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Abstract

Dietary lipids have been shown to increase bioavailability of provitamin A carotenoids from a single meal, but the effects of

dietary lipids on conversion to vitamin A during absorption are essentially unknown. Based on previous animal studies, we

hypothesized that the consumption of provitamin A carotenoids with dietary lipid would enhance conversion to vitamin A

during absorption compared with the consumption of provitamin A carotenoids alone. Two separate sets of 12 healthy

men and women were recruited for 2 randomized, 2-way crossover studies. One meal was served with fresh avocado

(Persea americanaMill), cultivated variety Hass (delivering 23 g of lipid), and a second meal was served without avocado.

In study 1, the source of provitamin A carotenoids was a tomato sauce made from a novel, high–b-carotene variety of

tomatoes (delivering 33.7mg of b-carotene). In study 2, the source of provitamin A carotenoids was raw carrots (delivering

27.3 mg of b-carotene and 18.7 mg of a-carotene). Postprandial blood samples were taken over 12 h, and provitamin A

carotenoids and vitamin A were quantified in triglyceride-rich lipoprotein fractions to determine baseline-corrected area

under the concentration-vs.-time curve. Consumption of lipid-rich avocado enhanced the absorption of b-carotene from

study 1 by 2.4-fold (P < 0.0001). In study 2, the absorption of b-carotene and a-carotene increased by 6.6- and 4.8-fold,

respectively (P < 0.0001 for both). Most notably, consumption of avocado enhanced the efficiency of conversion to vitamin

A (as measured by retinyl esters) by 4.6-fold in study 1 (P < 0.0001) and 12.6-fold in study 2 (P = 0.0013). These

observations highlight the importance of provitamin A carotenoid consumption with a lipid-rich food such as avocado for

maximum absorption and conversion to vitamin A, especially in populations in which vitamin A deficiency is prevalent. This

trial was registered at clinicaltrials.gov as NCT01432210. J. Nutr. 144: 1158–1166, 2014.

Introduction

Vitamin A deficiency affects a staggering percentage of the
population, especially in the developing world. Globally, it is
estimated to affect 0.9% of preschool children and 7.8% of
pregnant women (1). It is the leading cause of blindness in children
and is also associated with increased burden of infectious disease,
xerophthalmia (dry-eye syndrome), night blindness, and increased

risk of mortality (2). In contrast, vitamin A sufficiency is associated
with growth promotion, cellular differentiation, proper immune

function, proper embryonic development, induction of gap junction

communication, and light adaptation (3–5).
In the United States, it is estimated that;30% of the vitamin

A consumed is derived from provitamin A carotenoids, found

primarily in orange fruits and vegetables and deep-green leafy

vegetables (6). In contrast, in developing countries, a majority of

the diet consists of grains and staple crops, with fruits and

vegetables, as well as animal products, making up a much

smaller percentage of overall food intake (7,8). In these

countries, fruit and vegetable consumption are responsible for

$70% of vitamin A intake in the form of provitamin A (9,10).

Provitamin A carotenoids, including b-carotene and a-carotene,

contain$1 unsubstituted b-ionone ring that confers provitamin

A activity. These carotenoids must be enzymatically cleaved by
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b-carotene oxygenase 1 (BCO1)9 at the central double bond to
produce vitamin A (11). In humans, BCO1 is highly active in the
intestinal enterocytes and the liver (12).

Bioavailability of a carotenoid is defined as the amount of the
carotenoid (as parent carotenoid or carotenoid metabolite) that
is absorbed and packaged with lipids into chylomicrons and
released into circulation after the consumption of a carotenoid-
containing meal. The bioavailability of provitamin A carote-
noids can be measured by monitoring provitamin A carotenoid
and retinyl ester concentrations in the postprandial TG-rich
lipoprotein (TRL) fraction of plasma that contains chylomi-
crons (6).

Bioavailability has been shown to be affected by a number of
factors. Studies by our group and others have demonstrated that
the consumption of a carotenoid-containing meal with lipid or
lipid-rich avocado dramatically enhances provitamin A carote-
noid bioavailability compared with a meal with no lipid (13–
16). Likewise, increasing concentrations of meal lipid leads to
increasing amounts of carotenoid absorption, to a certain degree
(14–16). However, a definitive understanding of provitamin A
carotenoid absorption and metabolism in humans, relative to
the provitamin A content in foods, is still lacking.

