4, 7, 10, and 13 adopt maximum pooling,
while layers 14 and 15 adopt dropout regularization to realize
nonlinear transformation. The architecture of FCN32s is
shown in Table 1.

The FCN32s architecture we employed released in 2017
is available at https://github.com/meetshah1995/pytorch-
semseg. We trained the FCN32s on 2913 high-resolution
images from the Pascal-VOC 2012 dataset for semantic
segmentation using PyTorch [32]. Each input image was
represented as three RGB color channels and filtered through
the convolutional layers. The stride of the convolutional
layers was 3 pixels at layers 1–13, 7 pixels at layer 14, 1 pixel
at layer 15, and 21 pixels at layer 16. In the training process,
we adopted momentum and weight attenuation for random
gradient descent. The learning rate was initialized to 0.01,
and the final intersection over union (IOU) was 0.59. We
trained FCN32s on the segmentation dataset to obtain a pre-
trained network for feature extraction of the encoding model.

Best feature layer

Correlation
coefficient

(a)
(b)

(c)

(e)

(d)

Figure 1: Main process of visual encoding. (a) Natural image stimuli; (b) visual processing of human brain; (c) real fMRI responses obtained
by an MRI scanner; (d) CNN features of natural images extracted by pretrained CNN; (e) predicted voxel responses. When subjects saw the
visual stimuli, the corresponding brain signals would be generated in the visual areas of the brain, and the fMRI responses were obtained
through the MRI scanner. Using the pretrained network to extract the features of natural images, the CNN features of each layer were
linearly mapped to voxel space, and the feature layer with the best prediction performance was selected as the best encoding feature layer
to obtain predicted voxel responses. Then, the correlation coefficient between predicted responses and real responses was calculated to
evaluate the prediction performance of the encoding model.
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2.5. Training theMapping from the Features to Voxel Responses
Based on Sparse Representation.Corresponding to each layer of
the CNN features, a linear model can be constructed to map
CNN features into voxel responses of the visual areas. For
responses of one voxel to all training samples, the model can
be expressed by

y = Xw + ε: ð1Þ

Here, y is the measured voxel responses represented by an
m − by − 1matrix, wherem is the number of training samples;
X is the CNN features of images represented by an m − by −
ðn + 1Þ matrix, where n is the dimension of features and the
last column is the constant vector; w is the weight coefficient
to be solved represented by an ðn + 1Þ − by − 1 matrix; and ε
is the noise term.

However, the number of training samples m is signifi-
cantly smaller than the number of voxels n in visual areas.
Hence, Equation (1) is an ill-posed equation without a
unique solution. In addition, in several studies [35, 36], the
visual cortex uses sparse coding for the expression of stimuli,
which means that a specific stimulus can only activate a few
specific visual neurons. Hence, sparse representation can be
used as an effective tool to encode information related to
natural images. Considering a sparse coefficient w, Equation
(1) is converted into a traditional sparse representation prob-
lem, which is typically considered as an NP-Hard problem,
defined as follows:

min
w

wk k0 subject toXw = y: ð2Þ

To approximate the solution of Equation (2), we used the
greedy algorithm [37], which follows the heuristic of making
the locally optimal choice at each stage with the intent of
finding a global optimum, which is quite fast by computing
the support of the sparse signal iteratively [38]. Considering
that the encoding model must be estimated for each voxel,
the method we need to employ should be fast enough and
simple to reduce the time cost. Therefore, we used the greedy
algorithm to investigate the sparseness of the encoding
model, in particular, the ROMP algorithm.

ROMP is an iterative fitting technique that reduces the
difference between model fit and data [39, 40]. The specific
calculation process is shown in Algorithm 1.

The features of each layer in FCN32 and VGG16 on the
training set were mapped to the voxel space by ROMP, and
the weight coefficients were obtained. Here, the coefficient
of the final nonzero term was 100. Then, the predicted voxel

responses for the test set were obtained through the weight
coefficients of each layer. We compared the correlation
between the predicted responses and the measured voxel
responses. Based on the correlation coefficient, the highest
prediction accuracy was selected for each voxel; that is, the
feature layer with the highest correlation was taken as the
best feature layer for each voxel. The linear mapping from
the best feature layer to the voxel response was added to
obtain the voxel-wise encoding model.

