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bolism and are also acquired from high�temperature processed

foods. They promote oxidative damage to proteins, lipids and

nucleotides. Aging and chronic diseases are strongly associated

with markers for oxidative stress, especially advanced glycation

end�products, and resistance to peripheral insulin�mediated

glucose uptake. Modifiable environmental factors including high

levels of refined and simple carbohydrate diets, hypercaloric diets

and sedentary lifestyles drive endogenous formation of advanced

glycation end�products via accumulation of highly reactive

glycolysis intermediates and activation of the polyol/aldose

reductase pathway producing high intracellular fructose. High

advanced glycation end�products overwhelm innate defenses of

enzymes and receptor�mediated endocytosis and promote cell

damage via the pro�inflammatory and pro�oxidant receptor for

advanced glycation end�products. Oxidative stress disturbs cell

signal transduction, especially insulin�mediated metabolic

responses. Here we review emerging evidence that restriction of

dietary advanced glycation end�products significantly reduces

total systemic load and insulin resistance in animals and humans

in diabetes, polycystic ovary syndrome, healthy populations and

dementia. Of clinical importance, this insulin sensitizing effect is

independent of physical activity, caloric intake and adiposity level.

Key Words: oxidative stress, insulin resistance, glycation, AGEs, 

Western diet

IntroductionChronic illnesses account for about two-thirds of all premature
deaths and 75% of all medical costs in the United States

today.(1,2) Modifiable lifestyle factors play etiological roles in these
diseases. Energy balance, micronutrient density of food, level of
physical activity and exposure to tobacco smoke are known
factors influencing health. Recent evidence demonstrates that food
production, processing and cooking methods are critical to health
outcomes as well. An important mechanism by which lifestyle
influences loss of health and function is oxidative stress. Oxidative
stress (OS) results in oxidized cell macromolecules and disturbs
cell signal transduction. Metabolic insulin resistance (IR) remains
a poorly understood phenomenon of cell stress associated with
aging and chronic degenerative diseases.(3–5) Medical approaches
focus on management of hyperglycemia, often at the expense of
insulin-dependent cell stress.(6) Systemic advanced glycation end-
products (AGEs) formed endogenously or acquired from high
temperature-cooked foods and tobacco products are powerful pro-
oxidants. Emerging research reveals the compelling contribution
of dietary AGEs (dAGEs) to systemic load of AGEs, cell stress
and IR. This review compiles research that demonstrates how
dietary modifications, independent of calorie restriction, can
regulate IR via modulating the AGEs load.

Redox Homeostasis

Aerobic biological systems require redox reactions for survival
and have innate antioxidant systems to maintain tightly controlled
redox homeostasis. These innate systems are enhanced by exo-
genous dietary antioxidants. The series of reactions involved in
oxidizing carbohydrates and fats to claim stored energy in the
readily usable form adenosine 5'-triphosphate (ATP) is an elegant
example of the central role of redox reactions in human physio-
logy. Mitochondria are the hub of metabolic redox activity where
oxidative phosphorylation involves a series of redox reactions
along the electron transport chain (ETC). Most ETC electrons go
to cytochrome c oxidase where they are combined with oxygen
and protons to form water. However, some electrons leak at
complexes I and III and combine directly with oxygen to form
superoxide (O2

•−).(7,8) Mitochondrial O2
•− is a “primary” reactive

oxygen species (ROS) that reacts to form many other ROS and is
estimated to be the origin of about 90% of all ROS in normal
human physiology.(8–10) The proximity of mitochondrial DNA
(mtDNA) to high concentrations of ROS and absence of DNA
repair systems makes it particularly vulnerable to oxidative
damage. Energy metabolism slows with age and cumulative
oxidative damage to mitochondrial membranes, proteins and
mtDNA is theorized to contribute to this process.(7) The aging
process may then be slowed by lifestyle choices that enhance
innate and exogenous antioxidants and limit endogenous and
acquired pro-oxidants.

Cells synthesize beneficial ROS and reactive nitrogen species.(8)

Peroxisomes produce hydrogen peroxide (H2O2) to metabolize
long chain fatty acids and phagocytic immune cells produce the
“respiratory burst” to kill pathogens. An important beneficial
physiological role of free radicals is regulation of intracellular
activities via signal transduction.(8,11) Hormones, cytokines, growth
factors and neurotransmitters bind to cell surface receptors and
stimulate release of free radicals like hydroxyl radical (HO•) or
nitric oxide (NO) to regulate gene expression, nerve transmission,
cell growth and muscle contraction. Transient changes in intra-
cellular free radical status alter signal pathways like mitogen-
activated protein kinase (MAPK) pathways and the survival factor
protein deacetylase silent mating type information regulation 2
homolog 1 (SIRT1).(12–16) These regulate nuclear transcription
factors activator protein-1 (AP-1) that induce mitogenic responses
and nuclear factor κ-light-chain-enhancer of activated B cells
(NFκB) that induce inflammatory responses.(17,18) Free radicals
can differentially activate and deactivate cell signal kinases and
phosphatases at their oxidation-sensitive cysteine residues to
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carefully orchestrate energy metabolism, cell proliferation and
apoptosis.(11,19–21)

Glutathione (GSH) is an abundant innate antioxidant in cytosol,
mitochondria and nuclei of cells.(8) It is also involved in many
conjugation and detoxification reactions.(22) Glutathione is synthe-
sized from glycine, cysteine and glutamate. Oxidized GSH is
glutathione disulphide (GSSG) and the GSH/GSSG ratio is a
marker of OS. Glutathione peroxidase (GPX) catalyzes the oxida-
tion of glutathione and reduction of H2O2 to water. Glutathione
reductase reduces GSSG to GSH using nicotinamide adenine
dinucleotide phosphate (NADPH) as a cofactor. Glutathione
regenerates oxidized vitamins C and E. Cell cycle potently re-
sponds to GSH concentration.(23) Another intracellular redox
buffering system is the dithiol thioredoxin (TRX).(8,24,25) Thiore-
doxin regenerates thioredoxin and glutathione peroxidases and
reduces GSSH, vitamin C and CoQ10.(24) Oxidized TRX is regen-
erated by thioredoxin reductase.(24) A critical function of TRX is
protecting mitochondria from H2O2.