Various postprandial human studies have assesed the con-
version of provitamin A carotenoids to vitamin A when
comparing food matrices (17), a food source to a vitamin A
reference dose (18,19), or co-consumption with medium- and
long-chain FAs (20). In addition, animal studies have revealed
that the chronic consumption of provitamin A carotenoids with
higher concentrations of lipid leads to both higher intestinal
BCO1 activity (21) and higher hepatic vitamin A stores (22,23)
compared with animals consuming the same meal with less
lipid. However, the impact of the absence and presence of
dietary lipid on provitamin A conversion to vitamin A from a
single meal has not been well investigated in humans.

Our primary objective was to determine whether adding
lipid, in the form of lipid-rich avocado, to a carotene-rich meal
would promote the absorption of provitamin A carotenoids and
enhance intestinal conversion to vitamin A. Participants con-
sumed a meal with or without avocado in combination with a
serving of a novel, high–b-carotene tomato sauce (containing
nutritionally relevant amounts of b-carotene) for study 1 or
carrots (containing b-carotene and a-carotene) for study 2. The
immediate postprandial concentrations of parent carotenoids
and retinyl esters were measured in the TRL fraction of plasma.
The absorption of other carotenoids (i.e., lutein) and vitamins E
and K-1 (i.e., a-tocopherol and phylloquinone, respectively)
from the avocado fruit were also investigated.

Participants and Methods

Participants. Two separate sets of healthy adult volunteers (aged 19–
37 y) were recruited for each study (study 1, n = 12; study 2, n = 12).

Previously published data were used to perform power calculations to

estimate required sample size to determine statistically significant

changes in our primary endpoints of TRL AUC of b-carotene (15),
a-carotene (15), and retinyl esters (20). For a significance level a = 0.05,

a paired t test indicated that an enrollment of 12 participants would

provide >80% power to observe statistically significant differences in all

primary analytes of interest in study 1 and study 2.
Inclusion criteria specified that participants be between 18 and 70 y

of age, nonpregnant, nonsmoking, normocholesterolemic (<200 mg/dL

total cholesterol), and normolipidemic, have a BMI of 17–30 kg/m2, no

history of cancer, and no gastrointestinal diseases or diabetes, and not be

using medication affecting lipid uptake or transport. Written informed
consent was obtained from all participants before beginning the study,

and all clinical procedures were performed at the Clinical Research

Center (CRC) of Ohio State University. The study was approved by the

Institutional Review Board of Ohio State University (protocol No.
2011H0159) and the CRC of Ohio State University (Center for Clinical

and Translation Science No. 987). The study was registered at

clinicaltrials.gov as NCT01432210.

Study instruments. Participants were asked to fill out a health and

lifestyle questionnaire. The questionnaire surveyed current and historical
use of tobacco products, medications, vitamins, and supplements,

disease and surgery, and typical fruit and vegetable consumption, as

well as fad diet usage. The primary purpose of this questionnaire was to
identify individuals who met exclusion criteria and were ineligible to

participate in the study. Participants were given a list of foods and

supplements to avoid. Throughout the 4-wk duration of the study,

participants were asked to review a diet-compliance checklist daily and
to document any deviations from the dietary restrictions. Dietary

restrictions were determined based on the USDA Carotenoid Database

for U.S. Foods 1998 and the National Nutrient Database for Standard

Reference Release 23 and included no consumption of foods or
supplements containing >1 mg of b-carotene or a-carotene per 100-g

serving, >0.5 mg of lutein per 100-g serving, or high amounts of

preformed vitamin A (including fortified foods, ready-to-eat cereals,

dairy or dairy-replacement products, liver, and fish oil). The purpose of
the dietary restrictions were to ensure that participants were not

consuming high doses of provitamin A or preformed vitamin A before

the daylong visits, because the TRL fraction can carry fat-soluble
carotenoids and vitamins consumed from previous meals (20). This diet-

compliance checklist was used to determine whether participants were

consuming any restricted foods.

