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Abstract: The traditional sequential pattern mining method is carried out considering the whole time
period and often ignores the sequential patterns that only occur in local time windows, as well as
possible periodicity. Therefore, in order to overcome the limitations of traditional methods, this paper
proposes status set sequential pattern mining with time windows (SSPMTW). In contrast to traditional
methods, the item status is considered, and time windows, minimum confidence, minimum coverage,
minimum factor set ratios and other constraints are added to mine more valuable rules in local
time windows. The periodicity of these rules is also analyzed. According to the proposed method,
this paper improves the Apriori algorithm, proposes the TW-Apriori algorithm, and explains the
basic idea of the algorithm. Then, the feasibility, validity and efficiency of the proposed method and
algorithm are verified by small-scale and large-scale examples. In a large-scale numerical example
solution, the influence of various constraints on the mining results is analyzed. Finally, the solution
results of SSPM and SSPMTW are compared and analyzed, and it is suggested that SSPMTW can
excavate the laws existing in local time windows and analyze the periodicity of the laws, which solves
the problem of SSPM ignoring the laws existing in local time windows and overcomes the limitations
of traditional sequential pattern mining algorithms. In addition, the rules mined by SSPMTW reduce
the entropy of the system.

Keywords: data mining; status set sequential pattern mining; time window; TW-Apriori algorithm;
periodicity analysis

1. Introduction

Data mining is a research field that has gained increasing attention in recent years, and
sequential pattern mining is an important subtopic of data mining research. However, the
traditional sequential pattern mining method has the following limitations: the traditional
method is to mine the database considering the whole time period, which may ignore the
sequential patterns that only occur in the local time period. For example, in hot summers,
heat stroke is a common disease, and severe heat stroke often produces hyponatremia,
heat stroke and other complications. However, there is no causal relationship between the
disease and its complications, but a correlation relationship; thus, the sequence pattern of
“heatstroke→ complications” is often difficult to uncover when looking at the whole study
period, but it is easy to find these rules when summer or even a hot period is selected as
the study time window. In addition, traditional sequential pattern mining only considers
the ID of the item, which cannot find the relationship between items with a different status.
Traditional methods only consider the support constraint, which may lead to the mining of
sequential patterns with low regularity and practical value.
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In order to solve the above problems, this paper proposes the status set sequential
pattern mining method with time windows (SSPMTW). The constraints of the time window,
minimum confidence, minimum coverage and minimum factor set ratio are introduced
to mine the sequential patterns in the local time window, and the periodic analysis of
these sequential patterns is carried out so that the mined rules are the focus of users and
have more regularity and practical value. In addition, SSPMTW considers the status of
the items so that sequential patterns with status attributes can be mined. Aiming at the
method proposed in this paper, this paper improved the Apriori algorithm, and proposes a
TW-Apriori algorithm so as to complete the status set sequential pattern mining with time
window and analyze the sequential pattern periodically.

1.1. Related Work
1.1.1. Research on Sequence Pattern Mining Method

Scholars across the world have conducted in-depth research on sequence pattern
mining methods. This paper will describe the research status of sequence pattern mining
methods from the following four aspects.

Sequential Pattern Mining with Time Windows

Sequential pattern mining with time windows is rarely studied, but association rule
mining with time windows has been studied by some researchers. Xiao et al. [1] studied
association rule mining with time windows in real transaction databases and proposed
a TW-Apriori algorithm for frequent itemset mining with time windows. Xiao et al. [2]
proposed a variable neighborhood search algorithm (VNS) for mining frequent itemsets
with maximum time windows. Xiao et al. [3] proposed the VNS algorithm to optimize the
maximum frequent time window selection problem in the sequence database of association
rules. Zabihi et al. [4] proposed a novel fuzzy sequential pattern algorithm with a sliding
window constraint which permits elements of a pattern to span a set of transactions
within a user-specified window. Therefore, loss of useful sequences is prevented in the
search process.

Periodic Sequence Pattern Mining

Periodic association rules were first proposed by Ozden et al. [5], who studied the
association rules with periodicity that appear repeatedly in the database. Li and Jitender [6]
proposed a method of mining partial periodic association rules in a time series database,
which can mine association rules over a periodic period of time without restricting them
to a fixed rule and sequence. Manziba [7] proposed a periodic sequence pattern mining
algorithm, which does not rely on the user to obtain periodic correlation values but can also
mine all types of periodic patterns at the same time. Han et al. [8] has studied some periodic
patterns in time series database and proposed relevant algorithms to mine them efficiently.
Based on the temporal Apriori algorithm, Li and Ning et al. [9] mined association rules with
year, month and day as a cycle. Yang et al. [10] believed that the interference of random
noise may lead to the asynchrony of a periodic mode, so he put forward the asynchronous
periodic mode model. Huang and Chang [11] studied mining asynchronous short period
patterns in temporal database, and each time point contained multiple events. Lee and
Jiang et al. [12] relaxed the periodicity to a fuzzy periodicity and proposed an algorithm to
mine the fuzzy periodicity association rule.