(26) Another function of TRX
may be reducing and repairing oxidized proteins.(25) Thioredoxin
is an intracellular signaling molecule known to inhibit apoptosis,
promote cell growth and mediate inflammation.(24) It appears to be
neuroprotective.(24,27) Transgenic mice that over-express TRX
have significantly longer lifespans.(25)

While GSH and TRX protect the intracellular environment,
uric acid is a key extracellular innate antioxidant.(28–30) It has
deleterious consequences at very high serum concentrations by
precipitating as monosodium urate crystals in joints producing
gout.(31) Elevated serum uric acid is a risk factor for atherosclerosis
and hypertension.(32) It is a classic example of substances having
both antioxidant and pro-oxidant properties.(31,33) Serum OS that
overwhelms other antioxidant systems may result in increased uric
acid production.(34,35) Thus, elevated serum uric acid may be a
valuable marker of OS in the extracellular fluid compartment
relevant to cardiovascular disease (CVD).(29,30) High intake of red
meat, chicken with the skin, fried food, shrimp, sweet beverages
and ethanol increase serum urate and gout risk.(36–39) The current
recommendation to limit purine-rich vegetables does not lower
urate.(36,39) Higher intake of low-glycemic fruits and vegetables,
nuts and seeds, coffee and vitamin C supplements are associated
with lower uric acid.(36) Tart cherry juice inhibits xanthine oxidase
activity, reducing endogenous purine synthesis and urate.(40)

Superoxide dismutase (SOD) is a crucial class of antioxidant
enzymes that converts O2

•− to H2O2 and prevents reaction with NO
to form the highly toxic peroxynitrite (OONO•).(41) SOD1 acts in
the cytoplasm, SOD2 in mitochondria and SOD3 in the nucleus
and extracellular matrix. SOD1 and SOD3 contain copper and zinc
(CuZn-SOD and EC-SOD) and SOD2 contains manganese (Mn-
SOD).(42) Hyperglycemia-induced glycation of SOD1 and 3 impair
function and increase ROS associated with neuron apoptosis and
type 2 diabetes mellitus (T2DM) complications.

Many antioxidants are food-sourced, including vitamin A,
ascorbic acid, α-tocopherol, mixed carotenoids, lipoic acid,
bioflavonoids, coenzyme Q10, taurine, selenium and zinc.(8,22)

Non-enzymatic antioxidants move oxidizing equivalents from
lipid membranes to less damaging aqueous phase.(10,43) The most
effective “chain breaker” in lipid phase is mixed tocopherols.(44,45)

A steady-state of tocopheroxyl radical is maintained by water soluble
vitamin C and thiols.(10) Carotenoids are efficient quenchers of the
highly reactive hydroxyl radicals and singlet oxygen.(10,46) Fruits
and vegetables are the richest sources of hydrophilic antioxidants
and nuts and seeds are the best source of lipophilic antioxidants.

Oxidative stress is “a disturbance in the equilibrium status of
pro-oxidant/antioxidant reactions in living organisms”.(8) See
Fig. 1 for a graphic depiction of factors involved in dynamic
oxidative balance. High ROS can exceed regulatory capacity
and results in irreversible changes to proteins, lipids and DNA.
Proteins are most vulnerable to oxidation at their cysteine and
methionine residues.(47,48) Polyunsaturated fatty acid residues in

phospholipid membranes are extremely vulnerable to oxidative
damage.(8,49) Level of ROS is influenced by many modifiable
factors, especially nutrition.(50–53) Until recently, the only animal
model intervention that extended lifespan was calorie restric-
tion.(54) Restriction of dAGEs is more practical and may be more
powerful than calorie restriction. A mouse model study found
that the longevity benefits of a hypocaloric diet are completely
negated if the diet is high in pro-oxidant AGEs.(55) In fact, calorie-
restricted high dAGEs fed mice had a lower lifespan than
unrestricted regular diet mice.(55,56) Excess calorie intake is
associated with elevated serum and tissue AGEs and calorie
restriction may in part extend lifespan by reducing endogenous
AGEs formation. Human muscle immunostaining of the AGE
carboxymethyl-lysine (CML) and pro-inflammatory receptor for
AGEs (RAGE) significantly and positively correlates with weight
and age, and CML significantly correlates with OS and inflam-
mation.(57) In addition, calorie restriction alone in overweight and
obese adults lowers serum AGEs.(58) Serum AGEs significantly
positively correlate with triglycerides (TG), waist circumference
and body mass index.(58)

Cell signal transduction disturbances induced by OS may rival
oxidative damage of cell components in mediating aging and
chronic diseases.(17,59) An emerging theory suggests that excess
ROS may disturb cell signal transduction, protein transcription
and post-transcriptional processing.(11,59–61) Molecular mechanisms
of IR involve OS-induced signal transduction disturbances
including activation of protein kinases C (PKC) and changes in
the insulin signal pathways phosphatidylinositol 3-kinase (PI3K)
and MAPK with opposing protective effects by SIRT1.(15,17,62,63)

Protein kinases C are a class of regulatory serine/threonine kinase
enzymes that are activated by oxidants.(19,64,65) They have cysteine-
rich regulatory regions in zinc fingers and catalytic sites that
are vulnerable to oxidation.(19,64,65) The redox regulation of PKC,
expression of specific isoforms of PKC and localization within
cells is cell-specific.(64–66) Oxidative activation of PKC in muscle
results in serine phosphorylation of insulin receptor substrate-1
(IRS1) in the PI3K pathway producing IR and activation of NFκB
producing an inflammatory response.(63) Normal levels of ROS
sustain SIRT1 activity which deacetylates the p65 subunit of
NFκB, suppressing inflammation and ROS production, increasing
innate antioxidant expression, maintaining energy homeostasis
and normalizing hepatic lipid metabolism.(62,67–69)

