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In-memory analog solution of compressed sensing
recovery in one step
Shiqing Wang, Yubiao Luo, Pushen Zuo, Lunshuai Pan, Yongxiang Li, Zhong Sun*

Modern analog computing, by gaining momentum from nonvolatile resistive memory devices, deals with matrix
computations. In-memory analog computing has been demonstrated for solving some basic but ordinary matrix
problems in one step. Among the more complicated matrix problems, compressed sensing (CS) is a prominent
example, whose recovery algorithms feature high-order matrix operations and hardware-unfriendly nonlinear
functions. In light of the local competitive algorithm (LCA), here, we present a closed-loop, continuous-time
resistive memory circuit for solving CS recovery in one step. Recovery of one-dimensional (1D) sparse signal
and 2D compressive images has been experimentally demonstrated, showing elapsed times around few micro-
seconds and normalized mean squared errors of 10−2. The LCA circuit is one or two orders of magnitude faster
than conventional digital approaches. It also substantially outperforms other (electronic or exotically photonic)
analog CS recovery methods in terms of speed, energy, and fidelity, thus representing a highly promising tech-
nology for real-time CS applications.
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INTRODUCTION
Compressed sensing (CS) has been the cornerstone of modern
signal and image processing (1). It finds applications in typical sce-
narios such as medical imaging (2), wireless communication (3),
object tracking (4), and single-pixel camera (5). In CS, a sparse
signal (in a given basis) is highly undersampled in the front-end
sensor, which breaks through the Nyquist rate and thus improves
remarkably the sampling efficiency. In the back-end processor,
the original signal can be faithfully recovered by solving a sparse
approximation problem, which, however, is intractable and has
become the accepted bottleneck in the CS pipeline. CS recovery al-
gorithms running on digital computers are doomed to be compu-
tationally intensive, comprising matrix-matrix operations and
pointwise nonlinear functions in discrete time, where the former
alone contribute a cubic computational complexity. To speed up
the CS recovery processing, there have been two lines of efforts in
the digital domain, using either advanced algorithms such as deep
learning (6, 7), or alternative computing hardwares (8, 9). However,
the computing efficiency is fundamentally bounded by the polyno-
mial complexity of matrix operations, e.g., matrix multiplication,
which is unlikely to collapse. Analog computing is promising to
provide an enhanced acceleration for solving matrix problems
because of the inherent computing parallelism, the continuous-
time solution, and the high information capacity (10). However,
again, because of the extraordinarily high complexity of CS recov-
ery, previous demonstrations either rely on the precalculation of the
Gram matrix that preserves the cubic complexity (11) or bare the
discrete iterative process that requires expensive but frequent
analog-digital conversions (12, 13). Therefore, solving CS recovery
in one step with high speed remains a grand challenge.

Recently, analog matrix computing (AMC) has been demon-
strated for performing the prodigious feats of solving matrix equa-
tions in one step, offering orders of magnitude improvement of

equivalent throughput and energy efficiency in applications includ-
ing scientific computing, machine learning, PageRank, and wireless
communications (14–17). Although traditional analog complemen-
tary metal-oxide semiconductor (CMOS) circuits might be adopted
for AMC (18), emerging resistive memory devices [or memristors
(19)] are advantageous because of their simple structure, high
density integration, and high operation speed. In addition, in-
memory AMC is very beneficial to alleviating the infamous von
Neumann bottleneck in the conventional computers (20). There
are a number of resistive memory concepts, whose underlying
mechanisms range from ion migration to phase change, ferroelec-
tric, or ferromagnetic polarity reversal (21). Nevertheless, they are
used for in-memory AMCwith the same principle, by exploiting the
device resistance attribute for information encoding and the circuit
physics laws such as Ohm’s law and Kirchhoff’s current law (KCL)
for matrix/vector arithmetic (22). By connecting a crosspoint resis-
tive memory array with operational amplifiers (OPAs) to form feed-
back loops, a matrix inversion problem (i.e., a system of linear
equations) is solved in continuous time within a few nanoseconds
(14). It is theoretically proven that the time complexity of AMC can
be optimized to O(1), which surpasses the logarithmic complexity
of quantum algorithms for the same problems (23).

