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Simple Summary: There is a clinical need for predictive biomarkers that can identify patients with
rectal cancer who do not respond to preoperative neoadjuvant chemoradiotherapy. In this study,
we assembled multiple independent microarray datasets of biopsy specimens obtained from patients
with rectal cancer before neoadjuvant treatment, including 237 non-responders and 152 responders.
These datasets were utilized as the discovery cohorts or the validation cohorts, to develop and
validate gene expression signatures predictive of treatment response. Using an in silico meta-analysis
approach, here we tested not only our 4-gene signature built in this study but also nine different
single-gene and multi-gene predictive signatures that were previously reported in the literature.
Nevertheless, in the validation cohorts, none of the tested signatures were consistently differentially
expressed between tumor specimens from non-responders and responders, and the meta-analyses
revealed that those signatures had limited predictive values in clinical practice.

Abstract: Background: Neoadjuvant chemoradiotherapy (nCRT) followed by surgery is widely used
for patients with locally advanced rectal cancer. However, response to nCRT varies substantially
among patients, highlighting the need for predictive biomarkers that can distinguish non-responsive
from responsive patients before nCRT. This study aimed to build novel multi-gene assays for predict-
ing nCRT response, and to validate our signature and previously-reported signatures in multiple
independent cohorts. Methods: Three microarray datasets of pre-therapeutic biopsies containing
a total of 61 non-responders and 53 responders were used as the discovery cohorts to screen for
genes that were consistently associated with nCRT response. The predictive values of signatures
were tested in a meta-analysis using six independent datasets as the validation cohorts, consisted
of a total of 176 non-responders and 99 responders. Results: We identified four genes, including
BRCA1, GPR110, TNIK, and WDR4 in the discovery cohorts. Although our 4-gene signature and
nine published signatures were evaluated, they were unable to predict nCRT response in the val-
idation cohorts. Conclusions: Although this is one of the largest studies addressing the validity
of gene expression-based classifiers using pre-treatment biopsies from patients with rectal cancer,
our findings do not support their clinically meaningful values to be predictive of nCRT response.

Keywords: locally advanced rectal cancer; neoadjuvant chemoradiotherapy; predictive biomarker;
pre-treatment biopsy; gene expression signature; microarray; meta-analysis

1. Introduction

Colorectal cancer remains one of the leading causes of cancer death worldwide,
with rectal cancer accounting for one-third of these cases [1]. During the past decade,
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advances in treatment strategies with the use of standardized surgical technique, combined
with preoperative (neoadjuvant) local and systemic therapies, have provided a dramatic
reduction in local recurrence rate and improved survival outcomes for patients with lo-
cally advanced rectal cancer (LARC) [2,3]. The most commonly used multidisciplinary
approach for LARC patients is an intravenous or oral 5-fluorouracil (5FU)-based neoad-
juvant chemoradiotherapy (nCRT) followed by a standardized surgical technique (total
mesorectal excision) and postoperative adjuvant chemotherapy, which is the standard
of care in Western countries [3–5]. This could lead to reduced local recurrence rate and
improved disease-free survival, with approximately 20% of patients achieving a patho-
logic complete response (pCR: ypT0M0) at the time of surgery, whereas a considerable
proportion of patients exhibit resistance to nCRT, thereby resulting in only minimal to
no regression or disease progression, even during nCRT [6,7]. Such heterogeneous re-
sponses to nCRT among patients with LARC can finally impact long-term oncological
outcomes [6–9]. It is also important to balance the risk of local and metastatic recurrence,
avoiding over-treatment, preserving organ function and patients’ quality of life [3]. Ac-
cordingly, to determine the optimal treatment plan, there is a critical need of predictive
biomarkers that can discriminate between non-responsive patients with LARC from those
of responsive. Identifying potential non-responders and responders before neoadjuvant
treatment may help clinicians to consider more personalized multidisciplinary strategies
that include intensive preoperative treatment, such as total neoadjuvant therapy (TNT),
upfront surgery to avoid unnecessary treatment-related toxicities, as well as non-operative
“watch and wait” management [2,3].