Study on Constraints of Sequential Pattern Mining

The constraints of sequential pattern mining will affect the number and type of
frequent itemsets and sequential patterns. How to set the constraints and thresholds
reasonably is a key problem. In order to solve the problem that a constant support threshold
may cause long itemsets and sequences to be ignored, Seno and Karypis [13] combined
LPMiner and SLPMER algorithms to mine long frequent itemsets and frequent sequence
patterns. When the length of frequent itemsets and frequent sequences is longer, the support



Entropy 2021, 23, 738 3 of 28

threshold is smaller. Wangand Karypis [14] proposed a BAMBOO algorithm to mine
closed itemsets based on decreasing support. Yun and Leggett [15] proposed a WLPMiner
algorithm to construct a constraint that decreases in support as the length increases.

Yun [16] proposed a weighted and interesting sequential pattern mining method based
on similarity support or weight level. Yun and Leggett [17] proposed a weighted frequent
pattern mining method whose support decreases with increasing sequence pattern length.
Chang [18] proposed a weighted sequential pattern mining method that considers time
intervals in sequential databases.

Massegliaet al. [19] raised the issue of incremental mining of sequence patterns. When
new transactions or customers join the original database, the cost of frequent sequence
pattern mining from an updated database is reduced by using previously mined useful
information. Ng et al. [20] proposed a sequence pattern mining method that takes into
account time intervals so as to predict the time interval for any two transactions of a
frequent sequence.

Closed Sequence Pattern Mining

A closed sequence pattern refers to the absence of any other contained sequence
pattern under the same support. It not only fully expresses the complete set of results
but also has a more streamlined result without information decay. In order to solve the
problem that the traditional closed sequential pattern mining algorithm will produce a
large number of inefficient redundant patterns when the support threshold is low and
the sequential patterns in the database are diverse, Jingsong Zhang et al. [21] proposed
the CCSpan algorithm. Fabregue et al. [22] proposed the OrderSpan algorithm, which
extracts a closed set of partially ordered patterns from a sequence database. Moreover,
the OrderSpan is extended by using efficient optimization methods used in the field of
sequential pattern mining.

1.1.2. Research on Sequence Pattern Mining Algorithm

R. Agrawal and R. Srikant [23] proposed an algorithm based on the Apriori feature,
which considers that all non-empty subsequences of the sequence pattern are sequence
patterns. Based on this property, some Apriori-like algorithms have been proposed succes-
sively, which mainly contain two mining ideas: (1) horizontal data format mining ideas:
the AprioiAll, AprioriSome, and DynamicSome algorithms proposed by R. Srikant and R.
Agrawal [24] and the GSP algorithm proposed by F. Masseglia et al. [25]; (2) vertical data
format mining ideas, such as the classical SPADE algorithm proposed by M. Zaki [26] and
the SPAM algorithm proposed by Ayres et al. [27].

In addition, Yu et al. [28] used a Boolean matrix to improve the Apriori algorithm
and implemented the algorithm on the Hadoop platform. Youcefet al. [29] proposed the
GA Apriori and PSO Apriori algorithm by combining a genetic algorithm and particle
swarm optimization algorithm. Du [30] proposed an improved Apriori algorithm based
on a Boolean matrix and sort index rules. Anil vasoya et al. [31] improved the Apriori
algorithm by combining distributed computing with parallel computing so as to find
frequent itemsets from large databases in a shorter time. Agustinet al. [32] proposed COP
algorithm based on the PrefixSpan algorithm to optimize the correlation of results obtained
in the process of sequential pattern mining.

1.2. The Main Contribution of This Paper

At present, there is little research on status set sequential pattern mining with time
windows, but this has great research value and significance in practical application. It can
discover easily ignored rules in local windows and mine the periodicity of these rules.

The traditional sequential pattern mining methods only consider the ID of items in
the temporal database, which ignores the relationship between items with different status.
Additionally, the traditional sequential pattern mining methods only have the support
constraint, which may lead to the mining rules still lacking application value. More
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importantly, the traditional sequential pattern mining methods are to mine the temporal
database over the whole time period and count the itemsets and sequences, while the
sequential patterns existing in the local event window are often ignored. To solve the above
problems, this paper improved the traditional sequential pattern mining methods.