2.6. Combined Encoding Model Based on the Fusion of
Features. To fit the diversity of the mechanism of human
vision, we fused some image features extracted from the
classification and segmentation networks and established an
encoding model based on the fused features. Firstly, we
employed the ROMP algorithm to construct a linear mapping
from the voxel responses to all the image features extracted
from the FCN32s and VGG16 on the training set and obtained
the predicted image features on the test set. For the specific
one-dimensional feature on a certain layer of CNN, the model
can be expressed by

y1 = X1w1 + ε1: ð3Þ

Here, y1 is the CNN features of images represented by an
p − by − 1 matrix, where p is the number of training samples;
X1 is the measured voxel responses represented by an p − by
− ðq + 1Þmatrix, where q is the number of voxels and the last
column is the constant vector;w1 is the weight coefficient to be
solved represented by a ðq + 1Þ − by − 1 matrix; and ε1 is the
noise term.

To reduce the influence of ineffective features, we calcu-
lated correlation coefficients between the predicted and real
image features. According to the ranking of correlation
coefficients from largest to smallest, the corresponding image
features of the first 10% dimension (including the part of
image features extracted by FCN32s and VGG16) were
selected at each layer.

After feature selection, visual encoding was carried out
according to the method mentioned in Training the Mapping
from the Features to Voxel Responses Based on Sparse Repre-
sentation. The features of selected dimensions were extracted
from the training set and linearly mapped to the voxel
responses by ROMP. Then, the predicted voxel responses based
on different feature layers (including image features extracted
from FCN32s and VGG16) were obtained by using the calcu-
lated weights. For each voxel, the feature with the highest pre-
diction accuracy was selected as the best feature layer, and the
voxel-wise visual encoding model was established.

Table 1: The layer index and corresponding layer names of VGG16 and FCN32s.

Index 1 2 3 4 5 6 7 8

Layer name of VGG16 conv1 conv2 mpool conv3 conv4 mpool conv5 conv6 conv7 mpool conv8

Layer name of FCN32s conv1 conv2 mpool conv3 conv4 mpool conv5 conv6 conv7 mpool conv8

Index 9 10 11 12 13 14 15 16

Layer name of VGG16 conv9 conv10 mpool conv11 conv12 conv13 mpool fc1 fc2 fc3

Layer name of FCN32s conv9 conv10 mpool conv11 conv12 conv13 mpool conv14 conv15 conv16
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2.7. Quantitative Standards. We define the prediction accu-
racy for a voxel as a Pearson Correlation Coefficient between
the measured and the predicted responses across all 500
images in the test set:

r =
cov vp, vm

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var vp

� �
vm½ �

q : ð4Þ

In Equation (4), vp represents the predicted voxel
responses, vm represents the measured voxel responses in the

test set, and r represents the correlation coefficient between
them, i.e., the encoding accuracy.

To examine whether each voxel’s prediction accuracy
value significantly deviated from the null hypotheses, we
randomly shuffled the pairing between measured and
predicted responses across 500 images in the test set 1000
times and in each randomized sample recalculated the voxel’s
prediction. This calculation constructed a null hypothesis
distribution for each voxel. For all voxels, the prediction
accuracy value above 0.13 was significant (p < 0:001) relative
to its null hypothesis distribution.

ROMP algorithm.
Input: observation matrix X (specific features of a certain layer of CNN), observation vector y (voxel responses), sparsity parameter p;
Output: weight vector w;
Process:
1. Initialization
Initialize the atomic support set A =∅, residual r0 = y, and repeat the following steps s times;
2. Atomic selection
Select the column index of the top n maximum or all non-zero values (the number of non-zero coordinates is less than p) in u = ab
s½XTr�, and form an atomic support set J;
3. Regularization
Find a subset in the set J so that any two inner product ui and uj satisfy juij ≤ 2jujj, and select the subset J0 with the maximum energy

∑jjujj2, j ∈ J0 among the subsets that satisfy the condition;
4. Update atomic support set and residual
A← A ∪ J0. Update the residual: ŵ = arg min

z
ky −XjAzk2 ;  r = y −Xŵ, and return to the second step.

Algorithm 1
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Figure 2: Comparison of the prediction accuracy between FCN32-based and VGG16-based encoding models in five visual areas of subject 1. (a)
Prediction accuracies. The abscissa and ordinate represent the prediction accuracy of the FCN32-based encoding model and the VGG16-based
encoding model, respectively. The orange dots represent the voxels that can be better predicted by the FCN32-based model than the VGG16-
based model. The blue dots represent the opposite. And the black dots represent voxels with prediction accuracy less than 0.13. The green
dashed lines indicate that the prediction accuracy is 0.13. (b) Distribution of the difference in prediction accuracies. The blue color denotes
that the prediction accuracy is higher for the VGG16-based model. The orange color denotes that the prediction accuracy is higher for the
FCN32-based model. The numbers on each side indicate the fraction of voxels with higher prediction accuracy under the model.