Tumor tissue-based molecular predictors of response to nCRT in patients with LARC
have been extensively studied using pre-treatment biopsy specimens. Particularly, many
researchers reported gene expression signatures as predictive biomarkers for nCRT re-
sponse based on high-throughput technologies, such as microarrays. However, in 2011,
Brettingham-Moore et al. evaluated several gene signatures reported in earlier stud-
ies [10–12] (published between 2005 and 2008), and revealed that these published signatures
had a limited accuracy in independent samples of LARC [13]. They thus concluded that
gene expression-based signatures based on microarray analyses could not reliably predict
nCRT response [13]. More recently, several promising classifiers based on gene expression
have been reported [14–22]. These signatures were typically identified and developed in
discovery or training cohorts and their predictive performance was confirmed in internal
or external validation cohorts. It is important to note that despite the high prediction
accuracy of those reported signatures, they had very few overlap in the identified genes
among studies and also lacked prospective validation in clinical trials. Accordingly, none of
the gene signatures are currently available for predicting nCRT response in patients with
LARC in clinical practice.

The aim of this study was to build transcriptional multi-gene assays for predicting
nCRT response in LARC, based on comprehensive screening in multiple datasets of pre-
treatment biopsies. We also aimed at validating the predictive performance of various
signatures, including ours and several previously-reported multi-gene and single-gene
predictors reported since 2011. In order to test those signatures, we used an in silico meta-
analysis approach based on six microarray datasets, which have been publicly available
since 2016, of pre-therapeutic biopsies from patients with LARC that were independent of
those used in developmental studies.

2. Materials and Methods
2.1. Microarray-Based Gene Expression Data Analysis

All expression datasets used in this study are publicly accessible in the Gene Expres-
sion Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo, accessed on 12 June
2021). We used the preprocessed values obtained from each microarray dataset. If a gene is
represented by multiple probes, only the probe with the highest mean expression was used.

http://www.ncbi.nlm.nih.gov/geo
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To calculate each gene signature, a representative score was determined as the sum
of expression values for genes that are upregulated in non-responders minus the sum of
expression values for genes that are downregulated in non-responders.

2.2. Selection of Microarray Datasets for Comprehensive Screening (the Discovery Cohorts)

For comprehensive screening of differentially expressed genes between non-responders
and responders to nCRT, we obtained three microarray datasets of pre-therapeutic biopsies
from LARC, including GSE35452, GSE45404 and GSE53781. They were each originally
used to develop and validate multi-gene signatures predictive of nCRT response in three
different studies, reported between 2014 and 2015.

2.3. Selection of Microarray Datasets for Validation (the Validation Cohorts)

We searched the GEO database in May 2021 with the search terms, (rectal cancer or
rectal adenocarcinoma or rectal carcinoma) and (chemoradiotherapy or radiochemotherapy
or chemoradiation or biopsy), filtered by series type (Expression Profiling by Array). Thirty-
four GEO series identified by the initial GEO search were screened on the basis of eligibility
criteria that required each dataset to be based on genome-wide expression data for pre-
treatment biopsies from LARC patients who underwent nCRT and to include response
information for more than 30 patients. We only included datasets that were published
in 2012 or later. The resulting six independent datasets, including GSE46862, GSE68204,
GSE94104, GSE119409, GSE133057, and GSE150082, were used as the validation cohorts.

2.4. Statistical Analysis

Unpaired t-test was used to determine differences between two groups. The discrim-
inatory ability of different gene signatures was assessed in each dataset by performing
the receiver operating characteristic (ROC) analysis based on continuous values for each
signature, and areas under the ROC curve (AUCs) and their 95% confidence intervals (95%
CI) were calculated as a measure of overall prediction accuracy. The pooled AUC was
calculated using the fixed-effects model. Statistical heterogeneity between studies was
assessed using I2 statistic. Statistical analyses were performed using GraphPad Prism v6.04
(Graphpad Software, San Diego, CA, USA), SPSS Statistics version 26 (IBM Corporation,
Armonk, NY, USA), or EZR (Saitama Medical Center, Jichi Medical University, Saitama,
Japan), a graphical user interface for R 2.6.1 (The R Foundation for Statistical Computing,
Vienna, Austria). All statistical tests were two-sided, and p values less than 0.05 were
considered statistically significant.