Contrary to the linear but smooth matrix computations, CS re-
covery with in-memory AMC is unintuitive, where the integration
of complicated matrix operations and non-smooth nonlinear func-
tions must be overcome, thus invoking innovative analog comput-
ing principle and ingenious circuit design. On the other hand, the
nonlinear operation in CS recovery should help suppress the com-
putation errors below the threshold and prevent their accumulation,
thus achieving high accuracy in AMC, similar to the case of neural
networks that have been extensively investigated. In this work, first,
on the basis of a crosspoint resistive memory array and by adopting
the conductance compensation (CC) strategy, we have designed a
highly compact circuit for performing the in-memory matrix-
matrix-vector multiplication (MMVM) in one step, which is
pivotal to the elimination of Gram matrix precalculation and dis-
crete iterations for efficient in-memory AMC circuit design.
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Then, on the basis of this Gram module and the local competitive
algorithm (LCA), we have designed a closed-loop circuit for solving
the sparse approximation problem in one step. Nonlinear function
modules for regularizing the output sparsity are included in the
feedback loop, which interact with the Gram module in a fully
analog manner, thus saving analog-digital conversions to maximize
the speed and energy efficiency of CS recovery.

RESULTS
CS recovery and LCA
CS is a technique for efficiently measuring and reliably recovering a
sparse signal, which are modeled as a feed-forward matrix multipli-
cation and an inversematrix problem solving, respectively (Fig. 1A).
The two processes own distinctly different algorithmic complexi-
ties; consequently, the hardware implementation of CS recovery
should be muchmore complicated than the one of CSmeasurement

(24–26). Specifically, CS recovery is about solving an underdeter-
mined linear system Ψx = y (y∈ℝN, x∈ℝM, Ψ∈ℝN×M, and N <
M ), but subject to solution sparsity constraint. Consequently, it
becomes a nonlinear optimization problem whose objective func-
tion is the combination of the recovery mean squared error and a
sparsity-inducing penalty term. Ideally, the ‘0-norm regularization
should be imposed during the problem solving to count the
nonzero elements, which, however, is non-convex and non-deter-
ministic polynominal-time (NP)-hard (27). To this end, the ‘1-
norm can be used as a convex surrogate, transforming the
problem to Eq. 1, which is known as basis pursuit denoising
(BPDN). It has been proven that, in many practical cases of interest,
Eq. 1 has the same solution as the optimal sparse approximation
problem (28)

min
x

1
2
ky � Ψxk22 þ λkxk1

� �

ð1Þ

Fig. 1. In-memory LCA circuit for solving CS recovery in one step. (A) CS measurement and recovery, between a high-dimensional sparse signal vector x and the
detected low-dimensional vector y, through an overcomplete dictionary matrix Ψ. (B) Schematic illustration of LCA. There are N inputs and M neurons. The inputs for-
wardly fed to the neurons throughΨ reflect howwell the input signal matches each dictionary column. μi and xi represent the internal state and output of the ith neuron,
respectively, which are bridged by a soft thresholding function. TheΨTΨ − I network represents the feedback connections between every pair of neurons. (C) In-memory
Gram MVM circuit. Two copies of matrix ΨT and compensation values are mapped as device conductances in the crosspoint resistive memory array. To enable the exact
mapping of Gram MVM, the matrix is magnified by a constant c, which is related to the row sums of Ψ. (D) LCA circuit. It is composed of the Gram MVM module for
implementing the ΨTΨx term, analog inverters for inverting the sign of x, TIAs for summing the two terms, soft thresholding modules for implementing the nonlinear
function Tλ(·), and input terminals for submitting y. The inset shows the composition of the soft threshold module based on an analog subtractor. All discrete resistors
have a unit conductance g0 for current-voltage conversion. (E) LCA circuit experimental setup.
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In Eq. 1, λ is a parameter for weighting the signal sparsity during
CS recovery, and ||·||2 and ||·||1 denote the ‘2- and ‘1-norm, respec-
tively. Despite being convex, the objective function of BPDN con-
tains a non-smooth nonlinearity, which induces a higher
complexity than linear problems, say matrix inversion (14). There
are several algorithms for solving the BPDN, such as interior-point
methods (29), gradient projection (30), iterative shrinkage, and
thresholding algorithm (31), which all show a high time complexity
running on digital computers, in large part due to the time-con-
suming matrix operations with the Gram matrix ΨTΨ. Such a
burden should also be found in other CS recovery algorithms,
such as orthogonal matching pursuit (32) and approximate
message passing (33). By contrast, LCA, which is designed for par-
allel analog architecture of neural systems (34), is intriguing to
provide massive computing parallelism in continuous time (Fig.
1B). It can be easily implemented in a parallel analog hardware, e.
g., a crosspoint resistive memory array, to offer a fast computing
speed. By using the soft thresholding function as the nonlinear op-
erator, LCA also has the advantage of keeping coefficients identical-
ly zero during the computation unless they become active, thus
achieving low power consumption. It is described by a first-order
nonlinear matrix differential equation, i.e., Eq. 2, whose steady
state provides the solution to Eq. 1. As a result, it is most straight-
forward to implement the algorithm in continuous time, to take full
advantage of its computational parallelism, fast convergence, as well
as the elimination of intermediate data storage and conversions.