Advanced Glycation End�Products

Advanced glycation end-products (AGEs) are a complex class
of compounds produced by the Maillard reaction in food and in the
human body.(70–73) Maillard products enhance aroma and flavor of
food and produce the brown pigments formed during cooking. The
Maillard reaction is the non-enzymatic condensation of reducing
sugars with amino groups of proteins in foods. The importance of
endogenous formation of AGEs began to be recognized in the
1970’s when glycated hemoglobin (HbA1c) was found to be
associated with hyperglycemia in diabetes.(74,75) Unlike the rapid,
irreversible formation of AGEs in cooked food, the initial conden-
sation step in vivo is reversible and depends on reducing sugar
concentration, resulting in formation of unstable intermediates
referred to as Schiff bases or glycosylamines.(56,76) Schiff bases
undergo rearrangements to form more stable but also reversible
Amadori products, also called ketosamines, deoxyketoses or
deoxyaldoses. In physiological conditions of temperature and
pH, endogenous formation of AGEs beyond this step is time
dependent, thus only long-lived proteins proceed to the irreversible
third step.(77) After several dehydration, cyclization, oxidation,
cross-linking and/or polymerization reactions they form the stable
heterogeneous class of compounds referred to as melanoidins or
AGEs. Endogenous formation of AGEs involve glucose, fructose,
galactose, mannose, ribose and reactive triose intermediates of
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energy metabolism.(51,72,78) Lysine, arginine and sulfur-containing
amino acids are particularly vulnerable to glycoxidation.(71,72)

The most studied AGEs or intermediates include HbA1c, 3-
deoxyglucosone (3-DG), pentosidine, CML, methylglyoxal (MG)
and malondialdehyde (MDA).(8,56,72,79) Most AGEs of carbohydrate
origin involve lysine residues of target proteins while most AGEs
of lipid peroxidation origin involve arginine residues (imidazo-
lones).(48,73) Lipid peroxidation AGEs are occasionally referred to
as advanced lipoxidation end-products (ALEs), and have been
linked to kidney disease and complications of diabetes and appear
to be particularly pathogenic.(51,72,79) Glyoxal, MDA and hydroxy-
nonenal (HNE) are products of peroxidation lipids.(72,80,81) Table 1
outlines the various classes of AGEs.(73,82,83) It is now known that
endogenous AGEs contribute to aging, CVD, kidney disease,

diabetes, Alzheimer’s disease (AD), cataracts, autoimmune dis-
eases, allergies, endocrine disorders and gastrointestinal dis-
turbances.(41,51,56,79,84)

Endogenous Formation of AGEs: Hyperglycemia, Energy
Balance and IR

Endogenous-sourced AGEs accumulate in the body over time
and are associated with physiological changes that characterize
aging, especially IR.(41,51,56,79,85) Serum levels of AGEs in diabetes
patients are about 50% greater than that of healthy age-matched
controls.(86,87) Both transient glucose spikes and chronic hypergly-
cemia accelerate endogenous production of AGEs. Mitochondrial
ROS production is accelerated by hypercaloric and high refined

Fig. 1. Redox Homeostasis and Oxidative Stress. Many known factors contribute to redox homeostasis in human physiology. On the left are those
that increase oxidation with opposing anti�oxidant mechanisms on the right. †Uric acid and RAGE are antioxidants at low concentrations and pro�
oxidant and markers of oxidative stress at high concentrations.
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carbohydrate diets.(88) Chronic hyperglycemia of diabetes is known
to accelerate virtually all degenerative processes associated with
aging.(51,76,77,89,90) HbA1c averages 0.40% in healthy subjects and
about 0.75% in diabetes and does not proceed to toxic AGEs
due to the moderately short 6 to 12 week half-life of hemo-
globin.(22,56,79,84) Non-insulin dependent tissues including erythro-
cytes, peripheral nerves, endothelial cells, lens and kidneys are
especially prone to hyperglycemia-mediated damage.(56)

A critical role of the liver is to act as a gatekeeper for systemic
energy supply.(91–94) Liver and muscle mitochondria adapt to ATP
energy demands of physical activity which alters glucose and
fat oxidation capacity.(7,70,95) Damage to liver mitochondria is
accelerated with a hypercaloric diet and slowed with a slight
hypocaloric diet.(96,97) The cumulative effect of a sedentary life-
style and high refined carbohydrate, hypercaloric diet is glucose
and fat in cells exceeding the oxidative capacity of mitochondria.
When this occurs, glycolysis intermediates, TG, free fatty acids,
acyl-CoA and ceramides in liver and muscle cells accumulate
and induce OS and AGEs formation.(7,94,98) Stressed myocytes
become IR, a protective mechanism that non-insulin sensitive
cells do not have. Liver steatosis and muscle IR develop coinci-
dent with and are predictive of metabolic syndrome (MetS), a
constellation of risk factors for CVD and T2DM believed to

reflect IR and inflammation.(70,94) Compensatory hyperinsulinemia
causes upregulation of hormone-sensitive lipase in adipocytes
that maintains an elevated level of circulating free fatty acids
leading to further lipid accumulation in hepatocytes. Elevated
insulin also acts directly on hepatocytes to stimulate lipogenesis.
The accumulation of lipids in the liver under OS leads to lipid
peroxidation AGEs. The interaction of AGEs with RAGE induces
additional ROS production via activation of NADPH oxidase
and release of inflammatory cytokine tumor necrosis factor-α
(TNF-α).(7,94,99) Elevated TNF-α produces outer mitochondrial
membrane permeability which increases O2

•− formation. This
creates vicious cycles of oxidative and inflammatory damage to
liver cells.