Experimental design. Individuals who were interested in participat-

ing in the study consented at the initial CRC visit. Vitals and a blood
sample were taken to check blood lipid and cholesterol concentrations,

and the health and lifestyle questionnaire was administered. For each

crossover study, an equal number of men and women were randomly

assigned to 1 of 2 feeding groups. Participants were asked to abstain
from consuming foods rich in provitamin A and vitamin A for 2 wk

before daylong clinic visit 1. After an overnight (12 h) fast, participants

arrived at the clinic in the morning and had a catheter inserted. Baseline
blood (0 h) was drawn, and then participants immediately consumed

the test meal. One group consumed the test meal containing avocado

on daylong visit 1, and the other group consumed the test meal alone

on daylong visit 1. Participants were given 20 min to eat the sauce
meal and 30 min to eat the carrot meal. Participants were allowed

to consume water ad libitum throughout the course of their daylong

visits. Blood samples were then taken at 2, 3, 4, 5, 6, 8, 10, and 12 h

after the meal was consumed. A lunch meal very low in carotenoids,
provitamin A, and lipid was served at 4.5 h. Participants returned

home, continued the low provitamin A and vitamin A diet for 2

additional weeks, and then again returned to the clinic for daylong visit

2. Participants crossed over to the test meal they had not yet consumed
on daylong visit 2.

Blood lipids. Blood lipids were tested at all 3 clinic visits using a

Dimension Xpand Plus Automated Clinical Chemistry Analyzer (Sie-

mens) and are shown in Table 1.

Test foods and meals. For study 1, the test food consisted of a novel
variety of tomato (Solanum lycopersicum L.) rich in b-carotene (variety

97L97) that was developed using traditional crossbreeding techniques

and grown at Ohio State University North Central Agricultural Research

Station near Fremont, Ohio (24). Tomatoes were harvested and
processed into tomato juice using a hot-fill process in a pilot plant of

the Food Industries Center of Ohio State University. Later, the tomato

juice was concentrated in a steam-jacketed kettle to 15� Brix, hot-filled
9 Abbreviations used: BCO1, b-carotene oxygenase 1; CRC, Clinical Research

Center; TRL, TG-rich lipoprotein.
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into No. 300 cans to produce a shelf-stable product. For study 2, the test
food consisted of raw petite baby carrots that were purchased from a

local grocery store in Columbus, Ohio. Avocados (Persea americana
Mill), cultivated variety Hass, were provided by the Hass Avocado

Board. The FA profile of Hass avocados consists of predominantly
MUFAs (60% oleic, 6% palmitoleic) with some PUFAs (15% linoleic,

2% a-linoleic) and SFAs (16%palmitic, 1% stearic) (25). Avocados were

peeled and seeded just before the test meal preparation (further described

below).
For both studies 1 and 2, test foods were served with the breakfast

meal. For study 1, 300 g of processed sauce was weighed and served at

room temperature with or without 150 g of sliced, fresh avocado. For
study 2, 300 g of raw petite baby carrots were weighed into a bowl and

served with or without guacamole consisting of 150 g of freshly mashed

avocado, 5 mL (1 teaspoon) of lemon juice, 0.25 g (1/8 teaspoon) of

garlic powder, and 0.7 g (1/8 teaspoon) of salt. Participants were also
given 1 English muffin (57 g) to completely clean and consume the

sauce from the bowl for the sauce study or to clean and consume the

guacamole from the bowl for the carrot study. In addition, cooked egg

whites (from 2 eggs, 66 g), a medium banana (118 g), and a cup of
coffee (237 mL) were served with breakfast. The breakfast with tomato

sauce alone provided 406 kcal, with 17 g of protein, 2 g of lipid, and

80 g of carbohydrate. The breakfast with carrot alone provided
390 kcal, with 15 g of protein, 2 g of lipid, and 78 g of carbohydrate.

When the breakfast meal was consumed with avocado or guacamole,

an extra 275 kcal were consumed, with 3 g of protein, 23 g of total

lipid, and 14 g of carbohydrate. The lunch meal was identical for study
1 and study 2 and contained a turkey breast sandwich served on white

bread (180 g of turkey, 54 g of bread) with fat-free mayonnaise (2 g), an

apple (138 g), cream of mushroom soup (98% fat free, 124 g), pretzel

snacks (57 g), and fat-free and vitamin A–free Greek yogurt (168 g).
Lunch contained 768 calories from 66 g of protein, 108 g of carbohydrate,

and 8 g of lipid.