Considering the status attribute of each item in the database for some complex systems
and considering the status of the item, we can find the system between the normal state and
the fault state at different time points, and then, according to the information mined, we can
carry out preventive maintenance for the system that is about to have a fault state in advance.

The time window, confidence degree, coverage, factor set ratio and other constraints
are introduced to mine the sequence patterns existing in local time windows, to find out
the more regular sequence patterns among them and to mine the factor sets that lead to the
occurrence of some key itemsets in the local time window.

The periodicity of the sequential pattern with the time window is analyzed. The law
of periodic occurrence often has higher application value.

Through the improvement of traditional methods, this paper proposes the status
set sequential pattern mining method with time window; it also improved the Apriori
algorithm and proposes the TW-Apriori algorithm to mine the status set sequential pattern
with time window.

1.3. The Main Content of This Paper

In the Section 2, the related concepts and constraints of status set sequential pattern
mining with time windows are explained; in the Section 3, the main ideas of the TW-Apriori
algorithm proposed in this paper are explained, and the algorithm is verified by a small-
scale example; in the Section 4, the algorithm is verified by a large-scale example, and the
results are analyzed; in the Section 5, the conclusion of this paper is given.

2. Problem Description for SSPMTW
2.1. Related Definitions and Properties

The following defines important concepts in the mining process of status set sequence
patterns with time windows, where Table 1 is the symbol definition of the status set
sequence pattern mining model with time windows.

Table 1. Symbol definitions for SSPMTW models.

Symbol Definition

I A collection of all status items, symbolized as I = {i1, i2, . . . , im}
X A set of status items, such as X, can be represented as X⊆I
D Collection of all events in a time series database
T The entire time period in which the time series database is located
W Collection of time windows
w A time window, such as w = [ts,te], represents a continuous time interval that starts at ts and ends at te

|w| Width of time window
Dw Collection of events occurring in the w time period

|Dw| Number of events occurring in the w time period
D(X)w Collection of events occurring in the w time period that contain status itemset X

|D(X)w| Number of events in D(X)w

X1→wX2 Sequence X1→X2 that appears in the w time window
|X1→X2|w Number of occurrences of sequence X1→X2 in the w time window

sup(X1→wX2) Support for X1→wX2 within the w time window can be expressed as |X1→X2|w/|Dw|
c(X1→wX2) Confidence for X1→wX2 within the w time window can be expressed as |X1→X2|w/|D(X1)w|

s% User-specified minimal support, minsup
c% User-specified minimal confidence, minconf
ω User-specified minimal width of time window, minwin

g% User-specified minimal time coverage rate, mintcr
d% User-specified minimal coverage rate, mincov
u% User-specified minimal factor set rate, minfs
e% User-specified minimal periodic time coverage rate, minptcr



Entropy 2021, 23, 738 5 of 28

Definition 1. Status Itemset (SI): An itemset can be defined as a status itemset if and only if it
meets the following constraints:

1. X ⊆ I;
2. ∀i ∈ X, i ∈ {1, 2};
3. ∀j ∈ I − X, j = 0.

Definition 2. Frequent Status Itemset with Time Windows (FSITW): FSITW can be ex-
pressed as XW if and only if it meets the following constraints:

1. X ⊆ I;
2. ∀wi, wj ∈W, wi

⋂
wj = ∅;

3. ∀wεW, |D(X)w|
|Dw | × 100% ≥ s%.

When mining frequent status itemsets with time windows, this paper draws on the
downward closure property of the Apriori algorithm, puts forward the two concepts
of subset and superset and proposes three new important properties based on these to
calculate efficiency. This is shown below.

Definition 3. Subset: The set of status items within (ts, te) the time window can be represented
as X(ts ,te), if X′(t

′
s ,t′e) is a subset of X(ts ,te), if and only if X′ ⊆ X, t′s < t′e, t′s ≥ ts, t′e ≤ te.

Definition 4. Superset: The set of status items within (ts, te) the time window can be represented
as X(ts ,te), if X′(t

′
s ,t′e) is a superset of X(ts ,te), if and only if X ⊆ X′, t′s < t′e, t′s ≤ ts, t′e ≥ te.

Property 1. If status itemset X(X ⊆ I) is frequent in the time window (ts, te), then any subset of
it must also be frequent in the time window (ts, te).