Diet alone can induce IR without genetic predisposition in
animal models.(100,101) Insulin resistance and MetS were induced
in genetically normal healthy Fischer rats by ad libitum feeding a
diet high in fat and simple carbohydrates (HFS).(100,101) Oxidative
stress was significantly increased in the HFS rats compared to the
rats fed a low fat and high complex carbohydrate (LFHC) diet.
Also, NADPH oxidase was significantly upgregulated in the HFS
rats compared to rats fed a LFHC diet. This increase in NADPH
oxidase was associated with increased MDA. The HFS diet also
induced a downregulation of innate antioxidants.

Table 1. Classification of AGEs

Typical advanced glycation end�products in three classification methods, by their fluorescent properties, the substrate
from which they are derived and synthesis pathway.

Fluorescence and protein crosslinking

Fluorescent Non�fluorescent

Protein crosslinking Pentosidine Glucosepane

Crossline

MRX

Vesperlysine

Glyoxal�lysine dimmer

Methylglyoxal�lysine dimmer

GOLDIC

MOLDIC

Non crosslinking CML

CEL

Pyrraline

Argpyrimidine

MG�imidizolones

3�DG�imidizolones

GA�pyridine

Oxidized substrate

Lipid peroxidation
Amino acid metabolism by 
myeloperoxidases

Carbohydrate and ascorbate

MDA Glyoxal (non�specific) Glyoxal

Hydroxynonenal Methylglyoxal Methylglyoxal

Acrolein (non�specific) Acrolein (non�specific) 3�DG (Fructose)

Glyoxal (non�specific) Glycoaldehyde (non�specific) Arabinose

Glycolaldehyde

Dehydroascorbate

Source/Synthesis pathway

Class Source or pathway Important intermediate

AGEs 1 Glucose direct, maillard reaction Glucose

AGEs 2 Glycolysis, fructose metabolism and 
polyol pathways

Glyceraldehyde (α�hydroxyaldehyde)

AGEs 3 Maillard reaction Schiff bases Glycolaldehyde

AGEs 4 Glyceraldehyde (glycolysis intermediate 
triose)

Methylglyoxal (dicarbonyl)

AGEs 5 Glucose and glycolaldehyde Glyoxal (dicarbonyl)

AGEs 6 Fructose (polyol pathway, dietary) 3�DG (dicarbonyl)
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Induction of the polyol (aldose reductase) pathway is a primary
route for AGEs synthesis in hyperglycemia.(102–104) Both chronic
hyperglycemia of diabetes and transient hyperglycemia with
high refined carbohydrate and hypercaloric meals activate the
polyol pathway.(56,103,105–107) The polyol pathway converts glucose
to sorbitol and then to fructose by the enzymes aldose reductase
and sorbitol dehydrogenase.(56,108) Enzymes of the polyol pathway
are found in high concentrations in non-insulin-independent
tissues including kidney, lens, nerve, brain, erythrocytes and
immune cells.(78,108) In these tissues, intracellular fructose concen-
trations equal that of serum glucose in diabetes.(108–112) Blocking
the polyol pathway with an aldose reductase inhibitor prevents
formation of MG.(108,113) Thus, fructose is the route of synthesis of
MG-derived AGEs. Fructose is seven times more reactive than
glucose in endogenous formation of AGEs.(79,108,114) Dietary fruc-
tose may augment endogenous production of AGEs.(108) A popula-
tion study found that individuals who have both non-alcoholic
fatty liver disease (NAFLD) and MetS drink an average of 4.25
soft drinks per day, individuals with NAFLD but not MetS drink
5.5 soft drinks per day and healthy people drink an average of 0.75
soft drinks per day.(114,115) Animal and human experiments have
demonstrated that high sweetened beverage intake induces de
novo lipogenesis, hypertriglyceridemia, IR and AGEs produc-
tion.(116–119) However, fructose is metabolized to fructose-3-
phosphate and further to the glyceraldehyde-3-phosphate and
dihydroxyacetone-3-phosphate.(56,78,108) Highly reactive trioses
from the polyol pathway and intermediates of anaerobic glycolysis
are the primary source of endogenous AGEs formation.(78,120–122)

These trioses are 200 times more reactive than glucose in AGEs
formation.(78,108) Toxic triose AGEs are central to diabetes compli-
cations, kidney disease and AD.(78,108,121,123–125)

Diet�Derived AGEs

Not all T2DM patients are obese, suggesting etiology of IR
beyond hypercaloric intake and endogenous AGEs.(126) Exogenous
AGEs are acquired from tobacco and food.(56,76,79) About 10% of
AGEs in food are absorbed and only about 1/3 are excreted by the
kidneys.(50,127,128) Thus, about 6% of dAGEs consumed are retained
and add to body’s total load of AGEs. Fig. 2 illustrates the lifestyle
origins of total body load of AGEs. The “Western diet” foods are
frequently prepared at high temperatures or highly processed.(129)

Emerging evidence suggests that dAGEs make a dominant
contribution to the total body pool of AGEs and the pathology of
IR. Databases are now available for AGEs content of foods and
the cooking and processing conditions that promote their forma-
tion.(129,130) The first database measured CML in 250 common
foods by enzyme-linked immunosorbent assay.(130) Foods high in
fat and protein contain the highest amount of AGEs. Higher
cooking temperature, longer cooking time, absence of moisture
and presence of metals increases AGEs formation. Carbohydrate
and dairy foods tended to be low in AGEs, however, processing
greatly increased AGEs content in these categories. Some ready-
to-eat breakfast cereals can have more than 10-fold the amount
of AGEs of less processed grains and baby formula has 100-fold
more AGEs than human breast milk or bovine milk.(130) The
next study expanded the database to 549 foods, tested both MG
and CML content, and compared a range of cooking methods,
temperatures and times.(129) The CML level correlated closely with
MG content. Lower cooking times and temperatures, moist
cooking methods, and use of acid marinades significantly reduce
AGEs formation. A chicken breast with the skin, breaded and
deep-fried contains about 10,000 kU/100 g while a poached

