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Abstract: Chronic liver rejection (CR) represents a complex clinical situation because many patients
do not respond to increased immunosuppression. Killer cell immunoglobulin-like receptors/Class I
Human Leukocyte Antigens (KIR/HLA-I) interactions allow for predicting Natural Killer (NK) cell
alloreactivity and influence the acute rejection of liver allograft. However, its meaning in CR liver
graft remains controversial. KIR and HLA genotypes were studied in 513 liver transplants using
sequence-specific oligonucleotides (PCR-SSO) methods. KIRs, human leucocyte antigen C (HLA-C)
genotypes, KIR gene mismatches, and the KIR/HLA-ligand were analyzed and compared in overall
transplants with CR (n = 35) and no-chronic rejection (NCR = 478). Activating KIR (aKIR) genes in
recipients (rKIR2DS2+ and rKIR2DS3+) increased CR compared with NCR groups (p = 0.013 and
p = 0.038). The inhibitory KIR (iKIR) genes in recipients rKIR2DL2+ significantly increased the CR
rate compared with their absence (9.1% vs. 3.7%, p = 0.020). KIR2DL3 significantly increases CR
(13.1% vs. 5.2%; p = 0.008). There was no influence on NCR. CR was observed in HLA-I mismatches
(MM). The absence of donor (d) HLA-C2 ligand (dC2−) ligand increases CR concerning their presence
(13.1% vs. 5.6%; p = 0.018). A significant increase of CR was observed in rKIR2DL3+/dC1− (p = 0.015),
rKIR2DS4/dC1− (p = 0.014) and rKIR2DL3+/rKIR2DS4+/dC1− (p = 0.006). Long-term patient
survival was significantly lower in rKIR2DS1+rKIR2DS4+/dC1− at 5–10 years post-transplant. This
study shows the influence of rKIR/dHLA-C combinations and aKIR gene-gene mismatches in
increasing CR and KIR2DS1+/C1-ligands and the influence of KIR2DS4+/C1-ligands in long-term
graft survival.

Keywords: killer cell immunoglobulin-like receptors (KIRs); human leucocyte antigen (Hla); liver
transplantation; chronic rejection; alcoholic cirrhosis; long-term graft survival

1. Introduction

Chronic liver rejection (CR) represents a complex clinical situation because many
patients do not respond to increased immunosuppression, which often leads to retransplan-
tation or death [1,2]. Despite this, its incidence from the transplant is performed until the
patient’s death or loss of the graft has decreased, and occurs in 3–17% of liver transplant re-
cipients due to improved immunosuppression regimens in liver transplant recipients [3–7].
CR’s pathogenesis is multifactorial and is characterized by obliterative arteriopathy and
ductopenia [4,8,9].

Int. J. Mol. Sci. 2022, 23, 12155. https://doi.org/10.3390/ijms232012155 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms232012155
https://doi.org/10.3390/ijms232012155
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-1140-4313
https://orcid.org/0000-0003-2400-9213
https://orcid.org/0000-0003-3677-6372
https://orcid.org/0000-0001-9987-0994
https://orcid.org/0000-0003-2472-5893
https://doi.org/10.3390/ijms232012155
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms232012155?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 12155 2 of 20

It has been demonstrated that adaptive and innate immunity through natural killer
(NK) killer NK cells may be involved in immune responses in the liver [10,11]. The liver
contains the most significant NK cell population [12,13]. These innate lymphocytes are
crucial in screening for infection and liver pathology, and their nature and functions have
been a focus of recent interest [14,15]. NK cells express a balance of activating and inhibitory
receptors and allow alloactivation to be defined, among others, by different models of
KIR/KIR-ligand interactions. Inhibitory and activating killer cell immunoglobulin-like
receptor (iKIR and aKIR) mismatching may play a role in graft-versus-host-disease (GVHD)
and liver survival [16,17]. In organ transplantation, some studies have suggested the
role of KIR/HLA-C-ligands in liver and kidney transplants and their consequences for
acute rejection and short-term liver allograft injury [17–22]. A previous study revealed
that NK cells could perform two functions after solid organ donation. These cells can
improve tolerance in immunocompromised environments while also exacerbating the
rejection process by amplifying the immune responses associated with rejection [23,24].
I NK cells have been found to have a significant role in the pathogenesis of both acute
and chronic antibody-mediated rejection (ABMR) and T cell-mediated rejection (TCMR)
among all innate immune cells linked with allograft rejection (TCMR) [25]. Higher NK cell
cytotoxicity was found to be associated with kidney allograft rejection, as evidenced by
increased CD107a expression and interferons (IFN-)- production in patients with acute and
chronic renal transplant rejection compared to those with well-functioning grafts [22].

KIRs are glycoproteins expressed on NK-cells and certain T lymphocyte subsets [26,27].
KIR receptors contribute to fine-tuned NK cell activity regulation by binding their extracel-
lular domains to restricted residues on HLA-I molecules [28]. Long or short intracytoplas-
mic KIR tails transmit inhibitory (iKIR) or activating (aKIR) signals inside the cell [29,30].
Eight KIR genes (KIR2DL1-3 and KIR2DL5 and KIR3DL1-3) encode iKIR receptors, and
six aKIR receptors (KIR3DS1 and KIR2DS1-5). KIR2DL4, encode a receptor with both
functions [31,32].

KIR genes exhibit extensive haplotypic variation in gene number [33] and allelic
polymorphism in all human populations [34,35]. Within iKIRs, KIR2DL1 recognizes a
lysine at the 80 positions on the α-helix of alleles belonging to the HLA-C2 allotype, while
KIR2DL2/3 identifies asparagines at the same position on HLA-C1 alleles. The binding of
aKIRs to HLA-C-ligands has only been documented for KIR2DS1 and KIR2DS4, with the
former recognizing C2 ligands [36,37] and the latter, both C2 and a limited number of C1
ligands [38], while ligands for other aKIRs remain unknown.

KIR/HLA-C genotyping in both the graft and the recipient’s liver could help the
pathologist predict rejection responses and estimate survival to the point where clinical
steps can be taken to save the graft and increase the quality and life expectancy of the
transplanted patient. The impact of KIR/HLA-I on the establishment of CR and survival
was examined in this study, focusing on recipient KIRs (rKIR) and donor HLA (dHLA)
class I ligands.

2. Results
2.1. Transplant Clinical Endpoints

In this cohort, the most frequent transplant indications were alcoholic cirrhosis (32.9%)
and chronic viral hepatitis (21.1%); men were more represented than women (74.5% and
25.5%); and the recipients of HCV infection represented 30.2% while that of the HBV was
of 9.9% (Table 1). CR occurred in 6.8% of all patients (n = 35 of 513). The patients included
in this study developed CR after 3.34 ± 0.7 years (mean ± SEM) post liver transplant.