Carotenoid extraction from food. The raw carrots were blended in a
food processor yielding a fine pulp. An aliquot of 2 g of carrot pulp,

sauce, or mashed avocado was weighed into 12-mL glass tubes. Five

milliliters of methanol were added, and the mixture was probe
sonicated. The sample was centrifuged at 2000 3 g for 10 min. The

methanol was decanted into a clean glass vial, and 5 mL of hexane/

acetone (1:1) was added to the remaining pellet. The sample was again

sonicated and centrifuged at 2000 3 g for 10 min, and the hexane/
acetone extract was removed and combined with the methanol. The

hexane/acetone extraction was repeated twice more. To the pooled

extracts, 10 mL of water and 1 mL of saturated aqueous NaCl

solution were added to induce phase separation. The extract was
shaken, and the upper phase was separated and made up to 25 mL. An

aliquot was removed, dried under nitrogen gas, and stored at 220�C
before HPLC analysis the next day, following the method used for the
TRL fractions.

Extraction and analysis of TRL fractions. The blood preparation, TRL

isolation, carotenoid extraction, and HPLC-photodiode array-MS/MS
quantitation information were detailed previously (26).

Conversion efficiency. To estimate the extent of vitamin A formation
(Efficiency A1) in the enterocyte from the b-carotene absorbed in study 1,

we used a previously published equation (27), Eq. 1:

Efficiency A1 ¼
��

AUCretinyl esters=2
���

AUCb-carotene

þ�
AUCretinyl esters=2

���
3100:

Carrots contain 2 sources of provitamin A: 1) b-carotene; and 2)
a-carotene. a-Carotene is a nonsymmetric provitamin A carotenoid, and

thus cleavage by BCO1 can only produce 1 molecule of vitamin A (in
contrast to cleavage of b-carotene, which can produce 2 molecules of

vitamin A). Therefore, a different equation must be used to estimate the

extent of vitamin A formed in the enterocyte from both b-carotene and

a-carotene absorbed in study 2 (Efficiency A2). Previously published
equations (28) were used with slight modifications. The contribution X

of both carotenes to the TRL vitamin A pool was calculated by taking

into account the relative proportion of b-carotene and a-carotene in the

test meal in Eq. 2:

X ¼ ��
AUCretinyl esters

�
mg b-carotene fed

32=mg total carotenes fed
��þ �

AUCretinyl esters

ðmg a-carotene fed=mg total carotenes fed
���

:

For example, for the carrot and avocado meal, the equation is as follows:

X ¼ ��
AUCretinyl estersð27:4 mg32=46:2 mgÞ�

þ�
AUCretinyl estersð18:8 mg=46:2 mgÞ��:

This value was then divided by the sum of the estimated total carotenes

(b-carotene + a-carotene) absorbed from the meal, using Eq. 3:

Efficiency A2 ¼ X=
�
AUCtotal b-carotene þ AUCtotal a-carotene þX

�
3100:

Statistical analysis. Baseline characteristics of the participants for both
study 1 and study 2 were compared between genders using a 2-tailed

unpaired Student�s t test (Table 1). Bioavailability of each compound is

expressed as the baseline-corrected AUC value in the TRL fraction for
the 12 h after meal consumption (i.e., measured TRL amounts of the

analyte are normalized to the t = 0 blood draw). AUC values were

determined using trapezoidal approximation. A mixed-effects regression

approach appropriate for the AB/BA crossover design was used to model
each of the outcomes (29). Fixed effects for treatment (test meal alone or

with avocado) and period and a random effect for participant were

included. Raw AUC values for all compounds were right skewed and

were log transformed to meet the model assumptions of normality and
homoscedasticity. Thus, AUC median values and the 25th and 75th

percentiles after each meal are reported. Interactions between treatment

and baseline participant characteristics (age, gender, BMI, LDL, HDL,

TABLE 1 Participant characteristics at initial screening visit1

Gender Participants Age BMI Plasma total cholesterol Plasma TG

n y kg/m2 mg/dL mg/dL

Sauce study (study 1)

F 5 24.6 6 4.6 22.4 6 3.3 167 6 24.7 79.2 6 42.9

M 6 26.7 6 5.0 25.8 6 2.2 151 6 26.9 107 6 65.1

Carrot study (study 2)

F 6 28.5 6 5.0 23.1 6 2.7 172 6 14.8 59.2 6 29.8

M 6 27.2 6 4.0 25.3 6 2.4 166 6 31.2 88.3 6 87.6

1 Values are means6 SDs. Characteristics between genders within each study are not statistically different from each other using a 2-tailed

unpaired Student�s t test (P , 0.05).
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and total cholesterol, and TGs) were tested and included in the model if

significant at a 0.05 level. Because of the log transformation of the

outcomes, model coefficients were interpreted in terms of fold changes.
All fold changes are multiplicative (e.g., a 2-fold increase indicates a

doubling of the initial value). All analyses were conducted in SAS version

9.3 (SAS Institute).