5Computational and Mathematical Methods in Medicine



To examine the significance of a model advantage, that is,
the number of voxels that can be predicted by the model that
is significantly more than that of the other, we randomly
permuted (with a probability of 50%) the prediction accuracy
of each voxel of the two models being compared and then
calculated the advantage of each model (the percentage of
voxels with the highest prediction accuracy). In this paper,
we repeated such permutations 1000 times, and null hypoth-
esis distribution was obtained. From the null hypothesis
distribution, it is concluded that for any two models, the model

which can accurately predict more than 53% of voxel responses
is significantly better than the other model (p < 0:05).

3. Results

3.1. Comparison of Prediction Accuracy

3.1.1. Comparison of VGG16-Based and FCN32-Based
Encoding Models. To evaluate the encoding capabilities of
different networks based on different training tasks, we
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Figure 3: Comparison of prediction accuracy between FCN32-based and VGG16-based models for subject 2. Refer to Figure 2 for a detailed
description of the plot elements.
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Figure 4: Comparison of prediction accuracy between VGG16-based and FCN32-based models for subject 3. Refer to Figure 2 for a detailed
description of the plot elements.
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calculated the prediction accuracy of voxels in five ROIs
based on two encoding models: classification network and
segmentation network. We used a scatter plot to compare
the accuracy of the two models and analyze their perfor-
mances. Each plot represents a single voxel from the five
ROIs. The ordinate of each point represents the highest

encoding accuracy of the FCN32s model, while the abscissa
represents the highest encoding accuracy of the VGG16
model. Here, the correlation threshold for significance
prediction is 0.13 (p < 0:001). The results show that the pre-
diction accuracy of the encoding model based on VGG16 is
better than that of the encoding model based on FCN32s.
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Figure 5: Comparison of the prediction accuracy between the fused feature-based encodingmodel and (a) VGG16-based or (b) FCN32-based
encoding models in five visual areas. The ordinate represents the prediction accuracy of the fused feature-based encoding model, and the
abscissas represent the prediction accuracy of the VGG16-based or FCN32-based encoding models. The orange dots represent the voxels
that can be better predicted by the fused feature-based model than the VGG16-based or FCN32-based models. The blue dots represent the
opposite. The green dashed lines and the black dots represent the same meanings as Figure 2. (c) Distribution of the difference between
fused features and VGG16 or (d) FCN32-based model in prediction accuracies. The blue color denotes that the prediction accuracy is
higher for the VGG16-based model or FCN32-based model. The orange color denotes that the prediction accuracy is higher for the fused
feature-based model. The numbers on each side indicate the fraction of voxels with higher prediction accuracy under the model.
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Figure 2 show the results for subject 1, while the results for
subjects 2 and 3 are presented in Figures 3 and 4.

The VGG16-based model has significant advantages over
the FCN32-based model in the five visual areas (p < 0:05).
The results show that the encoding performance of the
network based on classification features is significantly better
than that of the network based on segmentation features,
which indicates that different network tasks can affect the per-
formance of the encoding model. However, some voxels have
better prediction accuracy in the FCN32-based model than
in the VGG16-based model, which indicates that there are still
inconsistencies between the classification or segmentation net-
works and the visual encodingmechanism of the human brain.

3.1.2. Comparison between VGG16-Based, FCN32-Based, and
Fused Feature-Based Encoding Models. To explore the rela-
tionship between segmentation features and classification
features in visual encoding, i.e., the intersection and union
of classification and segmentation tasks in the human visual
system, we compared the prediction performance of the
encoding model based on fused features with that of the
VGG16-based and FCN32-based encoding models. The
results shown in Figure 5 are used to compare the accuracy
of the three models and analyze their performances.

Consistent with the results of subject 2 and subject 3 in
Figures 6 and 7, the prediction performance of the fused
feature-based encoding model is significantly better than that
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Figure 6: Comparison of prediction accuracy between fused feature-based and VGG16-based or FCN32-based models for subject 2. Refer to
Figure 5 for a detailed description of the plot elements.
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of the FCN32-based encoding model (p < 0:05), while it is
slightly different from that of the VGG16-based encoding
model. To a certain extent, this indicates that the fused
features can significantly improve the prediction perfor-
mance of the encoding model compared with the segmenta-
tion features but have little effect compared with the
classification features. In other words, in the process of the
human visual system perceiving external stimuli, the classifi-
cation task performed by the visual areas covers most of the
segmentation task; that is, in the process of completing the
classification of external objects, the segmentation of objects
is basically completed, which means that people can recog-
nize the category, size, and location of objects almost at the
same time when they see a picture.