3. Results
3.1. Identification of Four Common Genes Differentially Expressed between Non-Responders and
Responders in the Discovery Datasets

The overall workflow of this study is illustrated in Figure 1. In 2011, Brettingham-
Moore et al. critically reported that previously-published gene signatures had limited accu-
racy for predicting nCRT response [13]. Subsequently, in 2014, through 2015, multi-gene
predictors for nCRT were reported, and microarray datasets of pre-treatment biopsies ob-
tained from LARC patients, including GSE35452 (n = 46), GSE45404 (n = 42), and GSE53781
(n = 26) were deposited in the GEO database [14,15,18]. The present study utilized these
three datasets as the discovery cohorts, consisting of a total of 61 non-responders and
53 responders, analyzed on Affymetrix or CodeLink platforms (Table 1). The detailed
characteristics of the datasets are also demonstrated in Table S1.
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Figure 1. Overall study design. Three microarray datasets, published between 2014 and 2015, were
used as the discovery cohorts to screen genes for building the 4-gene signature. The systematic search
of the GEO database identified six microarray datasets as the validation cohorts to test the predictive
performance of our signature and previously-published multi-gene or single-gene signatures.

Table 1. GEO datasets of pre-treatment biopsies from patients with LARC who underwent nCRT.

Purpose GEO
Accession Platform Total Non-

Responder Responder References

Discovery

GSE35452 Affymetrix Human Genome
U133 Plus 2.0 Array 46 22 24 [14]

GSE45404 Affymetrix Human Genome
U133 Plus 2.0 Array 42 23 19 [18]

GSE53781 CodeLink Human Whole
Genome Array 26 16 10 [15]

Validation

GSE46862 Affymetrix Human Gene 1.0
ST Array 69 41 28 [23]

GSE68204
Agilent-014850 Whole Human

Genome Microarray 4x44K
G4112F

38 22 16 [19]

GSE94104
Illumina HumanHT-12

WG-DASL V4.0 R2 expression
beadchip

40 29 11 [24]

GSE119409 Affymetrix Human Genome
U133 Plus 2.0 Array 56 41 15 [25]

GSE133057 Illumina human-6 v2.0
expression beadchip 33 20 13 [22]

GSE150082 Agilent-026652 Whole Human
Genome Microarray 4x44K v2 39 23 16 [26]

With the use of the three discovery datasets, we first conducted comprehensive
screening of genes that were differentially expressed between pre-therapeutic biopsies
obtained from non-responders and responders. As demonstrated in Figure S1A,B four
common genes, including G-protein-coupled receptor 110 (GPR110), TRAF2 and NCK
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interacting kinase (TNIK), WD repeat domain 4 (WDR4) and BRCA1 DNA repair associated
(BRCA1), in those three different datasets were identified. In tumor biopsies from non-
responders, GPR110 and TNIK were significantly upregulated, while WDR4 and BRCA1
were significantly downregulated, as compared to those of responders (p < 0.05). We then
generated an expression signature on the basis of those four genes calculated as ((GPR110 +
TNIK)—(WDR4 + BRCA1)), showing higher levels of the 4-gene signature in biopsies from
non-responders than those of responders with AUCs ranging from 0.77 to 0.93 in each of
the discovery cohort (Figures 2A and S1C).
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Figure 2. Assessment of the predictive performance of multi-gene signatures in the validation cohorts.
(A–G) Forest plots of the area under the receiver operating characteristics curve (AUC) values and
95% confidence intervals (95% CI) for tested signatures, including the 4-gene (A), the Casado_13-gene
(B), the Watanabe_4-gene (C), the Palma_4-gene (D), the Agostini_7-gene (E), the Hur_4-gene (F),
and the Millino_8-gene (G). Datasets that were used to for the development of signatures (red squares
and lines) were excluded from the meta-analyses.