Proof. Since the status itemset X(X ⊆ I) is frequent in the time window (ts, te),
∣∣∣D(X)(ts ,te)

∣∣∣
/
∣∣∣D(ts ,te)

∣∣∣× 100% ≥ s%. Since X′ is a subset of X,
∣∣∣D(X′)(ts ,te)

∣∣∣ ≥ ∣∣∣D(X)(ts ,te)
∣∣∣, ∣∣∣D(X′)(ts ,te)

∣∣∣
/
∣∣∣D(ts ,te)

∣∣∣× 100% ≥ s%. Thus, X′ is also frequent in the time window (ts, te). �

Property 2: If status itemset X(X ⊆ I) is infrequent in the time window (ts, te), then any superset
of it must also be infrequent in the time window (ts, te).

Proof. Since the status itemset X(X ⊆ I) is infrequent in the time window (ts, te),
∣∣∣D(X)(ts ,te)

∣∣∣
/
∣∣∣D(ts ,te)

∣∣∣× 100% ≤ s%. Since X′ is a superset of X,
∣∣∣D(X′)(ts ,te)

∣∣∣ ≤ ∣∣∣D(X)(ts ,te)
∣∣∣, ∣∣∣D(X′)(ts ,te)

∣∣∣
/
∣∣∣D(ts ,te)

∣∣∣× 100% ≤ s%. Thus, X′ is also infrequent in the time window (ts, te). �

Property 3. If status itemset X(X ⊆ I) is infrequent in the time window W1, status itemset
Y(Y ⊆ I) is infrequent on W2, and W1

⋂
W2 = ∅

⋂
W2 = ∅, so the status itemset Z = X

⋃
Y

must be infrequent in the time window W3 = W1
⋃

W2.

Proof. Since the status itemset X(X ⊆ I) is infrequent in the time window W1 and the
status itemset Z = X

⋃
Y is a superset of X, according to property 2, Z is infrequent in the

time window W1. Similarly, Z is infrequent in the time window W2, i.e.,
∣∣∣D(Z)W1

∣∣∣/∣∣DW1
∣∣×

100% ≤ s%,
∣∣∣D(Z)W2

∣∣∣/∣∣DW2
∣∣× 100% ≤ s%. Assuming

∣∣DW1
∣∣ is greater than

∣∣DW2
∣∣, then∣∣∣D(Z)W3

∣∣∣/∣∣DW3
∣∣× 100% ≤

∣∣∣D(Z)W1 + D(Z)W2
∣∣∣/2
∣∣DW1

∣∣× 100% ≤ s%. Thus, the status
itemset Z = X

⋃
Y is infrequent in the time window W3 = W1

⋃
W2. �
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These three important properties have an important value and role in frequent status
set mining and can greatly reduce the number of candidate status itemsets, thus greatly
improving the computational efficiency.

Definition 5. Status-Set Sequence with Time Windows (SSTW): SSTW is a collection of
ordered status items with time windows such as X → WY , X, Y ⊆ FSITW, and W represents the
time window in which X → Y occurs.

There are also two important properties when searching for a candidate SSTW, which
can greatly improve the speed of the algorithm, as shown in Properties 4 and 5 below.

Property 4. If the status set sequence SS(SS ⊆ I) in the time window (ts, te) is frequent, then any
subset of its status set sequence must also be frequent in the time window (ts, te).

Proof. Since the status set sequence SS(SS ⊆ I) is frequent in the time window (ts, te),

|SS|(ts ,te)/
∣∣∣D(ts ,te)

∣∣∣ × 100% ≥ s%. Since SS′ is a subset of SS, |SS′|(ts ,te) ≥ |SS|(ts ,te),

|SS′|(ts ,te)/
∣∣∣D(ts ,te)

∣∣∣× 100% ≥ s%. Thus, SS′ is also frequent in the time window (ts, te).
�

Property 5. If the status set sequence SS(SS ⊆ I) in the time window (ts, te) is infrequent, then
any of its super status set sequences must also be infrequent in the time window (ts, te).

Proof. Because the status set sequence SS(SS ⊆ I) is infrequent in the time window (ts, te),

|SS|(ts ,te)/
∣∣∣D(ts ,te)

∣∣∣ × 100% ≤ s%. Since SS′ is a superset of SS, |SS′|(ts ,te) ≤ |SS|(ts ,te),

|SS′|(ts ,te)/
∣∣∣D(ts ,te)

∣∣∣× 100% ≤ s%. Thus, SS′ is also infrequent in the time window (ts, te).
�

Definition 6. Mean Support of SSTW: The average support for SSTW of the form X → WY can
be defined as s% = (∑w∈W |w| · sw)/(∑w∈W |w|)× 100%, where sw is the support of X → WY ,
i.e., sw =

(∣∣D(X → Y)w∣∣)/(|Dw|), ∀w ∈W.