Although CR was not associated with the recipient age, gender, transplant indications,
or viral pre-infections, a statistically significant reduction of mean donor age was found in
the group of patients suffering from CR concerning those of the NCR group (44.09 ± 3.61
versus 51.8 ± 0.9 years; p = 0.026).
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Table 1. Baseline demographic and clinical characteristics of liver donors and patients.

n (%) Age (Mean ± SEM)

Total of Recipients, n (%) 513 53.0 ± 0.5
CR group 35 (6.8) 49.9 ± 2.2

NCR group 478 (93.2) 53.3 ± 0.5
Total of donors, n (%) 513 51.2 ± 0.9

CR group 35 (6.8) 44.1 ± 3.6 a

NCR group 478 (93.2) 51.8 ± 0.9
Total of recipients, n (%) 513 CR, n (%)

Gender
Male 382 (74.5) 26 (6.8)

Female 131 (25.5) 9 (6.9)
Transplant indications, n (%)

Alcoholic cirrhosis 169 (32.9) 17 (10.1)
Alcoholic cirrhosis plus HCV

and/or HBV 54 (10.5) 1 (1.9)

Viral chronic hepatitis 108 (21.1) 10 (9.3)
HCV 91 (17.7) 9 (9.9)
HBV 17 (3.3) 1 (5.9)

Hepatocarcinoma 72 (14.0) 3 (4.2)
Autoimmune diseases 27 (5.3) 2 (7.4)

Fulminant hepatitis 16 (3.1) 0 (0)
Others 67 (13) 2 (3.5)

Virus pre-infected patients *,
n (%)
HCV 155 (30.2) 10 (6.5)
HBV 51 (9.9) 3 (5.9)
CMV 11 (2.1) 0 (0)

n, number of individuals of each group; CMV, cytomegalovirus infection; CR, Chronic rejection; HBV, hepatitis B
virus; HCV, hepatitis C virus, NCR, No-chronic rejection, SEM, Standard error of the mean. * Virus pre-infected
patients are classified regardless of the type of transplant indication. a p = 0.026; CR and NCR donors mean ages
were compared by the two-sided Student t-test.

2.2. Impact of KIR Genes and KIR Genotypes in Chronic Rejection

The impact of KIRs and HLA-I-ligands on long-term liver graft outcomes was analyzed
in overall transplants and the CR and NCR groups. As shown in Table 2, the KIR gene
distribution in patients and healthy donors was similar, and in no case were significant
differences found, except for KIR2DS5, which was significantly up-represented in liver
recipients for healthy donors (33.9% vs. 27.9%; p = 0.043). The effect of each KIR gene on
CR was also evaluated.

KIR2DL2 significantly increased CR for NCR patients (p = 0.020). Within aKIRs,
KIR2DS2 is strongly associated with KIR2DL2, and KIR2DS3 showed a significant increase
in patients developing CR episodes to compared to NCR (p = 0.013 and p = 0.038, re-
spectively. All these associations were confirmed using multivariable logistic regression
analysis.

On the other hand, the genotype KIR distribution was also examined (Figure 1A). This
exam showed that genotype frequencies in healthy donors of our series were similar to
those of a healthy Caucasoid population [39]. In CR patients, 17 different KIR genotypes of
those previously reported in the Allele Frequencies website KIR database [39] were found,
with 14 out of 17 represented only once or twice. However, no relation was found between
the total number of KIR, iKIR, or aKIR genes and CR. Figure 1B shows that the most
frequent KIR genotypes in CR patients were ID5-BX, ID4-BX, and ID1-AA. Interestingly,
these genotype frequencies were inverted in the NCR group. Patients bearing the ID1-AA
genotype (28.5%) showed a lower risk of suffering from CR.
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Table 2. KIR gene frequencies in healthy donors, total patients and liver recipients with chronic liver
rejection.

Healthy
Donors
N = 513

Total
Patients
N = 513

Chronic
Rejection

N = 35

KIR Genes P/A n (%) n (%) P1 n (%) P2 P3

iKIRs
2DL1+/S1− + 311 (60.6) 306 (59.6) 0.799 22 (7.2) 0.725 -

− 202 (39.4) 207 (40.4) 13 (6.3)
2DL2 + 316 (61.6) 296 (57.7) 0.227 27 (9.1) 0.020 b 0.033

− 197 (38.4) 217 (42.3) 8 (3.7)
2DL3 + 449 (87.5) 454 (88.5) 0.701 28 (6.2) 0.105 -

− 64 (12.5) 59 (11.5) 7 (11.9)
2DL5 + 268 (52.2) 285 (55.6) 0.316 21 (7.4) 0.603 -

− 245 (47.8) 228 (44.4) 14 (6.2)
3DL1 + 490 (95.5) 490 (95.5) 1.000 33 (6.7) 0.665 -

− 23 (4.5) 23 (4.5) 2 (8.7)
aKIRs
2DS1 + 192 (37.4) 204 (39.8) 0.481 12 (5.9) 0.593 -

− 321 (62.6) 309 (60.2) 23 (7.4)
2DS2 + 317 (61.8) 292 (56.9) 0.127 27 (9.2) 0.013 c 0.030

− 196 (38.2) 221 (43.1) 8 (3.6)
2DS3 + 169 (32.9) 164 (32.0) 0.790 17 (10.4) 0.038 d 0.037

− 344 (67.1) 349 (68.0) 18 (5.2)
2DS4 + 491 (95.7) 488 (95.1) 0.766 33 (6.8) 0.685 -

− 22 (4.3) 25 (4.9) 2 (8.0)
2DS5 + 143 (27.9) 174 (33.9) 0.043 a 11 (6.3) 0.854 -

− 370 (72.1) 339 (66.1) 24 (7.1)
3DS1 + 143 (27.9) 215 (41.9) 0.408 13 (6.0) 0.599 -

− 370 (72.1) 298 (58.1) 22 (7.4)

N, total number of individuals in each group; n, number of donors or recipients with each KIR; P/A; presence or
absence, aKIR, activating killer cell immunoglobulin-like receptors; iKIR, inhibitory killer cell immunoglobulin-
like receptors. All comparations were made by the two-sided Fisher’s exact test. P1, Univariable analysis for
comparing healthy donors and patients and the presence and absence for each KIR analyzed P2, univariable
analysis for comparing the CR and NCR group, and the presence and absence for each KIR analyzed. P3, Logistic
regression multivariable analysis for chronic rejection considered the following variables: age, sex, HCV pre-
infection, and KIR in recipients and age, HLA-C allotypes in donors, as well as the KIR gene mismatching between
recipient-donor pairs. a p = 0.043; OR = 0.753, 95% CI: 0.577–0.982; b p = 0.020; OR = 0.381, 95% CI: 0.170–0.857;
c p = 0.013; OR = 2.713, 95% CI: 1.208–6.094; d p = 0.038; OR = 2.127, 95% CI: 1.066–4.243.