3.2. Assessment of the Predictive Performance of the 4-Gene Signature in the Validation Cohorts

We then sought to determine the reproducibility of the predictive performance of
our 4-gene signature in multiple independent datasets. For this purpose, the systematic
search of the GEO database was conducted, and the search terms and the eligibility criteria
were described in Materials and Methods, and in Figure S2. We identified six datasets of
pre-therapeutic biopsies from LARC patients who underwent nCRT followed by surgical
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resection, including GSE46862 (n = 69), GSE68204 (n = 38), GSE94104 (n = 40), GSE119409
(n = 56), GSE133057 (n = 33), and GSE150082 (n = 39), each analyzed on different microarray
platforms, including Affymetrix, Illumina, and Agilent (Figures 1 and S2, Tables 1 and S1).
These six GEO datasets were used as the validation cohorts that contained a total of 176 non-
responders and 99 responders [19,22–26]. However, the levels of the 4-gene signature
did not significantly differ between non-responders and responders in any of the six
cohorts analyzed (p > 0.05, Figure S3), showing no prediction accuracy to differentiate non-
responders from responders with AUCs around 0.50 in each cohort (Figures S3 and 2A).
The pooled AUC was 0.46 (95% CI 0.40–0.52) in the meta-analysis for the six validation
cohorts (Figure 2A). Although we further analyzed each of the four genes, GPR110, TNIK,
WDR4, and BRCA1, at the single-gene level, it did not consistently differ between non-
responders and responders in the validation cohorts (Figure S4).

3.3. Previously-Published Multi-Gene Signatures in the Validation Cohorts

Although our attempt to develop a gene signature predictive of nCRT response was
unsuccessful, we next evaluated the predictive performance of six previously-reported
multi-gene signatures that were identified from the literature published since 2011, as listed
in Table 2 and illustrated in Figure 1. Signature scores were calculated as the sum of
expression values for upregulated genes in non-responders minus the sum of expres-
sion values for downregulated genes in non-responders. For each of the six validation
datasets, the levels of the six candidate signatures were examined in non-responders
and responders (Figures S5A–F and S6) and then AUC values and 95% CIs were plotted
(Figure 2B–G). Since the Millino_8-gene was built based on GSE68204 [19], we confirmed
reasonably higher levels of this signature score in non-responders compared to responders
(Figure S5F) with an AUC of 0.72 (95% CI 0.55–0.89) in GSE68204 (Figures S6B and 2G).
Additionally, the Agostini_7-gene were significantly higher in non-responders in GSE46862
(p < 0.05, Figure S5D), showing an AUC of 0.66 (95% CI 0.53–0.79) (Figures S6A and 2C).
The Watanabe_4-gene in GSE119409 and the Millino_8-gene in GSE94104 showed statisti-
cally significant difference between non-responders and responders (p < 0.05, Figure S5B,F),
but in the opposite direction (AUCs < 0.5, Figures S6C,D and 2E,G). Collectively, ex-
cept for the two analyses mentioned above (the Millino_8-gene in GSE68204 and the
Agostini_7-gene in GSE46862), none of the six signatures showed significant higher lev-
els in non-responders compared to responders in any of the validation cohorts (p > 0.05,
Figure S5A–F), giving limited or no discriminative power with diverse AUCs ranging from
0.27 to 0.63 in each dataset (Figure 2B–G). Likewise, the meta-analyses demonstrated that
those six signatures had limited predictive values with the pooled AUCs of less than 0.6,
namely, 0.57 (95% CI 0.51–0.64) for the Casado_13-gene, 0.43 (95% CI 0.37–0.50) for the
Watanabe_4-gene, 0.44 (95% CI 0.38–0.51) for the Palma_13-gene, 0.60 (95% CI 0.54–0.67)
for the Agostini_7-gene, 0.51 (95% CI 0.45–0.57) for the Hur_4-gene, and 0.50 (95% CI
0.43–0.57) for the Millino_8-gene (Figure 2B–G).