Definition 7. Mean Confidence of SSTW: The average confidence for SSTW of the form
X → WY can be defined as c% = (∑w∈W |w| · cw)/(∑w∈W |w|)× 100%, where cw is the confi-
dence of X → WY , i.e., cw =

(∣∣D(X → Y)w∣∣)/(∣∣D(X)w∣∣), ∀w ∈W.

Definition 8. Time Coverage Rate of SSPTW: The time coverage of X → WY , tcr%, indicates
the coverage of the SSPTW over the entire time period, which can be expressed as follows:

tcr% =
∑w∈W |w|
|T| × 100% (1)

where ∑w∈W |w| is the total length of the time window in which X → WY resides, |T| represents
the total time interval of the time series database. In special cases, when tcr% = 100%, the
SSPTW is a traditional, full-time sequence pattern; when tcr% ≤ 100%, the SSPTW is a part-time
sequence pattern. Since the width of the minimum time window ω is set in this paper and the
following research will also be based on the minimum time window, tcr% must satisfy the following
restrictions: tcr% ≥ ω/T.

Definition 9. Status Set Sequential Pattern with Time Windows (SSPTW): X → WY is
SSPTW, if and only if it meets the following constraints:

1. X ⊆ SI, Y ⊆ SI, X
⋂

Y = ∅, W 6= ∅;
2. XW , YW ⊆ FSITWs, that is, XW and YW meet the user-defined minimum support s%;
3. ∀w ∈W,

(∣∣D(X → Y)w∣∣)/(|Dw|)× 100% ≥ s%;
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4. ∀w ∈W,
(∣∣D(X → Y)w∣∣)/(∣∣D(X)w∣∣)× 100% ≥ c%;

5. ∀w ∈W, |w| ≥ ω.

Based on the above definition, it is known that an SSPTW’s average support is always
not less than the minimum support, and its average confidence is not less than the minimum
confidence; otherwise, a sequence with large average support and average confidence
cannot ensure that it is an SSPTW.

Definition 10. Coverage Rate (CR) of SSPTW: The coverage of the status set sequence,
SSPTW = {X1 → X2 → ··· → Xk}W , can be expressed as:

CR(SSPTW) = min

{
|X1 → X2 → X3 → ··· → Xk|W

|Xk|W
× 100%

∣∣∣∣∣∀k = 2, 3,··· , p

}
(2)

Definition 11. Strong Status Set Sequential Pattern with Time Windows (Strong SSPTW):
The status set sequence pattern (SSPTW) is a strong status set sequence pattern if and only if
CR(SSPTW) ≥ mincov, where mincov is the user-defined minimum coverage threshold (d%),
which is assigned the same value as the minimum confidence threshold ( c%).

Definition 12. Factor Set of FSI (FS): The factor set of status itemset X can be expressed as
FS(X), for any status set sequence pattern ssp in {ssp1, ssp2,··· , sspi}; if ssp→ W X is still a
status set sequence pattern, then ssp is an element of FS(X). The factor set of the frequent status
itemset X can be expressed as:

Rate(X) = ∑
i
(CR(sspi → W X)) (3)

The sspi is an element in factor set FS(X), and i is the subscript of each element.
When it satisfies Formula (2.4), where min f s is the user-defined minimum factor set ratio u%,

FS(X) is called the main factor set of frequent status set X.

Rate(X) = ∑
i
(CR(sspi → W X)) ≥ min f s (4)

2.2. Periodic Analysis of SSPTW

A periodic status set sequence pattern is a collection of sequence patterns and a series
of time windows, such as X → Pi Y , where Pi is a periodic time window containing specific
events. Key concepts in the mining process of periodic status set sequential patterns are
defined below.

Definition 13. Periodic Width, T: This is the user-specified width of a time window that satisfies
the periodic pattern, where the periodic width is an integer multiple of the minimum time window,
that is, T = k×ω.

Definition 14. Periodic Interval, O: This is a user-defined time window interval that satisfies a
periodic pattern, where the periodic interval is an integer multiple of the minimum time window,
that is, O = k × ω, where the periodic interval can be determined by experience by day, week,
month, year, etc.

Definition 15. Periodic SSP: A status set sequence pattern, such as X → Y , when both the
periodic width T and periodic interval O are satisfied. The status set sequence pattern is the periodic
status set sequence pattern, which is expressed as X → T,OY .