2.3. The iKIR Gene Mismatching Increases the Chronic Rejection Rate

According to the KIR gene-gene model, the effect of KIR gene mismatching (MM)
between recipient-donor pairs was also analyzed (Table 3), comparing liver transplants
performed with 0 KIR gene mismatches (0 MM) with those done with one or more mis-
matches (≥1 MM). This analysis revealed a significant increase in the CR rate of transplants
performed with ≥1 MM in iKIR genes) concerning those with 0 MM (8.1% and 2.5%, re-
spectively; P1 = 0.037), a correlation confirmed by the multivariable analysis. In contrast,
no significant association was found when mismatched overall KIR or aKIR genes were
considered. Discrepancies in individual iKIR genes were also explored, but no effect was
observed on CR, except for KIR2DL3. Thus, the CR rate was also significantly increased
in transplants with ≥1 MM KIR2DL3 for those with 0 MM (respectively 13.1% vs. 5.2%;
p = 0.008).

2.4. Impact of HLA-I Allele, HLA-C Allotype, and HLA-C Genotypes on Liver Allograft
Chronic Rejection

Second, the possible influence on liver allograft CR of the HLA-A, -B, and -C allele
mismatching between recipient-donor pairs (Table 4) and that of the HLA-C allotypes and
genotypes of recipients and donors (Table 5) was also examined.



Int. J. Mol. Sci. 2022, 23, 12155 5 of 20

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 22 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. KIR genotypes profiles observed in patients. (A) Most frequent KIR genotypes profiles 
observed in CR patients (B) KIR genotypes profiles observed in patients with (CR) and without CR 
(NCR). The first row represents the international genotype classification (ID) of the KIR genotypes 
most represented in both populations. The second-row shows haplotype groups found in both pop-
ulations. The third row represents each KIR analyzer’s presence (dark boxes) and absence (white 
boxes). The fourth, fifth, and sixth rows show each genotype’s total number of iKIR and aKIR genes. 
The seventh row represents patients’ genotype frequency (CR and NCR). N, number of individuals; 
KIR, Killer-cell immunoglobulin-like receptors; iKIR, Inhibitory killer-cell immunoglobulin-like re-
ceptors; aKIR, Activatory killer-cell immunoglobulin-like receptors. 
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0.008). 

Table 3. Match or mismatch of KIR genes between liver recipient-donor pairs and the development 
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  Chronic Rejection   
All KIRs N n (%) OR (95% CI) P1 P2 
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Figure 1. KIR genotypes profiles observed in patients. (A) Most frequent KIR genotypes profiles
observed in CR patients (B) KIR genotypes profiles observed in patients with (CR) and without CR
(NCR). The first row represents the international genotype classification (ID) of the KIR genotypes
most represented in both populations. The second-row shows haplotype groups found in both
populations. The third row represents each KIR analyzer’s presence (dark boxes) and absence (white
boxes). The fourth, fifth, and sixth rows show each genotype’s total number of iKIR and aKIR genes.
The seventh row represents patients’ genotype frequency (CR and NCR). N, number of individuals;
KIR, Killer-cell immunoglobulin-like receptors; iKIR, Inhibitory killer-cell immunoglobulin-like
receptors; aKIR, Activatory killer-cell immunoglobulin-like receptors.

Table 3. Match or mismatch of KIR genes between liver recipient-donor pairs and the development
of chronic liver rejection.

Chronic Rejection

All KIRs N n (%) OR (95% CI) P1 P2

0 MM 67 3 (4.5)
1.649 (0.491–5.543) 0.603 -

≥1 MM 446 32 (7.2)
iKIRs a

0 MM 120 3 (2.5)
3.457 (1.040–11.497) 0.037 0.033≥1 MM 393 32 (8.1)

KIR2DL3
0 MM 406 21 (5.2)

2.760 (1.353–5.631) 0.008 0.1911 MM 107 14 (13.1)
aKIRs b

0 MM 80 4 (5.0)
1.465 (0.503–4.271) 0.632 -

≥1 MM 433 31 (7.2)

KIR, Killer Immunoglobulin-like Receptors; aKIR; Activating Killer Immunoglobulin-like Receptors; CI, Confi-
dence interval; iKIR, Inhibitory Killer Immunoglobulin-like Receptors; KIR, Killer Immunoglobulin-like Receptors;
MM, Mismatch; n, Number of transplant with chronic rejection; N, Total number of transplants; OR, Odds Ratio;
a A total of 5 inhibitory KIR genes (2DL1-3, 2DL5, 3DL1) were considered. b A total of six activating KIR genes
(2DL1-3, 2DL5, 3DL1) were considered. Significant p values are marked in bold. P1 values were obtained by
logistic regression univariable analysis and P2 values were obtained by multivariable analysis.

In no case was the CR development associated with the HLA-A, -B, and -C allelic
incompatibility between recipient- donor pairs or with the HLA-C allotype of the recipient.
However, the CR rate significantly increased compared to the C1-ligand absence or presence
in donors (13.1% vs. 5.6%; p = 0.018), or donors bearing a C2/C2 homozygous genotype
with those having any of the other two genotypes (X2 = 0.043; p = 0.018).
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Table 4. Analysis of HLA-A -B and -C allele mismatches and their influence on the chronic rejection
of liver grafts.

Chronic Rejection

HLA-A Mismatches N n % OR (95% CI) P *

2 MM 328 23 7 1.068 (0.519–2.201) 1.000
1 MM 155 10 6.5 0.910 (0.426–1.944) 1.000
0 MM 27 2 7.4 1.091 (0.248–4.807) 0.707

HLA-B Mismatches
2 MM 385 25 6.5 0.895 (0.406–1.972) 0.837
1 MM 111 9 8.1 1.320 (0.597–2.916) 0.519
0 MM 14 0 0 0.931 (0.909–0.954) 0.614

HLA-C Mismatches
2 MM 341 24 7 1.108 (0.530–2.319) 0.855
1 MM 141 9 6.4 0.907 (0.414–1.987) 1.000
0 MM 31 2 6.5 0.938 (0.214–4.105) 1.000

* All comparations were made by the two-sided Fisher’s exact test. CI, Confidence interval; CR, acute rejection;
HLA, Human Leukocyte Antigens; MM, mismatch; n, number of CR patients; N, the total number of transplants;
OR, Odds ratio with a confidence interval (CI) of 95%.

Table 5. Influence of HLA-C allotypes and genotypes and in chronic rejection liver patients.