Table 2. Multi-gene and single-gene expression signatures tested in meta-analyses.

Signature Genes Upregulated in Non-Responders
vs. Responders

Genes Downregulated in
Non-Responders vs. Responders References

4-gene GPR110 (ADGRF1), TNIK WDR4, BRCA1 This study

Casado_13-gene BAK1, MLH1, TYMS, CKB, GPX2, HIG2
(HILPDA), PH4 (P4HTM)

ALDH1A1, CDKN1A, FOS, RELB,
STAT3, TFF3 [17]

Watanabe_4-gene FRMD3, SAMD5, TMC7 LRRIQ3 (LRRC44) [14]

Palma_4-gene - GNG4, MYC, POLA1, RRM1 [15]
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Table 2. Cont.

Signature Genes Upregulated in Non-Responders
vs. Responders

Genes Downregulated in
Non-Responders vs. Responders References

Agostini_7-gene AKR1C3 CXCL11, CXCL10, IDO1, CXCL9,
MMP12, HLA-DRA [16]

Hur_4-gene TP53 MKI67, CDKN1A,
CD133 (PROM1) [20]

Millino_8-gene ITGA2, NRG1, KLF7 TMEM188 (CNEP1R1), TRAM1,
BCL2L13, MYO1B, GTSE1 [19]

CD44 CD44 - [21]

XRCC3 - XRCC3 [18]

COASY COASY - [22]

3.4. Previously-Published Single-Gene Signatures in the Validation Cohorts

As demonstrated in Figures S7A–C, S8A–F, and 3A–C, we further tested three different
single-gene signatures, including the expression of CD44, XRCC3 and COASY (Table 2),
using the six validation cohorts (Table 1). Since COASY was originally identified and re-
ported using GSE133057 [22], we confirmed that the expression of COASY was significantly
increased in non-responders compared to responders (p < 0.05, Figure S7C), showing an
AUC of 0.71 (95% CI 0.53–0.89) in GSE133057 (Figures S8E and 3C). However, none of
the other analyses showed significant difference of each single-gene levels between non-
responders and responders (p > 0.05, Figure S7A–C) and AUCs ranged from 0.44 to 0.67
(Figure S8A–F). As demonstrated in Figure 3A–C, the meta-analyses revealed that those
three genes had limited predictive values with the pooled AUCs: 0.57 (95% CI 0.51–0.64)
for CD44, 0.50 (95% CI 0.44–0.57) for XRCC3, and 0.53 (95% CI 0.47–0.60) for COASY.
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genes, including CD44 (A), XRCC3 (B), and COASY (C). Datasets that were used to identify genes (red square and line)
were excluded from the meta-analyses.

4. Discussion

Here, we analyzed a total of nine microarray cohorts of pre-therapeutic biopsy spec-
imens obtained from 389 patients with LARC who received nCRT followed by surgery.
We initially built our own signature to be predictive of nCRT response based on compre-
hensive analyses in the three discovery datasets. Thereafter, using the six independent
validation cohorts of pre-treatment biopsies, we evaluated the performance of the 4-gene
signature we developed, as well as several transcriptional signatures that were previously-
reported in the literature. Even though these signatures showed clear discrimination
between non-responder and responders at least in their developmental cohorts, we found
that none of the tested signature scores were consistently different between tumor speci-
mens from non-responders and responders. This resulted in a weak or no discriminative
ability of each signature in the pooled analyses. Overall, our findings do not support
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clinically-meaningful predictive values of those signatures on the basis of microarray data
for responsiveness to nCRT in patients with LARC.