Definition 16. Periodic Time Coverage Rate (PTCR): Assume that p is the number of cycles
for a time window that satisfies a periodic SSP and n-p is the number of cycles for a time window
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that does not meet that periodic SSP. X → T,OY is a periodic SSP with strong regularity if and
only if X → T,OY satisfies the following periodic time coverage values:

p
n− p

× 100% ≥ e% (5)

Among them, e% is the user-defined minimum periodic time coverage threshold. When a periodic
pattern X → Pi Y satisfies both T and O constraint thresholds, but PTCR

(
X → Pi Y

)
< e%, this is

a periodic SSP with weak periodic time coverage rules.

Definition 17. Periodic Analysis of Patterns: Periodic analysis of patterns refers to the mining
of repeated status set sequence patterns with periodic regularity in a time series database.

Figure 1 is a framework for SSPMTW. In this paper, the sequential pattern mining model
is extended to mine SSP with time windows, strong SSP with time windows, the main factor
set of a frequent status itemset with time windows and periodic sequential patterns.

Figure 1. Frame diagram of SSPM with time window.

3. SSPTW Mining Algorithm
3.1. Mining Large-One FSITWs

Mining the largest set of frequent one-status items with time windows (large-one
FSITWs) are the most important part of status set sequence pattern mining with time
windows because these are the basis for producing n-FSITWs and SSPTW. Since the time
window of FSITW must be no less than the user-defined minimum time window threshold
of minwin, a simple method of mining large-one FSITWs can take the following two steps:
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(1) Divide the time series database into several time periods through minwin;
(2) Count the support degree of individual items in each time period of the database and

compare with the user-defined minimum support degree to determine whether the set
of status items are frequent. If the set of status items are frequent in one time window
and not frequent in adjacent time windows, the two time windows are merged, and
the support degree of the set of status items on the merged time window is counted.
If the minimum support threshold is still met, the set of status items are considered
frequent in the merged time window.

Based on this idea, this paper maximizes the time window of the frequent one-status
itemset in preparation for finding frequent n-FSITWs in the next step. The time interval for
frequent time windows obtained by this method will be an integer multiple of minwin.

3.2. Research on SSPMTW Mining Algorithm

The SSPTW mining steps are as follows:

(A) Mining a set of frequent status items with time windows, FSITW.
(B) Mining the status set sequence pattern with time windows, SSPTW.
(C) Mining periodic status set sequence patterns with time windows, periodic SSPTW.

3.2.1. FSITW Algorithm

This paper proposes the TW-Apriori algorithm to mine SSPMTW and analyze its
periodicity. The main idea of the algorithm is introduced below.

The traditional sequential pattern mining algorithm is to mine frequent itemsets in
the whole temporal database, ignoring the frequent itemsets in the local time window. The
frequent itemsets are the basis of mining sequential patterns, so the traditional sequential
pattern mining algorithms cannot mine the sequential patterns in the local time window.
Therefore, mining frequent status itemsets FSITWs in local time window is the key.

Generating large-one FSITWs is the basis of mining frequent status itemsets with
time windows. This algorithm divides the database into small segments according to the
minwin threshold, then scans the whole database, counts the support of one-candidate
status itemsets in each small time segment, compares them with minsup to determine
whether they are frequent, and uses the idea described in Section 3.1 to maximize the time
window of one-candidate status itemsets by combining the adjacent time window. If the
time coverage rate of the time window where the one-candidate status itemset is located
meets mintcr, then the one-candidate status itemset is large-one FSITWs.

The specific pseudo code is shown in Figure 2. The inputs are the temporal database,
minwin, minsup and mintcr, and the outputs are large-one FSITWs.

When mining FSITWs, we need to generate candidate k-FSITWs (k ≥ 2). The idea of
the algorithm is to generate the next candidate k-FSITWs through the (k-1)-FSITWs mined
in the previous step until no candidate status itemset is generated. It is worth mentioning
that for all candidate status itemsets, only when their time window is in the intersection
of their time window supersets can we count their support, which is also the core idea of
property 3 in Section 2.

The specific pseudo code is shown in Figure 3. The inputs are the (k-1)-FSITWs mined
in the previous step and minsup, and the outputs are the candidate k-FSITWs.



Entropy 2021, 23, 738 10 of 28

Figure 2. Large-one FSITWs mining algorithm.

Figure 3. New candidate FSITWs mining algorithm.

Based on the above two subroutines, this paper provides the pseudo code for mining
FSITWs, as shown in Figure 4. First, large-one FSITWs are generated, and then, all candidate
k-FSITWs are generated by using the subroutine shown in Figure 3, and their support and
time coverage rate are counted. When the minimum support threshold and minimum
time coverage rate threshold are met, FSITWs can be obtained. In this paper, we will use
the properties 1–3 proposed in the second section to reduce the generation of candidate
itemsets so as to improve the efficiency of the algorithm.
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Figure 4. TW-Apriori algorithm for mining FSITWs.