dμðtÞ
dt ¼

1
τ ½� μðtÞ þΨTy � ðΨTΨ � IÞxðtÞ�

xðtÞ ¼ Tλ½μðtÞ� ¼ max ½μðtÞ � λ; 0�
ð2Þ

where each element in vector μ is the internal state variable resem-
bling a neuron’s membrane potential, τ is a time constant, I is theM
×M identity matrix,ΨT is the transpose of matrixΨ, and Tλ(·) is the
soft thresholding function [also known as shrinkage function in the
iterative shrinkage and thresholding algorithm (35)] with a thresh-
old λ. The threshold λ determines the degree of penalty of the ‘1-
norm, which results in a trade-off between recovery accuracy and
solution sparsity. In LCA, each column of matrix Ψ has been nor-
malized, and the term ΨTΨ − I means that each neuron provides
feedback to all other neurons except for itself.

In-memory Gram module and LCA circuit
To implement LCA with AMC, one major obstacle is related to the
processing of the Gram matrix ΨTΨ in the computation dynamics.
By calculating theΨTΨ product in the first place and storing it in an
analog floating gate transistor array, it is possible to perform LCA in
continuous time by configuring feedback loops with analog thresh-
older circuits (11). However, the precalculation process should drag
down the overall efficiency of this approach due to the high com-
plexity of matrix-matrix multiplication and expense of data move-
ment in conventional digital computer, as well as the large volume
of data conversion for matrix mapping in the analog array. The
product of a Gram matrix and a vector might be obtained by per-
forming two successive in-memory matrix-vector multiplication
(MVM) operations (36), which, however, suits only to the discre-
tized iterations of LCA and requires frequent analog-digital conver-
sions (13). To perform in-memory MMVM (or specifically Gram
MVM), we have built a Gram module circuit based on the CC

principle (Fig. 1C). It effectively solves the issues of expensive
digital computations and/or data conversions in earlier approaches.

Briefly, it is built with a (2M + 1) × N crosspoint resistive
memory array, where the first 2M rows are used to map two
copies of matrix ΨT. The input vector x is represented by the volt-
ages applied to the bottomM rows, while the results are collected at
the topM grounded rows. The last row of devices in the array is for
CC to let the conductance sum of each column equal to a constant,
say c. The CC values are determined on the basis of the prior knowl-
edge of the row sums of Ψ, which might be calculated in advance
with little computational overhead. Then, according to KCL in the
array, the potentials on the column lines constitute a vector Ψx/c,
and the collected currents on the top M rows represent the Gram
MVM result ΨTΨx/c. Instead, by mapping the matrix cΨT in the
resistive memory array, the exact result ΨTΨx should be obtained.
In addition to the Gram MVM, this module could be used to accel-
erate general MMVM by mapping two different matrices in the
array. The Gram MVM circuit can also be extended to matrices
that contain negative values (fig. S1). The detailed explanation of
the individual Gram modules is presented in text S1.