The present study identified a set of genes, including GPR110, TNIK, WDR4, and
BRCA1, to be each significantly associated with nCRT response in the discovery cohorts of
pre-treatment biopsies from LARC. It is worth noting that BRCA1 plays a pivotal role in
DNA repair and cell cycle regulation in response to DNA damage, potentially resulting
from chemotherapy and radiotherapy. Indeed, several studies reported that BRCA1 mRNA
expression had predictive impact on responses to chemotherapy, as well as to chemora-
diotherapy in many types of cancer, such as breast cancer, lung cancer, and esophageal
cancer [27–31], suggesting BRCA1 as an attractive candidate for predicting nCRT response
in LARC. It has been reported that GPR110 (ADGRF1) can induce cell cycle arrest and
chemoresistance in breast cancer [32]. TNIK appeared to be an essential factor for WNT sig-
naling and stemness in colorectal cancer [33] and might be responsible for chemoresistance
in osteosarcoma [34]. However, the 4-gene signature, consisting of GPR110, TNIK, WDR4,
and BRCA1, showed no association with nCRT response in any of the validation cohorts of
LARC biopsies. Likewise, despite the promising correlations of the previously-reported
signatures in the original publications [14–17,19,20], we found little evidence that they have
sufficient clinical utility to guide decision-making in the current practice. This discrepancy
could be due to small sized patient cohorts, technical differences between laboratories,
disparities between various microarray probes and platforms, and insufficient analytical
validation. It is also important to note that tumor biopsy-based transcriptomic profiles
are likely prone to sampling bias due to intra-tumor heterogeneity. Moreover, there are
differences and controversies in nCRT regimens, including chemotherapeutic drugs and
radiation doses [2,3]. Optimal timing of surgical resection after nCRT also remains debat-
able, as longer intervals from nCRT to surgery appeared to lead to a greater potential of
achieving a pCR in a meta-analysis [35], but delaying surgery was significantly associated
with increased morbidity in a randomized trial [36]. Histological tumor regression grade is
assessed using various grading systems with subjective categorization to reflect therapeutic
response, leading to interobserver variability [37,38]. Such considerable variabilities among
previously-published studies and datasets, including nCRT regimens, intervals from CRT
to surgery, grading systems for tumor regression, and definitions of non-responder might
also be a potential bias. We suggest that future gene signature studies of LARC using
microarray or other expression platforms would be required to address those limitations.

In 2011, Brettingham-Moore et al. demonstrated that the microarray-based gene
signatures, which were reported between 2005 and 2008, did not retain their predictive
power in an independent cohort. Hence, they suggested that alternative approaches for
predictive studies in LARC should be considered [13]. Although the present study again
demonstrated that the gene expression signatures derived from microarray technologies
were not capable of discriminating non-responders from responders, most recent studies
have extensively searched for promising candidates to predict nCRT response in LARC
using more robust expression assays and platforms. For instance, multi-gene expres-
sion assays developed on the NanoString nCounter system may provide more accurate
prediction to nCRT response in LARC [39,40]. DNA-based molecular markers, including
mutations in KRAS or TP53 and microsatellite instability (MSI), may also be associated with
responses to neoadjuvant treatment in LARC [41–43]. Other promising tissue-based pre-
dictive biomarkers, including the expression of microRNAs [38], differentially methylated
CpGs [44], immune profiles [45,46], multi-protein expression assays by immunohistochem-
istry [47], are necessary to be validated on large, retrospective, and prospective cohorts of
pre-treatment LARC biopsies, although the translation of biomarkers into clinical practice
remains challenging. In addition, integrative approaches that include not only tissue-based
biomarkers but also liquid-based molecular assays and imaging modalities may contribute
to more sensitive stratification of patients with LARC receiving nCRT [2,38].
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5. Conclusions

In this study, we developed a novel gene expression-based classifier for predicting
nCRT response based on microarray cohorts of pre-treatment biopsies from patients with
LARC. Although our signature and previously published signatures were tested in multiple
independent datasets for validation purposes, none of them were capable of classifying
patients with LARC into responders and non-responders to nCRT. We suggest that current
gene expression-based signatures using microarray platforms are not robust enough to
predict nCRT response or guide clinical decision-making in patients with LARC.
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