Results

Participants. Table 1 provides the baseline characteristics of
study participants at their initial visit to the clinic. Twelve
participants completed study 1 (10 Caucasians, 1 of Indian
origin, 1 of Chinese origin), and 12 participants completed study
2 (7 Caucasians, 4 African Americans, 1 of Indian origin). After
reviewing the data, 1 Caucasian female participant in study
1 appeared to be a ‘‘nonresponder’’ after carotenoid consump-
tion. Nonresponders were reported previously for carotenoid
absorption (30,31), although this seems to be a small percentage
of the population (20). Although this participant indicated that
she typically followed a ‘‘Paleo diet’’ in the health questionnaire
(defined as no grains, processed foods, or added sugar; lots of
meat, fruits, vegetables, and full-fat dairy products), the data do
not suggest that this affected her carotenoid amount. Given this
anomalous response, this participant�s data were dropped from
the final dataset.

Absorption of carotenoids. Table 2 provides the amount of
fat-soluble carotenoids and vitamins of interest provided by each
test food. Median AUC values for nutrients of interest and fold
differences between the test meal with and without avocado are
provided in Table 3 for study 1 and Table 4 for study 2.

Baseline-corrected plasma TRL concentrations of b-carotene
(Fig. 1A) and retinyl esters (Fig. 1B) after consumption of the
sauce with or without avocado in study 1 are depicted.
Consumption of the sauce meal with avocado led to a 2.4-fold
increase in AUC b-carotene (P < 0.0001) compared with the
sauce meal without avocado. Notably, consumption of the sauce
meal with avocado led to a 4.6-fold increase in AUC retinyl
esters (P < 0.0001). There were no significant interactions
between meal and patient characteristics and no significant meal
sequence (period 3 treatment) effect for any of the outcomes of
study 1.

For study 2, baseline-corrected plasma TRL concentrations
of b-carotene (Fig. 2A), a-carotene (Fig. 2B), and retinyl esters
(Fig. 2C) after consumption of the carrots with or without
avocado are shown. The consumption of the carrots with
avocado-containing guacamole led to a 6.6-fold AUC increase in
b-carotene (P < 0.0001) and a 4.8-fold AUC increase in
a-carotene (P < 0.0001) compared with the meal without
guacamole. A striking 12.6-fold increase in AUC of retinyl esters
(P = 0.0013) was observed when participants consumed carrots

with guacamole compared with carrots alone. Similarly, a 15-
fold increase in phylloquinone AUC (P < 0.0001) was observed
when participants consumed carrot with guacamole compared
with carrot alone. In contrast, no statistically significant
difference was observed for lutein. Although not investigated
further, a significant interaction between age and meal was
observed, with older participants showing a more pronounced
increase in b- and a-carotene absorption when co-consuming
guacamole compared with younger participants. Thus, the
estimates in Table 3 were produced using the mean age of
28 y. There was no significant meal sequence effect for any of the
outcomes.

Conversion efficiency. Figure 3 plots the percentage conver-
sion of provitamin A to vitamin A for each participant when the
tomato sauce meal was consumed alone compared with the
sauce meal with avocado. For study 1, the range of b-carotene
conversion to vitamin A for the sauce alone was 5–47%, with a
mean of 22%, whereas the sauce and avocado meal was 22–
48%, with a mean of 33%. A strong linear relation between
conversion efficiency of the 2 meals was observed. An equal
conversion after consumption of both test meals would result in
a regression line through the origin with a slope of 1 (Fig. 3,
black line). However, all data points fall in the sector above the
black line. Thus, conversion was observed to be more efficient
after consuming the lipid-rich test meal. Participant with low
conversion efficiency when consuming the sauce meal alone had
notably improved conversion when the meal was consumed with
avocado. Participant with high conversion efficiency with sauce
alone had less improvement when the meal was consumed with
avocado.