Fig. 2. Sources of Systemic AGEs. Known pathways to physiologic load of toxic advanced glycation end�products (AGEs). Hyperglycemia and
hypercaloric diets drive endogenous formation while dietary AGEs enter the system pre�formed with heat�treated foods.
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skinless chicken breast contains about 1,000 kU/100 g and raw
chicken breast contains about 800 kU/100 g. Separately, the
European ICARE project directly measured four food AGEs:
CML, Amadori products, acrylamide and 5-hydroxymethylfufural
(HMF) by gas chromatography mass spectrometry in samples
of common commercial food products.(131) They found that the
relative amounts of different AGEs varied substantially between
food types and grain-based cereals and baked goods were a
substantial source of CML. Additionally, they collected samples
of foods common in children’s diet: infant formula, grain-based
baked goods, and potato chips and found an extraordinary varia-
tion in AGEs content within single food types representing ranges
in processing, temperature and shelf time.(132)

Animal-derived food AGEs may produce more toxic effects
than AGEs from plant-derived foods.(73,133) There is some limited
in vitro evidence of beneficial health effects of dAGEs. Some
CHO-derived AGEs exhibit anti-carcinogenic properties and a
casein-lactose AGE inhibits Helicobacter pylori.(134,135) Roasted
coffee AGEs exhibit antioxidant properties and some glucose-
based laboratory AGEs inhibit LDL oxidation.(136,137) Still, even
high-heat-treated plant foods produce the extremely toxic and
carcinogenic acrylamide, especially French fries, and studies
that evaluate the health impact of the whole food matrix in vivo
are more relevant.(131)

Protection against Toxic AGEs

Defense systems to maintain AGEs homeostasis include innate
defenses, enzymatic degradation, renal clearance and receptor-
mediated cell uptake and degradation. Innate defense against
AGEs include skin pigmentation, chelation of redox metals and
structural conformation of enzymes that shield reactive sites. The
many benefits of the gut microbiome may include metabolizing
exogenous AGEs.(138) Enzymes that deglycate proteins at the first
or second step of the Maillard reaction or reduce dicarbonyls
include fructosamine-3-kinase, amadoriase (fructosamine oxidase),
2-oxoaldehyde reductase and carbonyl reductase.(48,56,73,85) Enzymes
that degrade AGEs include the glyoxalase I and II systems,
aldo-ketoreductases and aldehyde dehydrogenases.(48,73,80,84,85,108)

Glyoxalase I catalyzes metabolism of dicarbonyls and prevents
their binding with proteins to form AGEs. Paraoxonase prevents
oxidation of low density lipoprotein cholesterol (LDL).(79,139)

Kidneys are both a biological defense against AGEs and a target
of their damage. Levels of serum and tissue AGEs positively
correlate with degree of nephropathy.(50,56,72,85) Restriction of
dAGEs significantly slows renal damage.(140–142) The formation of
AGEs on matrix proteins increases albumin permeability and
impairs degradation by metalloproteinases leading to basement
membrane thickening.(77,143) Activation of RAGE activates PKC,
increasing the MAPK ERK1/2 pathway and this stimulates NFκB
leading to increased production of type IV collagen, laminin and
fibronectin in mesangial cells.(84,144)

There are two classes of receptors for AGEs, receptors that
mediate endocytosis and degradation of AGEs and a receptor that
activates cell responses. The receptors that bind AGEs and induce
endocytosis and degradation include AGE receptor-1 (AGER1),
AGE receptor-2 (AGER2), galectin-3 or AGE receptor-3
(AGER3), cluster of differentiation 36 (CD36) and macrophage
scavenger receptors I and II.(73,78,84,85,90,145–147) Antioxidant and
anti-inflammatory properties of AGER1 are associated with sup-
pression of RAGE expression and resultant suppression of NFκB,
epidermal growth factor receptor, MAPK stress pathways and
p66Shc. In health, expression of AGER1 correlates with levels
of circulating AGEs and AGER1 to RAGE ratio is high.(146)

However, in old age, diabetes and OS, the AGER1 to RAGE ratio
is low. Mice fed a diet high in AGEs by heat-treatment of standard
chow, both ad libitum and calorie restricted, develop OS, IR,
lower AGER1 and elevated RAGE and p66Shc.(55) In contrast,

old mice fed an ad libitum low AGEs diet or calorie restricted
moderate AGEs diet had longer lifespans, were significantly less
IR, had a low stable level of RAGE and higher AGER1.(55,148)

There is a threshold body load of AGEs below which AGER1 can
maintain homeostasis and suppress RAGE. When dAGEs cause
total AGEs to exceed this threshold, AGER1 is suppressed and
RAGE expression and OS are elevated.(85) The AGER1 receptor
protects against AGEs-induced production of ROS by suppression
of NADPH oxidase and prevention of activation of PKCδ.(146)

The receptor AGER3 does not have a membrane-spanning
domain and is found throughout the cytosol and is secreted into
extracellular space.(84) It mediates endocytosis of circulating AGEs
and oxidized LDL.(149) The scavenger receptor CD36 mediates
lipid uptake and is expressed on mononuclear phagocytes, adipo-
cytes, hepatocytes, myocytes, platelets and some epithelia.(150) On
phagocytes, CD36 binds oxidized LDL and phospholipids and
promotes OS and inflammatory processes. Macrophage scavenger
receptors initiate the atherosclerotic process by binding and uptake
of AGE-modified and oxidized LDL particles to produce foam
cells.(79,151)

Binding of AGEs with the signal transducing receptor RAGE
stimulates OS, inflammation and disturbed cell signals.(41,50,72) The
receptor RAGE is a member of the immunoglobulin superfamily
of cell surface molecules.(152) Interaction of AGEs with RAGE
produces rapid activation of NFκB, PKC and MAPK signaling
cascades. Activation of NFκB increases expression of RAGE.(50,84)

The NFκB activation promotes transcription of NADPH oxidase
inducing synthesis of O2