According to the LCA in Eq. 2, the Gram module is combined
with other traditional analog components to construct a closed-
loop in-memory AMC circuit (termed LCA circuit for simplicity)
for solving CS recovery (Fig. 1D). In the circuit, the analog inverters
are used to cancel out the diagonal contribution of the Gram
product ΨTΨ, i.e., delivering the current vector −x(t). Although
the crosspoint array is dedicated for Gram MVM, it can also be di-
rectly used for incepting the input voltage vector −y, thus forming a
current vector ΨTΨx(t) − ΨTy, again because of the identical
column sums guaranteed by CC in the array. Note that the matrix
to be mapped is c1ΨT (c1 = c + 1, text S1), where the number 1 is the
unit conductance in the linear mapping. The two current vectors are
summed up by a set of transimpedance amplifiers (TIAs) to
produce the vector μ(t). The single-pole low-pass filter characteris-
tics of TIAs also account for the differential (or equivalently inte-
gral) operation in Eq. 2, generating dynamical output voltages
toward the final solution (23). Following the TIAs, the outputs
are delivered to the soft thresholding module to perform the point-
wise nonlinear operation Tλ(·), resulting in a closed loop to ap-
proach the solution vector x(t) at the equilibrium. The soft
thresholding module is a modified analog subtractor with a
defined threshold value for subtraction but supplied with a single
positive voltage source to effectively suppress the negative
outputs. The TIA and the nonlinear module could be merged to
deliver a more compact design (fig. S2), but the circuit in Fig. 1D
is more suitable for explanation. In fig. S3, the experimental nonlin-
ear transfer characteristics of the soft thresholding module are
shown, with the threshold λ ranging from 10 to 90 mV, demonstrat-
ing that the signals below λ are transferred to a zero output. In text
S2, we have performed sophisticated circuit analysis based on
Laplace transform; it turns out that the circuit maps faithfully the
LCA with slight approximations. On the basis of the Gram MVM
circuit for matrices that contain negative values, the LCA circuit for
arbitrary real-valued CS recovery is obtained (fig. S4). Since LCA is
used for solving general sparse approximation problems, the circuit
can be applied to other tasks, e.g., sparse coding (13).
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Experimental results
To perform experimental demonstrations of in-memory Gram
MVM and LCA circuits, we have fabricated crosspoint resistive
memory arrays using a high-performance and industry-ready resis-
tive random-access memory (RRAM) technology, which comprises
a HfO2 dielectric layer and a Ta metal layer (see Materials and
Methods) (37). The resistive switching behavior, current-voltage
(I-V ) linearity, and retention of eight typical states are shown in
fig. S5. It demonstrates good analog conductance capability, high
retention (tested for 104 s), and high endurance (tested for 1.5 ×
105 cycles), which are beneficial to the LCA circuit applications.
In the experiment, the matrix Ψ, e.g., some canonical CS measure-
ment matrices, is mapped in a crosspoint RRAM array with refer-
ence to a unit conductance g0, which is 40 μS in this work. The
mapping to conductance is achieved by using a write-verify
process, under the constraint of a predefined verify window (14).
After mapping, the RRAM device conductance ranges from 100
to 350 μS, except for some large compensation conductance,
which might be distributed in several devices to adapt to the
RRAM conductance range. To map matrices with large values,
e.g., cΨT resulting from a large sum constant, a small unit conduc-
tance g0 for matrix mapping should be used, which should be
achievable by setting a predefined scaling factor. Zeros in the
matrix are mapped represented by the deep high resistance state
of RRAM devices, whose I-V curve is shown in fig. S5. All of the
matrices used in Gram MVM and LCA circuit experiments are re-
ported in table S1. Figure 1E and fig. S1 present the experimental
setups for LCA and Gram MVM circuits, respectively. For demon-
stration purposes, the crosspoint array is composed by connecting
several 16 × 1 RRAM columns in a printed circuit board (PCB),
which are obtained from cutting off several 16 × 16 arrays and
help solve the sneak path issue during programming and reading
of RRAM devices (fig. S5).

We have performed the Gram MVM experiment for the case of
N = 2 andM = 4 (Fig. 2A). It is translated to use 9 × 2 or 8 × 2 devices
for the case with or without CC devices. Figure 2B shows the exper-
imental results of a sparse checkerboard-like binary matrix. To
adapt to the conductance range of RRAM devices in matrix
mapping, it is linearly scaled by multiplying a constant 1.4. Conse-
quently, the nonzero elements in thematrix become 1.4 instead, and
the sum constant c is 5.6. Note that, for this matrix, since the row
sums are equal, the CC strategy is unnecessary. In the experiment,
two copies of the matrix cΨTwere mapped in the crosspoint RRAM
array with amoderate verify window of ±5%, namely, if the resulting
device conductance is within ±5% error of the desired value, the it-
erative write process is stopped. The programming results are also
included in the figure. On the basis of the programmed memory
array, 12 input voltage vectors were provided to the circuit sequen-
tially, and the GramMVM output currents were measured. The ex-
perimental output results are compared with the ideal ones,
showing a good consistency (Fig. 2B). The same experiments have
been performed for another matrix, namely, the sensing matrix that
will be used in LCA circuit for CS recovery (Fig. 2C). The results of
matrix mapping and Gram MVM experiments are also included in
the figure. In particular, as the row sums of matrix Ψ are not iden-
tical, the CC devices were programmed with the same verify
window. The detailed input voltages and output currents monitored
in the Gram MVM circuit experiments are shown in Fig. 2D. The
computing accuracy is quantitatively measured by calculating the

normalized mean squared error (NMSE) that is defined as
kv � v�k22=kv

�k
2
2 for a given vector, where v and v� represent the

experimental and ideal vector, respectively. The NMSEs of Gram
MVM are 1.7 × 10−3 and 3.9 × 10−3 for the two cases, respectively.
The larger computing error of the second matrix should be related
to the presence of CC in the case. We have performed more Gram
MVM experiments for the matrices by programming the RRAM
array with a different verify window (±20%) for the two matrices.
The results are shown in fig. S6. We have also calculated the
NMSE of each matrix mapping (i.e., the Frobenius norm). It
turns out that the NMSE of Gram MVM is proportional to it for
both matrices, although with different ratios (fig. S7). The results
suggest that the precision of Gram MVM can be boosted by opti-
mizing the NMSE of array programming but at the expense of
large overhead of the verify process (38).