3.2. Relationship between Feature Quantity and Prediction
Accuracy. We compared and analyzed the influence of the
number of features on the encoding performance for subject
1, as shown in Figure 8. Results for subject 2 and subject 3
are shown in Figures 9 and 10. The results show that too few
or too many features can negatively impact the performance
of the encoding model. In particular, a small number of fea-
tures lead to the lack of effective information, while a high
number of features lead to redundancy of effective information.

3.3. Contribution of Each CNN Layer to Prediction
Performance. To further compare the encoding differences
of different networks based on different training tasks as
feature models and verify the hierarchical similarity between
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Figure 7: Comparison of prediction accuracy between fused feature-based and VGG16-based or FCN32-based models for subject 3. Refer to
Figure 5 for a detailed description of the plot elements.
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CNNs and the human visual system, we analyzed the best
encoding feature layer of the two CNNs. In detail, for voxels
of different ROIs, we counted which layer of the CNN the
best encoding layer came from. Figure 11 shows the contri-
bution of each layer of the two feature models to voxel

responses in different visual areas. And the results of subject
2 and subject 3 are shown in Figures 12 and 13. From the
figures, it is clear that voxel responses of the primary
visual area can be better predicted by features in lower-
level layers irrespective of the network’s task. For the other
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Figure 8: Relationship between the percentage of selected features and prediction accuracy of two encoding models in five visual areas: (a)
VGG-based model and (b) FCN32-based model. The abscissa represents the percentage of selected features, and the ordinate represents
the prediction accuracy of the models. The lines represent the results for five different visual areas.
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Figure 9: Relationship between the percentage of selected features and prediction accuracy of two encoding models (VGG16-based and
FCN32-based models) in five visual areas of subject 2. Refer to Figure 8 for a detailed description of the plot elements.

10 Computational and Mathematical Methods in Medicine



0.7

0.2

0.19

0.18

0.17

0.16

0.15

0.14

0.13
0.5 0.90.30.10.05

Percentage of selected features

Pr
ed

ic
tio

n 
ac

cu
ra

cy
 o

f V
G

G
16

-b
as

ed
 m

od
el

EarlyVis
LOC
OPA

PPA
RSC

(a)

0.7

0.2

0.19

0.18

0.17

0.16

0.15

0.14

0.13
0.5 0.90.30.10.05

Percentage of selected features

Pr
ed

ic
tio

n 
ac

cu
ra

cy
 o

f F
CN

32
-b

as
ed

 m
od

el

EarlyVis
LOC
OPA

PPA
RSC

(b)

Figure 10: Relationship between the percentage of selected features and prediction accuracy of two encoding models (VGG16-based and
FCN32-based models) in five visual areas of subject 3. Refer to Figure 8 for a detailed description of the plot elements.
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four high-level visual areas, features in higher-level layers
can better predict voxel responses (Mann-Kendall method,
p < 0:05).

This study verifies the hierarchical similarity between
CNNs and the human visual system. It also confirms that
the human visual system and CNNs similarly process visual
information in a hierarchical manner [15, 16]. Specifically, in
the visual information processing pathway of the human
brain, primary visual areas process relatively simple informa-
tion, such as edges and shapes, and advanced visual areas pro-
cess more complex visual features such as semantics and color.
This is similar in CNNs where lower layers deal with simpler
features and deeper layers deal with more complex features.

4. Discussions

4.1. Encoding Model Based on the Classification Network
(VGG16) Has Better Prediction Performance. From the
obtained prediction accuracies, we found that the encoding
model based on the classification network is superior to that
based on the segmentation network. Meanwhile, the predic-
tion performance of the encoding model based on fused
features is significantly better than that of the model based
on segmentation and is almost the same as that of the model
based on classification.

Our results show that different networks based on differ-
ent computer vision tasks can affect the performance of the
encoding models. We can also infer, to some extent, that
the visual classification task can better fit human visual
information processing than the visual segmentation task,
with the human brain already completing the segmentation
of objects in the process of completing the visual classifica-
tion task. This is consistent with the discovery of David H.
Hubel and Torsten Wiesel, 1981 Nobel Prize winners, that
the information processing of the visual system is hierarchi-
cal in visual areas and the working process of the brain is
iterative and abstract [41]. Upon obtaining the original infor-
mation by the retina, visual area V1 firstly processes features
related to edges and directions. Then, visual area V2 pro-
cesses features related to contours and shapes. Finally, higher
visual areas perform more refined classifications through
more high-level abstractions iteratively. Hence, the human
visual system already implements most of the segmentation
tasks during information processing to realize the classifica-
tion of external stimuli. This process is embedded in our
brain and happens almost instantaneously.