A. Recipient and Donor HLA-C Allotypes and Their Influence in Chronic Rejection Liver

HLA-C Allotypes
Chronic Rejection

N = 513 n % P a

Recipient

C1+ 409 31 7.6 0.274
C1− 104 4 3.8
C2+ 331 22 6.6 0.856
C2− 182 13 7.1

Donor

C1+ 429 24 5.6 0.018 b

C1− 84 11 13.1
C2+ 340 26 7.6 0.357
C2− 173 9 5.2

B. Recipient and donor HLA-C genotypes and their influence in chronic rejection liver.

Chronic rejection

HLA-C genotypes N = 513 n % X2 P a

C1C1 182 13 7.1 0.856
Recipient C1C2 227 18 7.9 0.384 0.384

C2C2 104 4 3.8 0.274
C1C1 173 9 5.2 0.357

Donor C1C2 256 15 5.9 0.043 0.484
C2C2 84 11 13.1 0.018

N, total number of transplants; n, number of CR patients; HLA, Human Leukocyte Antigens. OR, Odds Ratio;
CI, Confidence interval; a Comparations were made by the two-sided Fisher’s exact test. Significant p values are
marked in bold. b OR= 0.393, 95% CI: 0.185–0.837; p = 0.018.

Additionally, following the ligand-ligand model, comparisons between the different
combinations of recipient-donor pairs HLA-C genotypes revealed that despite the reduced
number of cases developing CR in these groups, a progressive upward trend in CR could
be observed when livers from C2C2 donors were respectively allocated in patients with
C2C2 (5.6%) < C1C2 (13.9%) < C1C1 (16.7%) genotypes (Table 6).

2.5. Combinations between Recipients Bearing Both KIR2DL3 and KIR2DS4 and Liver Donors
Having C2-Ligands Predispose to a Higher Chronic Rejection Risk

According to the receptor-ligand model, the potential NK-alloreactivity was inves-
tigated in the recipient versus donor direction (R→D) considering combinations of both
iKIRs and aKIRs of recipients with their documented HLA-ligands present in donors. As
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KIR2DL1 was present in most individuals, patients with this KIR gene were categorized as
KIR2DL1+/S1- and KIR2DL1+/S1+ to better understand their inhibitory effect or activating
capabilities.

Table 6. Analysis of HLA-C genotypes in recipient-donor pairs and the development of chronic
liver rejection.

HLA-C Genotypes Combinations Chronic Rejection

Donor Recipient N = 513 n % P a

C1C1 65 4 6.2
0.295C1C1 C1C2 73 5 6.8

C2C2 35 0 0
C1C1 87 4 4.6

0.806C1C2 C1C2 118 8 6.8
C2C2 51 3 5.9
C1C1 30 5 16.7

0.534C2C2 C1C2 36 5 13.9
C2C2 18 1 5.6

CR, chronic rejection; N, total number of transplants; n, number of CR patients. a Comparisons were made using
a Pearson’s Chi-square test, and significant p values are marked in bold.

Thus, the CR frequency was first independently evaluated in patients with inhibitory
KIR2DL1+/S1-, KIR2DL2+/S2+, KIR2DL3+ or KIR3DL1+ and in those with activating
KIR2DL1+/KIR2DS1+ and KIR2DS4+ genes who received livers from donors with any of
the documented specific HLA-I ligands for each considered KIR.

As summarised in Table 7, within iKIRs-C-ligand possible combinations, the CR
rate was notably higher and borderline to the significance in transplants done between
KIR2DL2+/S2+ recipients and donors lacking C1-ligands (C2/C2 homozygous donors)
compared with transplants in which donors were positives for C1-ligands (16.7% vs. 7.7%;
p = 0.057).

An apparent CR increase was seen when transplants were performed between KIR2DL3+

recipients and donors lacking C1-ligand compared with those done between KIR2DL3+

recipients and donors possessing the C1-ligand (13.2% and 4.8%; p = 0.015), an association
that was confirmed and improved when the multivariable analysis was applied (p = 0.004).
No other iKIR/ligands combinations, including that of the KIR3DL1 with its Bw4-ligands,
could be associated with significant changes in CR.

Regarding the aKIRs/HLA-C ligands, the CR was significantly increased in trans-
plants combining KIR2DS4+ recipients and donors who lacked C1-ligands compared with
those performed in KIR2DS4+ recipients having donors with C1-ligands (13.4% and 5.4%;
p = 0.014). The remaining aKIR/HLA-C ligand combinations were not associated with the
CR development.

Given the increase of CR detected transplants done in KIR2DL3+ and KIR2DS4+

patients receiving a liver from donors who wholly lacked C1-ligands, we also assessed the
possibility of a synergic effect of these two KIRs (Table 7). This test revealed an increase
in CR rate and statistical significance (13.5% vs. 4.5; p = 0.006) when patients possessing
both KIR in their genome received allografts from donors in whom C1-ligands were absent.
Results were also confirmed by using multivariable logistic regression analysis (p = 0.003).

Finally, the analysis of the possible impact of donors’ C1 or C2-ligand doses on the
allograft response of KIR2DL3+ or KIR2DS4+ recipients (Figure 2) showed that CR in-
dependently and significantly increased in both types of patients (χ2 = 7.615; p = 0.022
for KIR2DL3+, and χ2 = 7.061; p = 0.029 for KIR2DS4+ recipients), but only regarding the
presence of double donor C2-ligand doses (Figures 2A and 2B; p = 0.015 and p = 0.014 respec-
tively). Furthermore, when examining all responses of recipients possessing both KIR2DL3
and KIR2DS4 against donors belonging to the different allotype groups (Figure 2C), a
synergic effect on CR (χ2 = 8.666; p = 0.013) was again detected.
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Table 7. KIRs recipients and HLA-I ligand donor combinations and their influence on chronic
liver rejection.

Chronic Rejection

Recipient KIRs Donor HLA-I Ligand N n % OR (95%CI) P a P b

iKIRs

KIR2DL1+/S1−
C2+ 193 17 8.8 2.086

(0.748–5.818) 0.175 -
C2– 113 5 4.4

KIR2DL2+/S2+ C1+ 248 19 7.7 0.415
(0.170–1.012) 0.057 -

C1– 48 8 16.7

KIR2DL3+ C1+ 374 18 4.8 0.334
(0.148–0.755) 0.015 0.004C1– 76 10 13.2

KIR3DL1+ Bw4+ 387 27 7.0 1.213
(0.487–3.020) 0.826 -

Bw4– 103 6 5.8
aKIRs

KIR2DL1+/KIR2DS1+ C2+ 145 8 5.5 0.803
(0.232–2.776) 0.747 -

C2– 59 4 6.8
C2+ 323 25 7.7 1.646

(0.726–3.735) 0.248 -
C2– 165 8 4.8

KIR2DS4+

C1+ 406 22 5.4 0.370
(0.172–0.796) 0.014 0.028C1– 82 11 13.4

KIR2DL3+/S4+ C1+ 353 16 4.5 0.304
(0.132–0.700) 0.006 0.003C1– 74 10 13.5

N, Total number of transplants; n, Number of CR transplants; CI, Confidence interval; OR, Odds Ratio; aKIR,
activating killer immunoglobulin-like receptors; HLA, human leukocyte antigen class I; iKIR, inhibitory killer
immunoglobulin-like receptors; KIRs, killer immunoglobulin-like receptors. a Comparison was made by the
two-sided Fisher’s exact test. Significant p values are marked in bold. b Significant p values obtained by logistic
regression multivariable analysis for CR, parameters considering the age and sex of recipient, donor age, HCV,
and HLA-C mismatch between donor and recipient.