Although a similar linear trend for conversion efficiency was
observed with the carrot study, there was much wider variation,
with approximately half of the data points falling above a slope
of 1 and half falling below. Furthermore, the linear relation was
weaker (R2 = 0.30). The ratio of a-carotene to b-carotene in the
carrot meal (;1:1.4 a-carotene:b-carotene) was mostly main-
tained in the blood plasma of participants when they consumed
the carrot meal with avocado, but this ratio was not maintained
when participants consumed the carrot alone (data not shown).
The range of total carotene (i.e., b-carotene + a-carotene)
conversion to vitamin A from the carrot meal alone was 0–64%,
with a mean of 27%, and the carrot with avocado meal was 8–
69%, with a mean of 34%, demonstrating a very large
interindividual variation.

Discussion

The 2 studies presented herein provide some intriguing results
that have direct implications relevant to maximizing provitamin

TABLE 2 Fat-soluble nutrient and phytochemical profiles of test foods1

Test food b-Carotene a-Carotene Lutein Lycopene a-Tocopherol Phylloquinone

mg mg mg mg mg mg

Sauce alone2 33.7 6 0.21 ND ND 2.34 6 0.01 ND ND

Sauce with avocado3 33.7 6 0.21 0.014 6 0.007 0.12 6 0.03 2.34 6 0.01 2.80 6 0.29 26.2 6 9.8

Carrot alone2 27.3 6 7.7 18.7 6 5.5 0.40 6 0.11 0.04 6 0.01 0.0008 6 0.00009 19.8 6 8.6

Carrot with avocado3 27.4 6 7.9 18.8 6 5.5 0.50 6 0.13 0.04 6 0.01 2.80 6 0.29 46.6 6 19.9

1 Limits of detection were detailed previously (26). ND, not detected.
2 Values are reported as means 6 SDs of analyte in 300 g of test food (sauce or carrot), n = 3.
3 Values are reported as means 6 SDs of analyte in 300 g of test food (sauce or carrot) + 150 g of avocado, n = 3.

Effects of avocado on provitamin A conversion 1161



A absorption and efficient conversion to vitamin A. In both
studies 1 and 2, the bioavailability of provitamin A carotenoids
was considerably improved when the test food was consumed
with lipid-rich avocado. These results further support previous
findings from our group and others (13–16) that increasing
amounts of meal lipid increases carotenoid absorption com-
pared with lower amounts of lipid or no lipid. Likewise, a
previous study (15) demonstrated that lipid-rich avocado is just
as effective as an equivalent amount of pure avocado oil in
enhancing carotenoid absorption. When compared with these
previous studies (14,15), we observed a smaller magnitude of
AUC carotenoid increase when our test meals were consumed
with avocado. This difference may be attributed to the larger
dose of carotenoid delivered from the sauce in study 1 and from
the carrots in study 2 compared with the previous work (11.5 mg
of b-carotene and 6.6 mg of a-carotene) (15). In addition, at
higher doses, transporter-facilitated carotenoid absorption was
shown to be saturable (32), and, furthermore, carotenoids may
compete for absorption (33,34).

In study 2, the ratio of AUCb-carotene to AUCa-carotene was
almost equal to the ratio of b-carotene to a-carotene in carrots
when the meal was fed with lipid-rich avocado. Thus, under
these meal conditions, b-carotene and a-carotene appear to be
absorbed equally. In contrast, this ratio was not maintained
when carrots were fed alone, although very little carotenoid was
absorbed in general after this test meal. Results from previous
human studies are mixed. Some studies reported that carrot
b-carotene absorption was approximately double that of carrot
a-carotene when compared on an equimolar basis, as measured
by blood response (17) or fecal carotenoid excretion (35). In
contrast, other studies reported a greater percentage absorption
of a-carotene relative to b-carotene from carrots after both
postprandial (28) and chronic (36) consumption studies. Many
factors likely contribute to the disparity between these results.

Strikingly, avocado consumption with the test meals in
studies 1 and 2 also led to higher absolute amounts of retinyl