•−, procoagulation factors, TNF-α, IL-6
and CRP. Increased production of ROS promotes further produc-
tion of AGEs and self-induced expression of RAGE sets up
vicious cycles of OS and inflammation. Obesity-induced IR
and adipokine synthesis is now known to be RAGE activation-
dependent.(153)

Activation of RAGE by dAGEs induces IR in the absence of
a hypercaloric diet. A dual in vitro and in vivo experiment
investigated the effect of exposure of human L6 myotubes and
C57/BL6 mouse muscle cells in vivo to high levels of AGEs.(152)

Mice were randomized to either a standard chow or a nutritionally
similar chow treated at high temperature. At 20 weeks, the high
dAGEs (HdAGEs) mice ate the same amount of food and had
equal weight but their circulating AGEs were 3 times that of the
low AGEs (LdAGEs) fed mice. The HdAGEs mice had a fasting
glucose level 1.5 times that of the LdAGEs mice and significant
IR and hypertriglyceridemia not seen in the LdAGEs mice. The
HdAGEs mice tibialis muscle had reduced Akt/PKB phosphoryla-
tion and a 2.5-fold increase in PKCα activity. The cultured human
muscle cells treated with glycated hemoglobin also had increased
PKCα activity. Receptor for AGEs activation resulted in the
formation of a complex of Src with RAGE, PKCα and IRS1.
Pharmacological inhibitors of PI3K and ERK1/2 did not block
activation of PKCα. However, blocking Src reduced PKCα
activation by 70% in cultured muscle cells and 80% in mouse
muscle cells. Also, silencing of IRS1 abolished the RAGE
activation of PKCα. In non-insulin dependent tissues, AGEs-
RAGE interaction induced vascular permeability in rat retinal
endothelial cells by mechanisms that depend on activation of PLC,
PKCδ and rapid activation of NADPH oxidase.(154)

Do Exogenous Diet�derived AGEs Promote IR?

Animal models. Several diabetes mouse model studies
demonstrate that restriction of dAGEs significantly reduces
serum AGE, reduces IR and slows weight gain. In db/db mice, a
diet high in AGEs (H-dAGEs) induces increased IR and 13% more
weight gain with the same calorie intake compared to low dAGEs
(L-dAGEs).(155) The mice were randomized to a L-dAGEs diet or
a diet 3.4-fold higher in dAGEs. The L-dAGEs mice had half
the serum AGEs of the H-dAGEs mice after 20 weeks. The L-
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dAGEs mice had lower fasting insulin levels throughout the
study. At the end of 20 weeks, the L-dAGEs mice had no β-cell
damage whereas the H-dAGEs mice had significant β-cell
damage. The L-dAGEs mice had significantly lower HDL and 2-
fold better insulin-stimulated glucose uptake than the H-dAGEs
mice. Similarly, restriction of dAGEs reduces IR and improves
lifespan in autoimmune T1DM (NOD) mice.(156) Control and NOD
mice were randomized to L-dAGEs or 5-fold higher dAGEs for
life. In both control and NOD mice the H-dAGES mice had
significantly higher serum and urine AGEs than the L-dAGEs fed
mice. Serum AGEs increased with time in the H-dAGEs mice and
decreased with time in the L-dAGEs mice. At 16 weeks, the L-
dAGEs mice had significantly lower fasting glucose and insulin
and significantly lower glucose response and better insulin
response to intraperitoneal glucose tolerance test than H-dAGEs
mice. By 25 weeks, 95% of the H-dAGEs NOD mice had become
diabetic and only 33% of the L-dAGEs NOD mice had become
diabetic. At 56 weeks, 76% of the L-dAGEs founder mice were
alive and none of the H-dAGEs fed mice survived past 44 weeks.
Restriction of dAGEs in DM mouse models also reduces serum
and kidney AGEs and is associated with improved wound healing,
slower development of diabetic nephropathy and extended
lifespan.(157–159) Further, restricting dAGEs in mouse models slow
progression of CVD in health and in diabetes.(160,161)

A study of four generations of healthy normal mice randomized
to isocaloric H-dAGEs or L-dAGEs found H-dAGEs significantly
induced more obesity and premature IR than L-dAGEs.(162) The H-
dAGEs mice had significant deficiencies of protective AGER1
and SIRT1 and elevated RAGE in muscle, adipose tissue and liver
not observed in L-dAGEs mice. There was reduced insulin
receptor, IRS1 and AKT activation in the H-dAGEs mice com-
pared to L-dAGEs mice. Restriction of dAGEs in high fat-fed
mice suggests IR is not induced by a high fat diet per se but by
AGEs produced by oxidized and heat-treated fats.(163) Normal
C57/BL6 mice were randomized to a high fat, high AGEs diet
(HF-HdAGEs) by heat treatment, a low AGEs high fat diet
(HF-LdAGEs) or a regular control diet. At 6 months, 75% of the
HF-HdAGEs normal mice had diabetes and none of the HF-
LdAGEs mice had diabetes. The HF-HdAGEs mice had signifi-
cantly higher serum AGEs, fasting insulin, fasting glucose and body
weight than control mice. The HF-HdAGEs mice had significantly
greater IR and had pancreatic β-cell damage not seen in HF-Ld-
AGEs and controls. Although both HF groups were similarly
overweight, the HF-HdAGEs mice had 2 to 4-fold greater visceral
fat than HF-LdAGEs mice.