For proof-of-concept demonstration, the LCA circuit is built
upon a PCB using off-the-shelf OPAs (see Materials and
Methods). To perform the recovery computation, the CS acquisi-
tion process is modeled by an MVM operation with the measure-
ment matrix. The measurement matrix is considered with a 2 × 4
size to be accommodated in the crosspoint RRAM array, which
implies that the compression rate is 50%. In the case of one-dimen-
sional (1D) sparse signal recovery, the measurement matrix is
shown in Fig. 3A, and the matrix mapping results from the verify
window of ±5% are shown in Fig. 3B. Note that no CC is needed in
this case because of the same sums of two columns in ΨT. The
sampled signal is segmented as 2 × 1 input vectors (14 in total)
and provided as voltages to the LCA circuit. Consequently, a 4 ×
1 output vector is obtained each time as the recovered partial
signal. According to the numerical algorithm results, the threshold
λ was empirically set as 10 mV. The complete signal recovery is
plotted in Fig. 3C, in comparison with the original sparse signal,
showing a great agreement between both, with an NMSE of
merely 5.1 × 10−3.

Image compression is another important application of CS. In
this case, as images are usually not sparse in their own, they
should be transformed with a sparsity basis A. If Ψ (the measure-
ment matrix) andA are incoherent, the original signal can be recov-
ered through the matrix product ΨA, which is termed sensing
matrix. In the experiment, the random sparsity matrix is used as
the measurement matrix, and the sparsity basis is obtained by train-
ing. For simplicity, the symbol Ψ is retained for representing the
sensing matrix for CS recovery in the following. Eight natural
red-green-blue (RGB) images with size 200 × 112 are used for the
training of the sparsity basis A (fig. S8). Each image is divided into
5600 2 × 2 patches in each channel, which are then converted into 4
× 1 vectors for training (fig. S9). A 4 × 4 sparsity basis matrix is ob-
tained that all the 16,800 vectors can be sparsely represented under
the same linear transform. The training algorithm is described in
Materials and Methods, and the corresponding sparsity basis is
shown in fig. S10. By using a 2 × 4 random sparsity matrix as the
measurement matrix, the images are compressed by 50% (fig. S9).
To recover the original image with the LCA circuit, the sensing
matrix is mapped in the crosspoint RRAM array (Fig. 3, D and
E). The compressed image vectors are normalized and provided
as the input voltages to the circuit. The width of each input pulse
is 50 ms, which is always sufficient for the LCA circuit to reach
the equilibrium. Since the original large-scale images have been
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segmented as small patches, 16,800 successive operations have been
performed in the experiment. The original Mona Lisa picture is re-
covered as shown in Fig. 3F, based on the experimental sparse rep-
resentations from the LCA circuit (Fig. 3G). The experimental
recovery results are compared with the original ground-truth
pixels, showing an NMSE of 1.18 × 10−2 (Fig. 3G). Accompanied
with the experimental results are the algorithmic results from
high-precision digital computer, clearly testifying to the adequacy
of the analog LCA circuit for reliable CS recovery of image process-
ing. Another indicator of recovery quality is the peak signal-to-noise

ratio (PSNR), which is defined as 10log10
2552

kx � x�k22=M

 !

here for

natural images. It is 26.86 dB for the experimental recovery,
showing a loss of 3.26 dB compared to the algorithmic result. Re-
covery of two other images is shown in fig. S11.

The application of the LCA circuit is extended to magnetic res-
onance imaging (MRI), where CS is very beneficial to saving energy
dissipation of data acquisition and latency of data transmission (2).
The subsampled Fourier operator Fu was used to simulate the mea-
surement process in k-space, and again, a sparsity basis matrix is
trained to sparsely represent the vectors, resulting in the matrix
product in Fig. 3H. To recover the MRI result, which is a 178 ×

256 grayscale image, dividing as 2 × 2 patches has been performed
as usual. On the basis of the programmed RRAM array (Fig. 3I),
11,392 operations have been performed with the circuit, and the
final recovered image in shown in Fig. 3J. The NMSE and PSNR
are calculated to be 4.42 × 10−2 and 26.83 dB, respectively. Com-
pared to the algorithmic solution, there is an accuracy loss of 3.34
dB. More experiments for the same signal/image recovery tasks, but
with verify window of ±20% for device programming, have been
performed, showing that the PSNR degradation of CS recovery
with the LCA circuit is proportional to the NMSE of array program-
ming (fig. S12).