2.6. KIR/HLA-I-Ligand Combinations and Long-Term Graft Outcome

On the other hand, in the overall transplants cohort, the long-term graft outcome
was investigated, first drawing attention to the probability of allograft survival in patients
showing CR episodes at 5 and 10 years as well as those depending on the HLA-C or
-HLA-Bw4 ligands carried by the donor (Figure 3).

The allograft survival decreased in overall patients suffering from CR to those without
CR episodes (Figure 3A). The observed differences were borderline significant at five and
significant at ten years (respectively, p = 0.051 and p = 0.004). In another way (Figure 3B),
the probability of graft survival significantly increased, at 5 and 10 years, in transplants
having donors with HLA-C1-ligands for those in which the HLA-C1-ligand were absent
donors (p = 0.040 and p = 0.049, respectively for 5 and 10 years). In contrast, no differences
were found when the effect of donor bearing or not HLA-Bw4 ligands were examined
(Figure 3C).

In a second step, and once the Bw4-ligands effect was discarded, the influence of
the KIRs/HLA-C pairs in long-term graft survival was tested following the receptor-ligand
model in the recipient versus graft direction (R→D), but only for KIRs with documented
abilities to bind some HLA-C alleles from the C1 and C2 allotypes (Figure 4).
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Figure 2. The cumulative effect on chronic rejection in KIR2DL3+, KIR2DS4+, and KIR2L3+/KIR2DS4+

recipients depends on donor C2 ligands dose. (A,B) Illustrates Odds Ratios and the 95% confidence
intervals (CI) for CR incidence in KIR2DL3 and KIR2DS4 patients, respectively, combined with
donors having two C2-ligands (C2C2), one C2-ligand (C1C2), or lacking C2-ligands (C1C1 donors).
Two-by-two contingency tables and the Chi-square test were used to determine the results, and statis-
tically significant differences were found (χ2 = 7.615; p = 0.022 and χ2 = 7.061; p = 0.029, respectively).
(C) Represents variations in OR and the 95% CI for CR in patients bearing KIR2DL3+ and KIR2DS4+

genes in their repertoires, with dependence on C2-ligand dose and statistically significant differences
observed (χ2 = 8.666; p = 0.013). n, the number of patients included in each series, is indicated.



Int. J. Mol. Sci. 2022, 23, 12155 10 of 20

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 10 of 22 
 

 

intervals (CI) for CR incidence in KIR2DL3 and KIR2DS4 patients, respectively, combined with do-
nors having two C2-ligands (C2C2), one C2-ligand (C1C2), or lacking C2-ligands (C1C1 donors). 
Two-by-two contingency tables and the Chi-square test were used to determine the results, and 
statistically significant differences were found (χ2 = 7.615; p = 0.022 and χ2 = 7.061; p = 0.029, respec-
tively). (C) Represents variations in OR and the 95% CI for CR in patients bearing KIR2DL3+ and 
KIR2DS4+ genes in their repertoires, with dependence on C2-ligand dose and statistically significant 
differences observed (χ2 = 8.666; p = 0.013). n, the number of patients included in each series, is indi-
cated. 

2.6. KIR/HLA-I-Ligand Combinations and Long-Term Graft Outcome 
On the other hand, in the overall transplants cohort, the long-term graft outcome was 

investigated, first drawing attention to the probability of allograft survival in patients 
showing CR episodes at 5 and 10 years as well as those depending on the HLA-C or -
HLA-Bw4 ligands carried by the donor (Figure 3). 

The allograft survival decreased in overall patients suffering from CR to those with-
out CR episodes (Figure 3A). The observed differences were borderline significant at five 
and significant at ten years (respectively, p = 0.051 and p = 0.004). In another way (Figure 
3B), the probability of graft survival significantly increased, at 5 and 10 years, in trans-
plants having donors with HLA-C1-ligands for those in which the HLA-C1-ligand were 
absent donors (p = 0.040 and p = 0.049, respectively for 5 and 10 years). In contrast, no 
differences were found when the effect of donor bearing or not HLA-Bw4 ligands were 
examined (Figure 3C). 

 
Figure 3. Kaplan-Meier graft survival curves following liver transplantation. (A) Description of the 
influence of chronic graft rejection (red line) in decreased graft survival 5 and 10 years after trans-
plant. (B) The presence (red line) of C1-ligand in donors increased graft survival 5 and 10 years after 
transplant. (C) Illustration of the lack of influence of the Bw4-ligand in donors on graft survival 5 
and 10 years after transplant. 

In a second step, and once the Bw4-ligands effect was discarded, the influence of the 
KIRs/HLA-C pairs in long-term graft survival was tested following the receptor-ligand 
model in the recipient versus graft direction (R→D), but only for KIRs with documented 
abilities to bind some HLA-C alleles from the C1 and C2 allotypes (Figure 4). 

Given the observed differences in CR associated with the donor age (p = 0.026), the 
impact of the KIR/HLA-C combinations on long-term liver graft outcome was evaluated 
in overall transplants and the two established age groups according to donor mean age 

Figure 3. Kaplan-Meier graft survival curves following liver transplantation. (A) Description of
the influence of chronic graft rejection (red line) in decreased graft survival 5 and 10 years after
transplant. (B) The presence (red line) of C1-ligand in donors increased graft survival 5 and 10 years
after transplant. (C) Illustration of the lack of influence of the Bw4-ligand in donors on graft survival
5 and 10 years after transplant.

Given the observed differences in CR associated with the donor age (p = 0.026), the
impact of the KIR/HLA-C combinations on long-term liver graft outcome was evaluated
in overall transplants and the two established age groups according to donor mean age
(51.2 ± 0.9; mean ± SEM) years) given the observed differences in CR associated with the
donor age.