Conditions characterized by IR can be induced in healthy ani-
mals by H-dAGEs. In healthy female rats, a model of polycystic
ovary syndrome with IR and hyperandrogenism, is induced by
H-dAGEs.(164) Polycystic ovary syndrome (PCOS) is a condition
that exhibits elevated OS, high serum AGEs, an intrinsic IR and
hyperandrogenism.(165,166) Female Wistar rats were randomized
to H-dAGEs or L-dAGEs for 3 months. The H-dAGEs group
had significantly greater insulin, glucose, serum AGEs, and
testosterone and reduced estradiol and progesterone. Alzheimer’s
disease is associated with diabetes, MetS and OS with AGEs
deposition in the brain.(123,167) Wild type mice were randomized to
H-dAGEs, L-dAGEs or regular chow and assessed for cognitive
deficits, brain AGEs deposits and MetS.(168) The H-dAGEs mice
and regular fed older mice developed MetS, cognitive deficits,
amyloid β and AGEs deposits in the brain and the L-dAGEs group
did not. The H-dAGEs group had suppressed SIRT1, AGER1 and
PPARγ.

Evidence in humans. Cross-sectional studies in humans
show association between dAGEs and serum AGEs, IR, inflam-
mation and OS. A cross-sectional study compared 50 L-dAGEs
intake DM patients, 68 H-dAGEs intake DM patients and 74
healthy controls.(169) The healthy controls and the L-dAGEs DM
group both consumed L-dAGEs and the H-dAGEs DM consumed

about 2 times the dAGEs. Serum AGEs in the H-dAGEs DM
patients were about twice that of the L-dAGEs DM patients and
about 6 times that of controls. Although dAGEs were slightly
lower in the L-dAGEs DM patients than in the healthy controls,
serum AGEs were about 3 times that of the controls, suggesting
significant endogenous AGEs contribution. The H-dAGEs DM
patients had significantly higher HbA1c, LDL, 8-isoprostane,
IL-1α, TNF-α, monocyte chemoattractant protein-1 (MCP-1) and
significantly lower SOD activity than the L-dAGEs DM patients
and the controls. Among the DM patients, dAGEs significantly
positively correlated with serum AGEs, HbA1c, 8-isoprostane,
IL-1α and MCP-1 and negatively correlated with SOD activity. In
DM, hyperglycemia-sourced AGEs and dAGEs both contributed
significantly to serum AGEs, OS and inflammation. A cross-
sectional study in healthy adults found that acute insulin secretion
during OGTT correlates with serum AGEs.(170) A cross-sectional
study in elderly pre-DM and DM patients found serum AGEs
strongly correlated with IR and oxidized LDL in DM patients.(171)

Restriction of dAGES in DM patients significantly reduces
serum AGEs and is associated with reduction in IR and inflam-
mation. An interventional study in 24 DM patients, 11 in a two
week crossover study and 13 in a six week study, compared
inflammatory markers in a L-dAGEs diet to a H-dAGEs diet.(172)

In the two week crossover study, the H-dAGEs diet increased
serum AGEs 64.5% over baseline and the L-dAGEs diet decreased
serum AGEs 30%. The H-dAGEs group had significantly higher
TNF-α and VCAM-1 than the L-dAGEs group. In the six week
study, serum AGEs increased 28% in the H-dAGEs group and
decreased 20% in the L-dAGEs group. In the H-dAGEs group,
TNF-α increased 86% and CRP increased 35% while TNF-α and
CRP decreased in the L-dAGEs group. Another interventional
study found that a L-dAGEs diet significantly lowers IR, OS and
inflammation in T2DM.(147) Eighteen T2DM patients and 18
healthy adult controls were randomly assigned to a standard H-
dAGEs diet or a 50% lower dAGEs diet for four months. This
study investigated the role of SIRT1 and AGER1 in AGE-induced
IR. Both SIRT1 and AGER1 are suppressed in T2DM. After the 4
month intervention, the H-dAGEs groups had significantly higher
serum CML and MG than the L-dAGEs groups in both T2DM
and controls. Both L-dAGEs groups had significantly reduced
8-isoprostane. Plasma insulin, leptin and IR were reduced by
about 30% from baseline by restriction of dAGEs in the DM
group. Inflammatory NFκB p65 acetylation and TNF-α were also
significantly reduced after 4 months of L-dAGEs in the DM
group. Four months of L-dAGEs normalized SIRT1 and AGER1
mRNA and protein concentrations in the DM group. Another
study of restriction of dAGEs in T2DM patients found significant
reduction in serum AGEs and TNF-α but not IR.(173) Researchers
attribute this contradiction to the relatively low baseline dAGEs of
the population. Restriction of dAGEs in DM patients also revealed
that dAGEs modified LDL is a strong activator of the insulin
MAPK pathway, central to CVD complications.(174)

The impact of dAGEs on OS is rapid. Even a single H-dAGEs
meal induces acute changes in serum AGEs and OS in T2DM
patients.(175) Vascular dysfunction is induced more by a single H-
dAGEs meal compared to a H-dAGEs meal after a 3 day treatment
with benfotiamine in T2DM patients.(176) Benfotiamine is a more
bioavailable lipid soluble form of thiamin used to treat diabetic
neuropathy. After the H-dAGEs meal, serum AGEs and TBARS
were increased and this effect was reduced by benfotiamine. In
another study, in both healthy non-DM subjects and T2DM
patients, a test beverage high in AGEs was created by concen-
trating to 1/10th a sugar and caffeine-free cola beverage.(177) After
the single oral challenge of H-dAGEs, both DM patients and
controls had elevated serum AGEs and signs of endothelial dys-
function.