To study the scalability of both the individual Gram MVM and
the LCA circuits, especially the impact of RRAM device and circuit
nonideal factors on the computing accuracy, we have performed
circuit simulations with a large (N = 32 and M = 64) sensing
matrix Ψ (fig. S13). A relatively mature analog RRAM technology
(39) is applied in the large-scale circuit simulation, where the con-
ductance range of device is 1 to 40 μS. To map the matrices in the
large RRAM array with the given conductance range, the unit con-
ductance g0 is assumed as 2 μS in all large-scale circuit simulations.
In Gram MVM circuit, one concern lies in the inaccurate and non-
identical programming of two copies of matrix ΨT in the RRAM

Fig. 2. Experimental results of in-memory Gram MVM. (A) Illustration of the Gram MVM operation ΨTΨx. (B) A sparse checkerboard-like binary matrix (top), conduc-
tance mapping results of two copies of matrix ΨT in the crosspoint array (middle), and experimental results of 12 Gram MVM operations with randomly generated input
vectors (bottom). Both themapping results and GramMVM results are plotted in comparison with the ideal ones. The NMSE of GramMVM is calculated on the basis of the
12 operations. (C) Same as (B), but for a different matrix. In this case, the conductance should be compensated, and the CC values are also included in themapping results
(middle). The input vectors are the same as the ones in (B). (D) The 12 input voltage vectors and output current vectors in the Gram MVM experiment of (C).
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Fig. 3. CS recovery experiments for 1D sparse signal, 2D natural image, and MRI. (A) Measurement matrix and (B) its mapping results for 1D sparse signal recovery.
(C) Original sparse signal and the recovered one by the LCA circuit. (D) Sensing matrix and (E) its mapping results for 2D natural image recovery. (F) Experimentally
recovered pixels in comparison with the algorithmic solution and the recovered Mona Lisa image. (G) The 16,800 experimental 4 × 1 sparse output voltages of the
LCA circuit. The rightmost inset shows 10 output vectors in detail. (H) Sensing matrix and (I) its mapping results for MRI recovery. (J) Experimentally recovered pixels
and image of MRI. For all the recovery results, the NMSE and PSNR have been calculated and noted.
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array. To investigate this issue, Gram MVM circuits with ideal
precise programming and nonideal programming with conduc-
tance variations (naturally nonidentical two matrices or hypotheti-
cally identical) have been considered (see fig. S14). The same verify
window of ±5% (or equivalently ±2 μS) as in the experiments is
assumed. For each situation, 100 simulations have been conducted
with different random input voltage. The results show that the
NMSEs of all circuits with inaccurate (identical or nonidentical)
device programming are comparable and only slightly larger than
the NMSEs of the ideally programmed circuit. The latter is due to
the limited conductance range of devices, particularly the absence
of efficient mapping of near-zero elements in the assumed RRAM
technology.

For LCA circuit, more nonidealities have been considered, in-
cluding device programming variations, conductance relaxations,
parasitic wire resistors in the array, wire resistors in the interfaces
between the array and other analog components, and yield of
RRAM arrays. The parasitic resistor model is shown in fig. S15, in-
cluding a row resistor and a column resistor for each crosspoint
RRAM device. The correspondence between the wire resistance
and CMOS technology node is calculated according to the Interna-
tional Technology Roadmap for Semiconductors 2013 (fig. S15). In
addition, the interface wire resistors are assumed as 100 ohms. The
simulation results of image recovery from LCA circuit with RRAM
programming variations and wire resistors are shown in fig. S16,
together with the calculated NMSEs and PSNRs. It turns out that
the recovery results at technology nodes of 45 and 32 nm are visually
good, featuring low NMSEs. The reconstructed images at 22- and
16-nm nodes show lower qualities, which suggests that the
mapping methods need to be optimized to eliminate the effect of
wire resistances. The effect of conductance relaxations is studied
on the basis of a representative device model (40). The relaxation
behaviors of the mapped conductance under 85°C are shown in
fig. S17. By combining all the nonidealities, LCA circuits are simu-
lated and the results are shown in fig. S17, revealing that the tempo-
ral evolution of device variations has a limited impact on the
accuracy of image recovery. Last, to explore the impact of array
yield, some RRAM devices are randomly set to be stuck-on (40
μS) or stuck-off (1 μS). The PSNR degradation of CS recovery
with the LCA circuit is less than 1.7 dB, and the reconstructed
images are visually good when yield is ≥99% (fig. S18), which
should be easily met in state-of-the-art RRAM fabrication technol-
ogy (38, 41, 42).