Using the above three algorithms, we finally mined all the frequent status itemsets
and their time windows to prepare for the next sequential pattern with time windows.

3.2.2. SSPTW Algorithm

All FSITWs have been mined in Section 3.3.1, which are the basis of mining status
set sequential patterns with time windows. In the process of mining SSPTW, we need
to combine (k-1)-SSPTW(k ≥ 2) and 1-SSPTW to generate candidate k-SSPTW, in which
1-SSPTW is all FSITWs. The specific pseudo code is shown in Figure 5. Its inputs are the
(k-1)-SSPTW mined in the previous step and FSITWs, and its outputs are the candidate
k-SSPTW.

Figure 5. New Candidate-SSPTW mining algorithm.

Using the above subroutine, we can obtain all candidate SSPTWs, and calculate their
support, confidence and time coverage rate so as to mine SSPTW. Figure 6 shows the
specific pseudo code of the SSPTW mining algorithm.



Entropy 2021, 23, 738 12 of 28

Figure 6. TW-Apriori algorithm for mining SSPTW.

3.2.3. Strong SSPTW Algorithm

After the study in Section 3.2.2, all the status set sequence patterns with time windows
will be finally discovered. In order to solve the problem that the sequence pattern mined
by the traditional algorithm has weak regularity and low practical application value, this
paper adds the constraint of coverage rate to mine SSPTW with stronger rules, that is,
strong SSPTW. Figure 7 is the specific pseudo code of the strong SSPTW mining algorithm.
By counting the coverage of SSPTW and judging whether it meets the coverage threshold,
the strong SSPTW is mined.

Figure 7. TW-Apriori algorithm for mining Strong SSP.

3.2.4. Factor Set of FSITW Algorithm

In the practical application process, users may be interested in some important FSITWs,
because when these important FSITWs occur, they may bring huge economic benefits or
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huge losses, or other important impacts. Therefore, the constraint of the minimum factor
set ratio is added in this paper.

Figure 8 shows the specific pseudo code of the factor set of the FSITWs mining
algorithm. According to definition 12 in Section 2, when the factor set of the FSITWs meets
the minimum factor set ratio, it is the main factor set of the FSITWs.

Figure 8. TW-Apriori algorithm for mining the FSI factor set.

3.2.5. Periodic SSP Algorithm

By analyzing the periodicity of the status set sequence pattern with time windows, the
regularity of the periodicity in the pattern is found. Firstly, the SSPTW and its time windows
satisfying the period width T and period interval O are discovered, and then, the periodic
time coverage rate of these patterns is calculated. When they meet the minimum periodic
coverage rate threshold, the pattern is determined as a periodic status set sequence pattern.

The specific pseudo code of the algorithm idea is shown in Figure 9.

Figure 9. Periodic sequence pattern mining algorithm.
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3.2.6. Analysis of Computational Complexity of the Algorithm

When mining frequent itemsets with time windows, candidate frequent itemsets are
obtained by pairwise combination of the previous frequent itemsets; this is also the case
for the mining of status sets sequential patterns with time windows. This will generate a
large number of candidate itemsets and sequences. For example, when n (k-1)-FSITWs are
mined in the previous step, C2

n candidate k-FSITWs will be generated. This will greatly
occupy the memory of the computer and increase the computational complexity of the
algorithm. The properties 1 to 5 proposed in the second section can greatly reduce the
generation of candidate frequent itemsets and status sets sequential patterns, reducing the
complexity and improving the efficiency of the algorithm.

3.2.7. Entropy in the Systems

Entropy is ubiquitous in the system, and its physical meaning is a measure of the
degree of system chaos. The method proposed in this paper is to mine the potential rules
in the system, so as to predict the future state of the system. These rules are sequential
patterns, which reflect the relationship between different system states. The appearance
of one state of the system may cause the occurrence of another state. Through these
sequential patterns, we can know the future state of the system, so as to optimize the
system. Therefore, the discovery of these sequential patterns can make the system more
orderly and stable, and correspondingly, the entropy of the system decreases.

3.3. Solution and Analysis of an Example of SSPMTW

The following is a small-scale example to verify the feasibility and validity of the
methods and algorithms presented in this paper.

Table 2 shows 25 instances of fault monitoring for three parts of a system, recording
the corresponding data in chronological order and finally forming the time series database.
The TID represents the timestamp of the monitoring; the Status itemset represents the set of
status items for each monitoring record; the three parts correspond to three items— {i1, i2, i3},
status ∈ {0, 1, 2}, 0—normal, 1—potential failure, 2—failure. minwin = 5, minsup = 40%,
minconf = 60%, mincov = 60%, mintcr = 40%, minfs = 80%.