From the point of view of natural evolution, primitive
humans only need to identify whether an object in the field
of vision is threatening them to avoid risk. This means that
the object only needs to be categorized without the need for
a specific segmentation.
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Figure 12: Contribution to the prediction accuracy of each layer in (a) VGG16 and (b) FCN32s networks for subject 2. Refer to Figure 11 for a
detailed description of the plot elements.
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From the experimental point of view, the subjects
performed a task to judge the likes and dislikes of the input
stimuli, which does not involve specific visual segmentation.
This may have limitations that could affect the encoding per-
formance. However, we can deduce that in the case of humans
performing default visual tasks, the visual system gives priority
to the classification of objects. On the other hand, when per-
forming specific visual tasks, such as visual attention tasks,
humans may give more priority to object segmentation.

4.2. Relationship between Classification and Segmentation
Tasks in the Human Visual System. The visual encoding
model based on classification and segmentation task-driven
networks has advantages in predicting voxel responses, which
indicates that the human visual system cannot be completely
simulated by a certain task-driven network and performs
various and complex visual tasks during visual information
processing. We found that the prediction performance of the
encoding model based on classification features is significantly
better than that of the model based on segmentation features;
hence, the CNN performing the classification task is more
similar to the human visual system. The encoding model
based on fused features and that based on classification
features have almost the same performance, which indicates
that the classification task is similar to most of the segmenta-
tion task. In other words, during visual processing, the human

brain completes most of the visual segmentation when the
visual stimuli are classified.

4.3. The Prediction Accuracies of the Three Models Are Not
High. From the perspective of encoding efficiency, Güçlü
and van Gerven [16] employed a motion recognition net-
work to predict the voxel responses in the dorsal pathway.
In addition, a recent study investigated the impact of differ-
ent computer vision tasks on deep networks performing
visual encoding [19]. This demonstrates that research on
encoding efficiency is beginning to gain attraction in the field.

In this study, we used the BOLD5000 dataset, which is the
largest publicly published dataset. However, the obtained
prediction accuracies of the three encoding models are not
particularly high, which may be related to the diversity of
stimuli in the dataset and absence of restrictions of the
subjects’ sights in the experiments. It should be emphasized
that subjects only judged whether they liked or disliked the
input images during the experiment. Hence, this limitation
in the task may have an impact on the encoding performance.
Moreover, it is unknown whether the performance of the
encoding model based on the segmentation network would
be improved if the subjects performed a corresponding visual
segmentation task. This needs to be addressed in future work,
highlighting its importance and relevance.

EarlyVis LOC OPA PPA RSC
Visual areas

Contribution rate of each layer in VGG16

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

La
ye

r c
on

tr
ib

ut
io

n

Layer1
Layer2
Layer3
Layer4
Layer5
Layer6
Layer7
Layer8

Layer9
Layer10
Layer11
Layer12
Layer13
Layer14
Layer15
Layer16

(a)

EarlyVis LOC OPA PPA RSC
Visual areas

Layer1
Layer2
Layer3
Layer4
Layer5
Layer6
Layer7
Layer8

Layer9
Layer10
Layer11
Layer12
Layer13
Layer14
Layer15
Layer16

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

La
ye

r c
on

tr
ib

ut
io

n

Contribution rate of each layer in FCN32

(b)

Figure 13: Contribution to the prediction accuracy of each layer in (a) VGG16 and (b) FCN32 networks for subject 3. Refer to Figure 11 for a
detailed description of the plot elements.
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5. Conclusions

In conclusion, we explored the impact of different networks
based on different tasks on encoding models. We found that
the performance of the encoding model based on fused
features is significantly better than that of the model based
on segmentation and is almost the same as that of the model
based on classification. This demonstrates that the CNN
performing the classification task is more similar to the human
visual system, and most of the segmentation of the visual
system for the stimuli is completed with the process of object
classification. However, we also found that the encoding
model based on segmentation had better prediction perfor-
mance on some voxels, which further illustrates the complex-
ity and diversity of the human visual mechanism. In the
future, we will consider more types of networks that perform
different computer vision tasks, such as target detection and
object recognition, which are aimed at not only improving
the prediction performance but also better realizing the mech-
anism of human vision. Here, we demonstrated a valuable way
of developing a computational neuroscience model from the
perspective of computer vision.
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