In Fig. 4, we present the transient behaviors of a dozen of LCA
circuit experiments for each CS recovery case, where each time a
vector of four output voltages was monitored by the oscilloscope.
Although addressing different problems, 1D sparse signal recovery
or 2D image reconstructions, the output voltages stabilize within
only few microseconds in all cases (Fig. 4, A to C), demonstrating
a high speed of the LCA circuit for fast, real-time CS recovery. For
each LCA circuit operation, the computing time can be evaluated by
tagging the time when the NMSE is smaller than 2.5 × 10−3. As
shown in Fig. 4D, for the three cases, most of the computing
times are within 3 to 6 μs. We have also calculated the dynamical
NMSE resulting from all 12 vectors (48 curves) in a figure to give
an averaged computing time. According to the same criterion, the
computing times of Fig. 4A to Fig. 4C are determined to be 5.8, 4.3,
and 5.0 μs, respectively, although some among the 48 curves in each
figure remain to be fully stable. The results are several tens of times

faster than the floating gate transistor–based approach for solving
problems with comparable sizes (11).

To explore the scaling behavior of computing time of the circuit,
a series of simulations have been performed with different matrix
sizes, ranging from 8 × 16 to 64 × 128. Given that the computing
time of the circuit should be proportional to the gain bandwidth
product (GBWP) of the OPAs in use (23), an OPA model with a
high GBWP has been designed (fig. S19) to maintain the fast re-
sponse of the circuit. Simulation results show that the convergence
time is comparable for different matrix sizes (fig. S20), which sug-
gests a speed improvement by scaling up the size of sensing matrix
(also RRAM array) for recovering a given image. To study the con-
vergence time affected by resistance-capacitance (RC) delay, the
wire parasitic capacitors were considered on the basis of the
model in fig. S21 (43). Fifteen different 64 × 128 sensing matrices
have been tested, where Cwirecol = 30 fF and Cwirerow= 7.5 fF (44) are
assumed for the 257 × 64 RRAM array. The simulation results for
comparison are summarized in fig. S22, showing that only a slight
delay is induced by the wire parasitic capacitors (6.1 μs becomes 6.3
μs). Another issue of this approach is related to the CC devices in
the array. To evaluate the number of extra rows for CC, different
sizes of typical sensing matrix Ψ have been studied and the
maximum CC of each case is extracted. The calculated results of
extra fraction of rows are summarized in fig. S23, showing that
the averages of extra rows are all less than 20%. The extra CC
rows should not incur a power consumption issue, as the power con-
sumption of this circuit is dominated by OPAs, as will be disclosed
later in text S3.

DISCUSSION
To benchmark the performance of the LCA circuit against other ap-
proaches, we have performed a comprehensive evaluation of our ap-
proach, by including the costs of digital-to-analog converters
(DACs), analog-to-digital converters (ADCs), and sample-and-
hold circuits (S/H circuits). The architecture schematic is shown
in fig. S24, and the corresponding power consumption and
latency of each component are summarized in table S2. On the
basis of the 64 × 128 sensing matrix and the high-GBWP OPA
model, the overall computing time for recovering a 200 × 112
natural image is estimated to be 3.34 ms, which should be more
than one order of magnitude faster than the conventional digital
approaches (9) and the Ising machine (45), according to the estima-
tions summarized in text S3 (46, 47) and table S3 (48, 49). Com-
pared to the resistive memory-based iterative MVM approach (12,
13), the LCA circuit solution time is even less than the one of merely
MVM operations, excluding the large fraction contributed by the
frequent digital-analog conversions and the digital computations
therein. It also outperforms the subthreshold floating gate transistor
circuit despite the latter making the most favorable assumptions
and neglecting the Gram matrix precalculation. Because of the
fast response of LCA circuit, its energy dissipation is estimated to
be 1.0 mJ (text S3), which also shows a considerable advantage
over other approaches. Note that we observed that the output spar-
sity is around 25%; hence, only M/4 S/H circuits and ADCs were
assumed activated during each operation. Further energy efficiency
improvements would be achievable by multiplexing the use of less
ADCs. In addition, the latency and power consumption contributed
by each part are calculated (fig. S25), indicating that the DACs and
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ADCs occupy 68% of the energy dissipation. By optimizing the
DACs and ADCs, the energy efficiency should be significantly im-
proved. The high speed and energy efficiency of LCA circuit are at-
tributed to the immense parallelism in the circuit topology and the
closed-loop network working in continuous time. Notably, such
benefits do not compromise other performance, particularly the ac-
curacy of CS recovery. Since different images with the same size
usually show different NMSEs (PSNRs) of CS recovery with the
ideal algorithm per se, we compared the PSNR degradation of the
hardware solution with reference to the algorithmic result. It turns
out that the continuous-time circuit shows a lower decibel loss than
the discrete iterative MVM approach, in large part due to the elim-
ination of repeated analog-digital conversions that always introduce
additional errors.