Thus, among iKIR/HLA-C combinations of KIR2DL2+/C1+and KIR2DL2+/C1−

(Figure 4A–C) there were no significant differences in the long-term probability of graft
survival of the total transplants cohort nor the group with donor upper 51.2 years, while
in this of the younger donors (lower than 51.2 years) these differences were higher and
borderline to the significance (p = 0.056 at five years and p = 0.051 at ten years; Figure 4B)

Furthermore, aKIR/HLA-C comparisons between KIR2DS1+/C1+ and KIR2DS1+/C1−

combinations did not influence overall transplants or those with older donors, whereas in
transplants having younger donors, differences between KIR2DS1+/C1+ and KIR2DS1+/C1−

combinations (Figure 4D–F), there were again significant differences at 5 and 10 years after
transplantation (p = 0.012 and p = 0.010 at 5 and 10 years, respectively).

Moreover, comparisons for KIR2DS4+/C1+ and KIR2DS4+/C1- showed that long-term
graft survival decreased when patients bearing KIR2DS4+ were combined with donors
lacking C1-ligands, but differences were only significant when the total transplants cohort
was considered (Figure 4G; p = 0.023 and p = 0.033 at 5 and 10 years), whereas, in any of the
age donor groups, these differences did not reach significance (Figure 4H,I).

However, as it is shown in (Figure 4K), the log-rank highest difference in graft survival
was detected when recipients who bear both KIR2DS1 and KIR2DS4 received livers from
donors possessing a C1-ligand (C1/C1 or C1/C2 donors) were compared with those having
donors who lack the C1-ligands (C2/C2 donors, Log-rank, p = 0.019 and p = 0.017 at 5 and
10 years, respectively).
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Figure 4. Kaplan-Meier graft survival curves following liver transplantation. This figure summarizes
long-term graft survival for the presence or absence of KIR2DL2 (A–C), KIR2DS1 (D–F), and KIR2DS4
(G–I) in combinations with donors having C1-ligand (red lines) or lacking C1 (C2/C2 donors,
blue lines), KIR2DS1 with KIR2DS4 (J–L) with donors having C1-ligand (red lines) or lacking C1
in the R→D direction in the three groups established. Illustration of the KIR2DS1/S4-C-ligand
combinations, showing that donors with <52.1 years who received grafts from donors lacking
C1-ligands (C2/C2 donors) exhibit the most significant fall in long-term graft survival, both at five
years and ten years (Log-rank, p = 0.019, and p = 0.017).
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3. Discussion

In this retrospective study, we have analyzed in a cohort of patients undergoing liver
transplants the variations in KIR/HLA-C gene content in recipient-donor and its possible
relationship with CR development and graft survival for the first time.

The incidence of CR in liver transplants is reported as between 3% and 17%, much
lower than that observed for AR episodes and other solid organs such as the heart (25–60%),
pancreas (20–40%) or kidney (30–70%) [7]. In our study, CR is represented at 6.8%, a usual
range in the liver. Although the rate of CR has been declining over the past two decades,
some current circumstances justify continued vigilance over this complication [7]. Risk
CR factors include the donor’s advanced age, the autoimmune nature of the pretransplant
disease, and the reduction or voluntary suspension of immunosuppression [40–43]. Thus,
donor selection in liver transplantation is one of the most critical factors contributing to
transplant success [44,45]. An age limit of 65 years for liver donation is reasonable [46].
The average age of liver donors has been increasing in recent years, reaching 61.3 years
for adults [46]. In our study, the mean age of the donor (51.2 ± 0.9 years) is within the
recommended values. However, our data show how younger donors (44.09 ± 3.61 years)
are statistically associated with a higher CR development frequency in the NCR group
(51.8 ± 0.9 years). On the other hand, other studies observed that donor age does not affect
patient survival. At the same time, an increased rate of delayed non-function of liver grafts
was procured from older donors [47].

Several publications relate KIR/HLA-I receptors to the effects of AR and patient
survival in different organ transplants. However, no studies have examined the influence
of CR on liver grafts [17,48,49].

This study analyzed the frequencies of KIR genes in donor-patient pairs. A high
frequency of the KIR2DS5 gene was observed for healthy controls but not related to CR
development. In contrast, a higher and more significant frequency of KIR2DL2/S2 and
KIR2DS3 was observed in CR patients. However, other studies of AR showed no association
with the presence or absence of individual KIR genes in liver receptors [17,49], but further
studies in AR in kidney grafts observed a protective effect of the KIR2DS5 gene and
association of the KIR2DS4 gene [50–52].

KIR genotypes were also analyzed in patients. It was observed that those patients
with the ID1-AA genotype (with only one aKIRs) showed a low risk of suffering from CR,
while the ID5-BX genotype (with three aKIRs) was more represented in NCR patients. In
any case, there is no statistically positive relationship between the number of aKIRs and CR
development. Similarly, other studies observed that the number of activating or inhibitory
KIR genes in the recipient genotype was not associated with liver allograft AR or graft
survival [17,49].

Functional mechanisms explaining the beneficial effects of KIR-genotype matching are
as yet hypothetical. KIR-matching may increase the degree of genetic similarity between
recipient and donor by increasing the number of genes inherited, resulting in a decrease
in GVHD and graft-versus-leukemia (GVL) effects. The impact of donor-recipient KIR
gene-gene matching on transplant outcomes is inconclusive. However, various studies
suggest the MM’s implication in resolving allogeneic hematopoietic stem cell transplanta-
tion [48,53,54].

Our data show that in liver transplantation MM of iKIR seems to favor CR and, more
specifically, the KIR2DL3 MM. However, any effect was observed in aKIRs MMs about CR.

Other similar studies in liver transplants, however, found a progressive and significant
increase in AR with the number of KIR gene discrepancies compared to transplants fully
matched (0 MM) with the group having one or more MMs (≥1 MM) in total KIR genes,
with the highest significance observed when comparing the 0 MM and ≥1 MM groups for
aKIRs.

In contrast, for iKIRs, AR was not significantly different [17]. All these data seem to
indicate the existence of a chronology in the MM of KIR genes that seems to influence the
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mechanisms of liver graft rejection, influencing the discrepancy of aKIR in the short term
and the discrepancy between iKIR in the long term.

On the other hand, any CR associations were found with HLA-A, -B, and -C allele
mismatches, and similar observations were found in AR in liver transplants [17]. In contrast,
the analysis of the HLA-C genotype of recipient and donor pair showed a significant
influence of donor C2C2 in CR development, showing the highest CR rate (13.1%), only
exceeded when the recipient was of the genotype C2C2 (16.7%). Other studies observed
that AR was significantly associated with the HLA-C genotype of recipients and differently
associated with C1- and C2-homozygous recipients who received allografts from C1/C2
donors [17,55]. On the other hand, Lee H et al. [49] demonstrated that patients who received
liver transplants from donors with the HLA-C2 allele had a higher risk of AR than those
who received livers from donors with a homozygous HLA-C1 genotype.