A dual cross-sectional 2 year follow-up study and 4 month
interventional study investigated the effect of restricting dAGEs
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on IR, OS, inflammation and AGER1 in healthy young and old
subjects and chronic kidney disease (CKD) patients.(178) The cross-
sectional study included 325 healthy adults, either young (18–45
years old) or older than 60 and 66 CKD patients. The 2-year
follow-up also included healthy young and old adults and CKD
patients. The cross-sectional study found that serum AGEs are
higher in healthy older adults than younger adults and correlates
with OS and inflammation markers independent of age.(179) Serum
CML significantly correlated with 8-isoprostane and HOMA IR.
In the two year follow-up, changes in CML correlated with
changes in inflammatory markers TNF-α and VCAM-1. Further,
changes in dAGEs intake patterns accompanied changes in serum
AGEs. Expression of AGER1 was positively correlated with
serum AGEs in healthy participants. Age was not a predictor of
RAGE or p66Shc, both of which remained relatively low and
unchanged in healthy individuals. In CKD, RAGE and p66Shc
were 3 to 4-fold higher and AGER1 was lower than healthy
individuals in spite of higher levels of serum AGEs. This supports
the previously described threshold for systemic AGEs above
which AGER1 declines and RAGE is elevated. The 4 month
intervention included healthy subjects divided into young and old
groups and CKD patients randomized to either L-dAGEs or H-
dAGEs (usual), differing only in food cooking methods. In healthy
subjects, the L-dAGEs diet significantly reduced serum AGEs,
AGER1, RAGE, p66Shc, 8-isoprostanes, VCAM-1 and TNF-α
compared to baseline. In the CKD patients, the L-dAGEs group
had similar reductions in all parameters with one notable excep-
tion, instead of AGER1 decreasing, it increased by 60%. This is
similar to values seen in the healthy young group.

Restriction of dAGEs for four weeks reduced insulin and IR
in healthy overweight women.(180) Seventy four women were
randomized to either H-dAGEs or L-dAGEs diet and either
glucose sweetened drinks or fructose sweetened drinks. The sugar
source had no effect on outcomes. The L-dAGEs group had lower
urinary AGEs excretion, fasting insulin and IR. Restriction of
dAGEs in healthy adults also enhances native defenses.(181) After
four months of restricted dAGEs, healthy adults had increased
SIRT1 and PPARγ levels and reduced serum AGEs, RAGE, 8-
isoprostane and TNF-α. Dietary AGEs intake and not caloric
intake correlated negatively with SIRT1 and positively with serum
AGEs, OS markers, and TNF-α.

Measurable increases in IR, OS and inflammation can be
induced in healthy young individuals by one month of ingestion
of ubiquitous H-dAGEs. As part of the European ICARE project,
an interventional crossover trial investigated the effect of a diet of
food cooked by steam versus a diet of foods cooked at high
temperature and dry conditions for one month each in 66 lean
healthy volunteers aged 18 to 24.(182) The steamed diet contained
an average of 2.2 mg CML/day and the high temperature cooked
diet contained 5.4 mg CML/day determined by gas chromato-
grapy/mass spectrometry measurement. Plasma and urine CML
levels were significantly higher after the H-dAGEs diet than after
the L-dAGEs diet. Compared to one month on the steam-cooked
diet, one month of consuming H-dAGEs produced significantly
lower insulin sensitivity, lower serum omega-3 fatty acids and
lower plasma vitamin C and vitamin E. Despite no significant
differences in nutrients, the H-dAGEs resulted in a 5% higher
cholesterol and 9% higher TG.

A recent cross-sectional study of healthy mothers in labor and
their healthy infants at birth and 12 months demonstrate that
systemic AGEs can be maternally transmitted to offspring and

dAGEs can increase this effect to predispose offspring to
diabetes.(183) Maternal serum CML, MG and 8-isoprostane levels
correlated with infant serum CML, MG and 8-isoprostane levels
at birth. At 6 months only CML correlation was retained and at 12
months neither was retained. Recall that the AGEs content of
infant formula is about 100-fold higher than human and bovine
milk. Infant foods are also highly processed and contain relatively
high levels of AGEs. At 12 months, infant CML levels doubled
and were similar to maternal and adult levels and infant MG levels
exceeded their mother’s levels. Infant AGEs levels maintained a
positive correlation with 8-isoprostane levels. These dramatic
increases in serum AGEs coincided with increases in dAGEs. The
authors noted that several infants in this study had serum MG
levels comparable to that seen in DM and renal disease. Infants of
mothers in the highest quartile for serum MG had significantly
higher fasting insulin and HOMA IR than infants of mothers in the
lowest serum MG quartile at 12 months. The previously described
mouse model demonstrated similar maternal AGEs transmission
to offspring over several generations.(156)

Restriction of dAGEs in PCOS reduces systemic AGEs, IR and
androgens in this intrinsic IR patient group.(184) Women with
PCOS were assigned to three consecutive two month dietary
protocols, a hypocaloric diet with ad libitum dAGEs, eucaloric
H-dAGEs, and eucaloric L-dAGEs. Fasting insulin and IR were
significantly increased after the H-dAGEs period compared to
baseline, the hypocaloric diet and the L-dAGEs diet. Fasting
insulin was lower on L-dAGEs than the hypocaloric diet. Serum
AGEs were only significantly decreased by L-dAGEs while
weight was only decreased by the hypocaloric diet. Testosterone
and androstenedione were reduced by hypocaloric diet and L-
dAGEs suggesting restriction of dAGEs reduces androgen syn-
thesis independent of adiposity. Oxidative stress was significantly
reduced below baseline by L-dAGEs.

Conclusions

Dietary AGEs from high temperature-treated foods make a
significant contribution to systemic AGEs load and OS. Lifestyle
factors can cause both endogenous and exogenous AGEs to
exceed homeostatic regulation and mediate disease processes by
oxidative damage of macromolecules and stimulation of cell stress
signal transduction changes. Metabolic IR is a cell stress response
and an important early event in many chronic diseases. Elevated
AGEs activates RAGE which induces activation of NFκB,
inflammation and NADPH oxidase. This further enhances oxida-
tion and suppresses protective survival systems AGER1 and
SIRT1. High AGEs induce IR by oxidative activation of PKCs
that phosphorylate regulatory serine residues on IRS1 in insulin
sensitive tissues. Exogenous dAGEs activate cell stress responses
and induce IR independent of obesity. The health effects of foods
containing the essential macronutrients protein and fat may be
more associated with the quality of these foods as determined by
processing and cooking methods and resultant AGEs content
than by relative proportions in the diet. Restricting dAGEs may
significantly improve metabolic insulin response and reduce the
risk of chronic diseases associated with modern lifestyles.
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