In conclusion, inspired by the LCA, we have developed an in-
memory AMC circuit for solving CS recovery problem in one
step. It is only possible with the efficient design of a crosspoint re-
sistive memory array–based module for in-memory Gram MVM
operation, which in turn is supported by the CC principle. While
neural networks have been widely targeted by in-memory AMC
in pursuit of tremendous computing performance improvements,
CS recovery (or generally sparse approximation) should also

benefit from such a radical paradigm shift, given that both problems
work with nonlinear functions that could depress unwanted signals
in the solution and thus protect the computing accuracy. Our results
show that with the LCA circuit, the non-smooth optimization
problem of CS recovery can be reliably solved within only few mi-
croseconds while maintaining a reasonably small accuracy loss
compared to the full-precision digital solution. In addition, the
circuit shows an outstanding scalability toward large-scale
problem solving, where the accuracy degradation would be mitigat-
ed. Therefore, we believe that modern in-memory AMC is highly
promising for the back-end CS processor implementation that de-
livers real-time processing capability in the microsecond regime,
which might enable advanced medical, visual, and communication
techniques.

MATERIALS AND METHODS
Device fabrication
The RRAM devices were fabricated on SiO2/Si substrate. First, the
bottom electrode composed of 5-nm Ti adhesion layer and 30-nm
Pt was deposited usingmagnetron sputtering and patterned by pho-
tolithography and lift-off process. The dielectric layer is 5-nmHfO2,

Fig. 4. Transient behaviors and computing times of LCA circuit. Dynamical output voltages in LCA circuit experiments for (A) 1D sparse signal recovery, (B) 2D natural
image recovery, and (C) MRI recovery. In each case, 12 sets of 4 × 1 sparse vectors are included, but only one vector is indicated by color lines. The dynamical NMSE
evolution based on the combination of 12 LCA circuit operations is also shown in each plot. (D) Summary of computing times of LCA circuit for the three cases, including
the averaged ones calculated according to the dynamical NMSE curves.
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which was prepared by atomic layer deposition. The top electrode
consisting of 40-nm Ta and 30-nm Pt was finally deposited and
patterned.

Experimental measurements
The switching characteristics, I-V linearity, endurance, and reten-
tion time of RRAM devices were collected with the Keysight
B1500A Semiconductor Parameter Analyzer. In the experiment,
the LCA circuit was formed by simply mounting the packaged
RRAM array on a custom PCB. During the image recovery experi-
ments, the supply and threshold voltages were powered by the
Tabor Electronics Model WW5064 Four Channel Waveform Gen-
erator, and the tens of thousands voltage pulses with 50-ms width
were generated serially by the Keysight 4200A Semiconductor Pa-
rameter Analyzer. The write-verify method for programming
RRAM into different conductance levels was also implemented
using the Keysight 4200A Semiconductor Parameter Analyzer. An
Arduino Mega 2560 was used to measure the output voltages in the
GramMVM andCS recovery experiments. In the transient behavior
experiment, we used the RIGOL MSO8104 Four Channel Digital
Oscilloscope to capture the signals. In addition, four pairs of
diodes were used in LCA circuit to limit the output voltage below
0.3 V, which should protect the programmed RRAM devices from
conductance change during tests.

Sparsity basis training
First, elements of sparsity basis Awere initialized to random values.
Then, we ran LCA to sparsely represent the original images, in the
context of sparse coding. The stochastic gradient descent update
rule was applied in the training process

ΔAT ¼ βðp � ATxÞ� x

where β is the learning rate, p is the original pixel of image, x is the
sparse representation during the training process, and� is the outer
product. In our case, β = 5 × 10−4 was chosen, and 15 iterations were
sufficient to reach the convergence.

Simulations
The simulations of large-scale LCA circuit in the Supplementary
Materials were performed in Simulation Program with Integrated
Circuit Emphasis (SPICE). We considered a general RRAM
device conductance range of 1 to 40 μS, and the verify window of
±2 μS was preserved. The AD823 and AD8572 models from Analog
Devices Inc. were used for OPAs in SPICE simulations.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S25
Tables S1 to S3
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