Considering the receptor-ligand model, the results of this study confirm that the
KIR2DL3+/C2-ligand combination significantly increases CR in our patients. Given
the higher affinity of KIR2DL3 for the C1 ligand [56], it is not easy to reconcile why
KIR2DL3/C2 combinations result in higher CR activation, similarly, but not significantly,
to the KIR2DL2/C1-ligand combination. Similarly, another study reported that KIR2DL3
and KIR2DS1 in patients increased AR incidence in the presence of donor C2 ligands [17].

The lack of significant inhibition by KIR2DL2 and KIR2DL3 in our series could be
explained by the smaller number of recipient-donor pairs carrying this allele and its
ability to identify C1 and C2 ligands, or it could be attributable to reduced KIR2DL2/L3
expression [57,58]. Nonetheless, since KIR2DL2 is in linkage disequilibrium with its
activating counterpart, and both genes are expressed together on NK cell surfaces [28,59,60],
a subliminal counterbalance favored by the greater likelihood of KIR2DS2/C1-ligand
interaction should not be discarded if the availability of the HLA-I ligand arises in the
context of allogeneic pro-inflammatory microenvironment encompassing acute rejection
increase.

Concerning KIR2DS4, although its functional ligands have yet to be identified, this
receptor might bind some HLA-I alleles [38,61], and other unknown ligands, such as non-
MHC class-I proteins [62]. However, whether these interactions may activate some specific
functions in NK cells remains poorly understood. However, in any case, our results showed
a higher CR rate in KIR2DS4/C1- than in KIR2DS4/C1+ transplants. On the contrary, other
studies did not observe any relationship between KIR2DS4+ and acute liver rejection [17].
This fact is also observed in patients with KIR2DL3+/S4+ in the absence of the C1 ligand
(C2C2) in the liver graft (Figure 5).

It should be noted that both genes are present in the most abundant genotypes (Id
5, 4, and 1) in CR patients. On the other hand, a significantly higher risk of CR after
kidney transplantation was observed when the recipient (r) and donor (d) pairs completely
lacked the two functional rKIR-dHLA ligand combinations rKIR2DL1/dHLA-C2 and
rKIR3DL1/dHLA-Bw4. This immunogenetic profile corresponds to low levels of NK cell
inhibition [63]. However, our data do not show any association of rKIR2DL1/dHLA-C2
with CR, even though KIR3DL1 is present with KIR2DS4 in the most frequent CR genotypes.

Finally, the influence of KIR/C-ligand on graft survival was also analyzed. A signifi-
cant reduction in survival was observed when the donor lacked the C1-ligand. These same
observations have also been observed for acute liver graft rejection [17,18,49]. The reduction
in survival was more pronounced in dKIR2DS1+/rC1− transplants and dKIR2DS4+/rC1−

transplant patients with both combinations at 5 and 10 years (Figure 6). It should be
noted that a similar but not statistically significant effect is observed in transplants with
dKIR2DL2+/rC1−. Similar data regarding survival in patients with acute liver graft rejec-
tion is observed with dKIR2DS1+/rC1− and dKIR2DS4+/rC1− transplants; however, these
authors also observed the effect of dKIR2DL3+/rC1− [17].
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Our findings highlight the importance of KIR and KIR ligand-dependent alloreactivity
in late liver allograft outcomes, suggesting that each KIR+ cell is “encouraged” to sense the
missing ligand. Each aKIR+ cell binds putative ligands on allogeneic cells. Thus, increased
cytotoxicity and activation of NK or T cells contribute to an inflammatory environment
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that favors short-term liver allograft damage. Furthermore, our findings demonstrate that
categorizing transplants by KIR/HLA-I ligand pairings rather than entire cohorts allows
for a more accurate assessment of long-term liver allograft damage because components
that mediate contradicting effects are hidden in whole series analysis. Further investigation
of allelic differences in KIR and HLA ligands, gene copy number variations and their
expression levels, and the high morbidity-mortality rates of patients in the early post-
transplantation period are all needed to confirm these findings. The findings of this study
could help prevent CR and serve as a starting point for tailored therapy. The findings of
this study could help prevent CR and, as a starting point for tailored therapy, better and
more precise control of the patient by modulating immunotherapy.

4. Material and Methods
4.1. Patient Enrollment

A total of 513 successive liver transplants recruited from the Virgen de la Arrixaca
Hospital in the Murcia Region (Spain) between 1990 and 2013 were analyzed retrospectively.

The inclusion criteria were: primary whole liver allograft without prior history of other
organ transplants or rejections, ABO compatibility, and HIV-negativity. After excluding
pediatrics and recipients losing liver grafts within the first week following transplantation,
the final series comprised 513 transplants in which both patients and donors were Caucasian
individuals.

The main characteristics of donors and patients with different liver transplant indica-
tions are summarized in Table 1. The mean age of both recipients (patient) and liver donors
was similar [51.2 ± 0.9 and 53.0 ± 0.5 years (mean years ± SEM)], respectively. A total of
74.5% of the transplants were performed on men (n = 382) and 25.5% on women (n = 131).
All patients gave informed consent to clinical information and follow-up data. The insti-
tutional ethical committee approved the study protocol according to the Declaration of
Helsinki 2000.

4.2. Chronic Liver Rejection Diagnosis

The CR diagnosis was based on clinical, radiological, laboratory, and histopathology
findings. Histological criteria for CR diagnosis included lymphocyte bile duct damage
in 50% or more of the portal triads, with evidence of bile duct loss and hepatocanalicular
cholestasis [64]. Patients were divided into two groups for data analysis: those with CR
(n = 35) and those without CR or NCR (n = 478) (Table 1). The total follow-up CR time of
the patients was ten years.

4.3. Viral Pre-Infection Diagnosis

Viral Hepatitis C (HCV), hepatitis B (HBV), and CMV pre-infections were analyzed.
The presence of Hepatitis C Virus (HCV) was determined using a qualitative immunoassay
(AxSYM HCV v 3.0, Abbott, Wiesbaden-Delkenheim, Germany) to detect the presence of
anti-hepatitis C antibodies. The results were confirmed by immunoblotting technology
(RIBA) or RT-PCR (REAL, C.E. Durviz, Valencia, Spain), following the manufacturer’s
indications.

The HBV infection was determined by measuring the hepatitis B virus surface antigen
(HBsAg) by a radioimmunological method (Sorin Biomedica, Perugia, Italy) and CMV
infection, testing anti-CMV IgG antibodies by immunoassay (Liason® CMV-IgG, DiaSorin,
Saluggia, Italy). IgG antibodies at a level ≥0.6 IU/mL was used for the initial assignment
of the CMV infection. A real-time PCR (LightCycler® CMV-Quant-kit, Roche, Indianapolis,
IN, USA) was used to corroborate the data of these positive instances.