esters (i.e., vitamin A) in the TRL fraction. As a consequence of
enhanced carotenoid absorption, the presence of more provita-
min A to be converted could at least partially explain the
increased appearance of retinyl esters. However, co-consumed
lipid may also directly affect other variables that affect conver-
sion, as suggested by a few animal studies. In 1 study, Mongolian
gerbils were fed a diet containing carrot powder with 10% lipid
(n = 12) or 30% lipid (n = 12) for 2 wk (22). Animals in the 30%
lipid group had considerably higher vitamin A concentrations
but lower b-carotene concentrations in liver compared with the
10% lipid group, demonstrating higher conversion with a higher
amount of dietary lipid (22). A similar study in ferrets compared
the effect of 4 wk of consumption of b-carotene with 6%,
13.4%, or 23% lipid (23). A stepwise increase in dietary lipid
was correlated with a stepwise increase in hepatic retinyl ester
stores, whereas hepatic b-carotene concentrations for 13.4% or
23% lipid were approximately double those of the 6% group
(23). Furthermore, higher consumption of unsaturated lipids
was shown to enhance the specific activity of BCO1 in rodents,
whereas higher consumption of saturated lipids did not sub-
stantially increase BCO1 activity (13). Together, these studies
suggest that consuming a higher amount of dietary lipid might
increase the conversion rate of provitamin A to vitamin A,
particularly when unsaturated lipids (like those found in
avocado) are consumed. Besides enhanced enzymatic activity,
other research has demonstrated that dietary lipids are necessary
for chylomicron synthesis in the enterocyte (37). Thus, increased
amounts of retinyl esters in the chylomicron fraction may be a
product of increased synthesis and release of chylomicrons
containing retinyl esters. Regardless of the mechanism(s)
involved, increasing vitamin A formation and delivery to
the circulatory system by consuming lipid-rich avocados has
practical implications for populations in which vitamin A
deficiency is prevalent.

Higher mean conversion rates were reported for b-carotene
from various preparations of carrots compared with our

TABLE 3 Study 1: AUC and fold differences of carotenoids and vitamins after consumption of sauce alone or with avocado in healthy
participants1

b-Carotene a-Carotene Retinyl esters Lutein Lycopene a-Tocopherol Phylloquinone

nmol�h/L nmol�h/L nmol�h/L nmol�h/L nmol�h/L nmol�h/L nmol�h/L
Sauce alone (AUC) 202 (111, 273) ND 127 (25, 327) ND 110 (19, 256) ND ND

Sauce with avocado (AUC) 437 (269, 730) ND 367 (237, 802) 15 (6.5, 74) 111 (52, 221) 4.4 (1.0, 7.4) 7.9 (7.0, 16)

Fold difference2 2.35 (1.89, 2.93) N/A 4.63 (2.84, 7.54) N/A 0.84 (0.30, 2.38) N/A N/A

P ,0.0001 — ,0.0001 — 0.71 — —

1 AUCs are presented as medians (25th, 75th percentiles), n = 11 (5 females, 6 males). N/A, not applicable; ND, not determined.
2 Between tomato sauce co-consumed with avocado vs. sauce alone based on log values presented as geometric means (95% CIs).

TABLE 4 Study 2: AUC and fold differences of carotenoids and vitamins after consumption of carrots alone or with avocado in healthy
participants1

b-Carotene a-Carotene Retinyl esters Lutein Lycopene a-Tocopherol Phylloquinone

nmol�h/L nmol�h/L nmol�h/L nmol�h/L nmol�h/L nmol�h/L nmol�h/L
Carrot alone (AUC) 88 (24, 125) 70 (31, 97) 51 (22, 97) 34 (3.5, 63) ND ND 0.5 (0.0, 0.7)

Carrot with avocado (AUC) 366 (276, 460) 260 (170, 313) 327 (234, 490) 39 (7.4, 70) ND 1.6 (1.0, 2.8) 4.6 (3.9, 10)

Fold difference2 6.63 (4.05, 10.9)3 4.83 (3.17, 7.35)3 12.6 (3.51, 45.4) 0.77 (0.15, 4.03) N/A N/A 15.0 (7.19, 31.3)

P ,0.0001 ,0.0001 0.0013 0.73 — — ,0.0001

1 AUCs are presented as medians (25th, 75th percentiles), n = 12 (6 females, 6 males). N/A, not applicable; ND, not determined.
2 Fold difference between carrot co-consumed with avocado vs. carrot alone based on log values presented as geometric means (95% CIs).
3 Fold difference at age 28 y based on log values.
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study (28). A mean conversion efficiency of 44% was observed
for carrot puree, 59% for boiled mashed carrots, and 63% for
raw chopped carrots (each delivering 18.6 mg of b-carotene
co-consumed with 9 g of safflower oil). In contrast, similar
conversion rates were reported when 15 mg of b-carotene was
fed in pure oil (33–71% conversion) (38) or palm oil (conversion
rate of 69–71%) (39). These studies fed lower doses of
b-carotene, which may have contributed to the higher efficiency
of conversion.