4.4. Immunosuppressive Treatment

Immunosuppression consisted of standard triple-drug therapy with cyclosporine
A or tacrolimus, methylprednisolone, and mycophenolate. Cyclosporine or tacrolimus
was given on the first day following transplantation. The dose was adapted according



Int. J. Mol. Sci. 2022, 23, 12155 16 of 20

to blood concentrations and clinical complications, such as renal function disorders and
rejection episodes. Methylprednisolone was administered in the perioperative period at an
initial dose of 1g, subsequently adjusted to 20 mg/day. Mycophenolate was initiated at
a standard dose of 2 g/day and adjusted at 0.5 to 3 g/day according to leukocyte counts
and digestive tolerance. Treatment of CR was based on immunosuppression intensification
with high-dose methylprednisolone (one bolus of 500 mg for 3 days).

4.5. KIR and HLA Typing and Genotype Assignment

Both patients and donors were genotyped for KIR and HLA-I. To this end, genomic
DNA was extracted using the QIAamp DNA Blood Midi Kit (QIAGEN, Hilden, Germany).
KIR genotyping was performed using sequence-specific oligonucleotides (PCR-SSO) by
Luminex® technology (Tepnel Lifecodes, Stamford, CT, USA) and sequence-specific primers
(PCR-SSP) according to the Vilches et al. protocol [65]. KIR and HLA genotypes were
analyzed in all patients in this study at the time of DNA extraction prior to liver transplan-
tation.

A total of 16 KIR genes were analyzed, nine of them inhibitory KIR (KIR2DL1-5,
KIR3DL1-3), six activating (KIR2DS1-5, KIR3DS1), and two pseudogenes (KIR2DP1 and
KIR3DP1), but KIR2DL5A and KIR2DL5B genes could not be distinguished. Both genes
were investigated jointly because KIR2DL2 is tightly connected with KIR2DS2, and their
personal effects could not be differentiated in our population [66]. KIR genotype profiles
were categorized for further study using the Allele Frequencies KIR Database website [39].
Each genotype was named based on the worldwide genotype number (ID).

For KIR genotype assignment, the KIR gene content of individuals was used to
infer the A and B KIR haplotypes and assign them to the AA, BB, and AB, genotypes [67].
Individuals carrying only KIR3DL3, 2DL3, 2DL1, 2DP1, 3DP1, 2DL4, 3DL1, 2DS4, and 3DL2
genes were considered to be homozygous for the A haplotype. Conversely, individuals
who lacked KIR2DL1, 2DL3, 3DL1, or 2DS4 genes were carriers for two B KIR haplotype
copies [68]. The remaining people were thought to be AB heterozygous or AB genotypes.
These individuals possessed all the nine genes present in the A haplotype and one or
more of the B haplotype genes (KIR2DL2, 2DL5, 2DS1, 2DS2, 2DS3, 2DS5, and 3DS1). KIR
genotype BX was created by combining the AB and BB genotypes [68]. Each KIR gene was
assigned to the centromeric or telomeric regions in the KIR gene complex [54,69].

HLA-I was genotyped using the Dynal RELITM SSO HLA-C Kit (Dynal Biotech ASA,
Oslo, Norway) at a level of resolution necessary to distinguish the dimorphism at position
80 on the α1-helix. According to this dimorphism, HLA-C alleles were assigned to the two
primary KIR ligand HLA-C allele groups: HLA-C1 and HLA-C2, and to the three different
HLA-C genotypes C1C1, C1C2, and C2C2 [17,55,70].

4.6. KIR-Ligand Models and NK-Alloreactivity Prediction

The different models of KIR/HLA-ligand interactions proposed to infer the likeli-
hood of NK-alloreactivity in HSCT [71] have been algorithms that were also applied to
investigate the role of KIR and HLA-class-I ligands on potential NK-alloreactivity in liver
transplantation, such as those previously reported for short-term liver allograft injury [17].

With a similar purpose, these three KIR-ligands models have been used in the present
study to assess the potential effect of NK-alloreactivity on CR and long-term patient
survival. Thus, the KIR gene-gene model was useful to test the disparity in KIR genes
between recipients and donors when some KIR genes of the recipient was not included
in the KIR genotype of donors (R+ D−) or when KIR genes present in the recipient were
absent in the donor genotype. The HLA-I ligand-ligand or missing-self model, defined for
KIR-ligand mismatching between donors and recipients as well as the receptor-ligand or
missing-ligand model, was suitable for KIR and HLA-ligand combinations when donors
lacking ligands for inhibitory KIR receptors present in the recipient genotype were taken
into account to evaluate NK-alloreactivity in the long-term recipient-versus-donor direction
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(R→D). In this analysis, the analyzed 11KIR genes contain five inhibitory KIR genes
(2DL1-3, 2DL5, 3DL1) and six activators (2DS1-S5 and 3DS1).

4.7. Statistical Analysis

The demographic information and findings were entered into a database (Microsoft
Access 2.0; Microsoft Corporation, Seattle, WA, USA) and analyzed with SPSS 15.0. (SPSS
Software Inc., Chicago, IL, USA). Potential NK-cell alloreactivity was evaluated according
to the Hematopoietic Stem Cell Transplant (HSCT) models and our previous study [17].
All results were expressed as mean ± standard error of the mean (SEM) or as a percentage.
Pearson’s χ2 and the two-tailed Fisher’s exact tests were used to compare categorized
variables between groups, and a two-sided Student T-test and the nonparametric Mann-
Whitney test were used to compare mean values. Positive relationships were confirmed
using multivariable logistic regression analysis.

Correlations between CR and the presence or absence of individual KIR genes or
KIR genotypes, patients’ and donors’ HLA-I-allotypes, and KIR/HLA-ligand combina-
tions were also analyzed. The odds ratio (OR) and 95% confidence interval (CI) were
also calculated, and p-values below 0.05 were significant. The multivariable logistic re-
gression analysis was done considering the following variables: recipient’s age, sex, HCV
pre-infection, KIR genotypes, donor’s age, and HLA-C allotype groups, as well as the
KIR/C-ligands match or mismatching between recipients and donors.

The Kaplan-Meier method and Log-rank test compare differences in long-term graft
survival at 5–10 years. The initial time of all survivals analyzed in our study corresponds
to the date of liver transplantation of each patient.

The multivariable Cox proportional hazard model for the following variables: HLA
mismatches, donor HLA-C allotypes, age, sex, and HCV pre-infection was also considered
to confirm differences in graft survival.
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HBsAg: hepatitis B virus surface antigen; HLA-I: Human Leukocyte Antigens; HSCT: Hematopoietic
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immunoglobulin-like receptors; MM: Mismatching; NCR: No-chronic rejection; NK: Natural Killer
cell; r: gene presence in receptor (rHLA or rKIR).
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