In study 1, those participants with lower conversion effi-
ciency had a more appreciable increase in conversion with lipid-
rich avocado than those with higher efficiency of conversion. It is
likely that an individual�s vitamin A status will have an impact
on provitamin A absorption and subsequent conversion. The
liver is the central storage organ of vitamin A and regulator of
circulating retinol concentrations (40), whereas blood retinol
concentrations remain constant over a wide range of intakes
unless an individual is severely deficient or has excessively high
consumption (41,42). Thus, the most accurate way to assess
vitamin A stores in a healthy population is to estimate liver
stores with a deuterated-retinol dilution method (43,44).
Because we assumed that all of our participants, as healthy
adults living in the United States, had adequate or higher hepatic

vitamin A stores, we did not measure this value. We believe it is
more likely that differences in percentage conversion between
participants could be related to specific polymorphisms in pro-
teins involved in carotenoid uptake, transport, and/or metabo-
lism in the enterocyte, as reviewed recently (45).

In study 2, the weaker relation of conversion efficiency
with and without avocado lipid observed in the carrot study

FIGURE 1 Study 1: baseline-corrected plasma TRL concentrations

of b-carotene (A) and retinyl esters (B) over 12 h after consumption of

the high–b-carotene tomato sauce with avocado and the high–

b-carotene tomato sauce alone in healthy men and women. Plasma

TRL concentrations (nanomoles per liter of plasma) are expressed as

means 6 SEMs, n = 11. TRL, TG-rich lipoprotein.

FIGURE 2 Study 2: baseline-corrected plasma TRL concentrations

of b-carotene (A), a-carotene (B), and retinyl esters (C) over 12 h after

consumption of carrot with avocado and carrot alone in healthy men

and women. Plasma TRL concentrations (nanomoles per liter of

plasma) are expressed as means 6 SEMs, n = 12. TRL, TG-rich

lipoprotein.
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compared with the sauce study may be attributed to the fact that
the uptake of carotenes from the carrot meal alone was generally
very low (Fig. 2). In contrast, the absorption of b-carotene from
the sauce meal alone was much higher. In addition, the
difference between the results of the sauce and carrot studies
could be explained by a number of factors, for example, the
contribution of a-carotene in carrots to the vitamin A pool. Our
decision to assume that a-carotene provides half as much retinyl
ester as b-carotene in Eq. 2 is supported by a previous study with
Mongolian gerbils (46). However, this is a mathematical
calculation and not a measured value. Differences in food
matrix effects (cooked tomato sauce vs. raw carrot) may have
also affected the conversion efficiency. Future studies are needed
to determine the mechanism(s) responsible.

Vitamin A deficiency represents a real problem in the
developing world, and a variety of strategies, including food
fortification (47–49), supplementation (50,51), genetically mod-
ified rice (52), selective plant breeding of crops with higher
provitamin A amounts (53,54), and substituting more nutrient-
dense versions of currently consumed vegetables (55–57), were
used to ameliorate this problem. Similarly, this novel variety of
orange tomatoes could be adapted in vitamin A–deficient
regions where red tomatoes are traditionally grown and
consumed.

Differences in lutein AUC values were not significantly
different for study 2 because of the low and comparable lutein
content of the 2 test meals (Table 2). We observed a statistically
significant increase in phylloquinone amounts in the carrot study
when consumed with avocado compared with carrot alone,
likely due to the ;2.4-fold higher dose of phylloquinone in the
carrot with avocado meal (Table 2). Studies demonstrating
substantial AUC changes for phylloquinone were observed when
;0.4–1 mg of this nutrient was fed to humans (58–60)

compared with up to 0.047 mg fed in our study. Because it
was not the primary aim of our study, participants were not
required to abstain from consuming phylloquinone–rich foods
during the washout, which may also affected the uptake of this
nutrient from the test meal.

In conclusion, consuming provitamin A carotenoids with
lipid-rich avocado enhances carotenoid absorption in healthy
humans. A notably higher concentration of vitamin A was
observed in the TRL fraction when the carotene-rich tomato
sauce or carrots were fed with lipid-rich avocado compared with
no avocado. Furthermore, consuming lipid-rich avocado with
provitamin A from a high–b-carotene tomato sauce led to higher
conversion efficiency to vitamin A in participants with low
conversion efficiency. This observation highlights the impor-
tance of consuming provitamin A carotenoids with lipid in the
meal, especially in vitamin A–deficient populations in which
maximum delivery of active vitamin A is desired.
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