Table 2. Temporal database.

TID Status Itemset TID Status Itemset TID Status Itemset

1 (i1,1), (i2,2), (i3,2) 10 (i1,2), (i2,2) 19 (i2,1), (i3,2)
2 (i1,2), (i2,1), (i3,1) 11 (i1,1), (i3,2) 20 (i2,1)
3 (i1,1), (i2,2), (i3,2) 12 (i1,2), (i2,1), (i3,1) 21 (i1,1), (i3,2)
4 (i1,2), (i2,1), (i3,1) 13 (i1,1), (i2,2) 22 (i1,2), (i2,1), (i3,1)
5 (i1,1), (i2,2) 14 (i1,2), (i2,1), (i3,1) 23 (i1,1), (i2,2)
6 (i1,2), (i2,1) 15 (i2,2) 24 (i1,2), (i2,1), (i3,1)
7 (i3,2) 16 (i1,2), (i2,2) 25 (i2,2)
8 (i1,2), (i3,2) 17 (i1,1), (i3,2)
9 (i1,1), (i3,2) 18 (i1,2), (i3,1)

3.3.1. Solution and Analysis of SSPMTW
Step 1. Mining FSITW

This section uses two methods to mine frequent status itemsets. The first method is
FSI mining without considering time windows. The second method is mining frequent
status itemsets with time windows, that is, the FSITW mining method in this section. Using
two different solutions, the two methods are compared and analyzed.

First, in order to easily calculate the support of each item, the temporal database needs
to be converted to a 0–1 form, as shown in Table 3.
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Table 3. Temporal database (0–1).

TID
Status Item

TID
Status Item

(i1,1) (i1,2) (i2,1) (i2,2) (i3,1) (i3,2) (i1,1) (i1,2) (i2,1) (i2,2) (i3,1) (i3,2)

1 1 0 0 1 0 1 14 0 1 1 0 1 0
2 0 1 1 0 1 0 15 0 0 0 1 0 0
3 1 0 0 1 0 1 16 0 1 0 1 0 0
4 0 1 1 0 1 0 17 1 0 0 0 0 1
5 1 0 0 1 0 0 18 0 1 0 0 1 0
6 0 1 1 0 0 0 19 0 0 1 0 0 1
7 0 0 0 0 0 1 20 0 1 0 0 0 0
8 0 1 0 0 0 1 21 1 0 0 0 0 1
9 1 0 0 0 0 1 22 0 1 1 0 1 0

10 0 1 0 1 0 0 23 1 0 0 1 0 0
11 1 0 0 0 0 1 24 0 1 1 0 1 0
12 0 1 1 0 1 0 25 0 0 0 1 0 0
13 1 0 0 1 0 0 Sum 9 12 8 9 7 9

(1) FSI Mining FSI Mining takes place over the entire time period of the database. If the
support of a status itemset is not less than the minimum support specified by the user,
it is determined that the set is a frequent status itemset. By summing the columns of
each status item in Table 3, the support of each status item is calculated (as shown in
red in the last line of Table 3). Since misup = 40%, the minimum amount of support
is 25*40% = 10, which means that when the amount of support for each item is not
less than 10, the item is frequent. As can be seen from the red letters in the last row
of Table 3, only (i1,2) of the status items meets the requirements, and all other items
have less than 10 support, so the set of frequent status items finally mined by the FSI
Mining method is {(i1,2)}.

(2) Frequent status Item Set Mining with Time Window Frequent status itemsets with
time windows are divided into small time periods by minwin, and then, the support
of itemsets is determined to be minsup-satisfied in a small time period. When minsup
is satisfied, the time coverage of these time windows is determined to be no less than
mintcr. Only when both conditions are satisfied can the itemset be determined to
be FSITW.

(A) 1-FSITW Figure 10 takes two status items, (i1,1) and (i3,2), as examples for
analysis. The graphics show that (i1,1) is frequent in time windows [1,3,5] and
infrequent in time windows [2,4]; (i3,2) is frequent in time windows [1,2,4] and
infrequent in time windows [3,5].
The time window maximization of frequent one-status itemsets means that, if
the minsup constraint threshold is still satisfied after merging the frequent time
window and the adjacent infrequent time window, we will merge their time
windows. (i1,1) is frequent in time windows [1,3,5] but is not frequent in time
windows [2,4]. However, by maximizing the time window of frequent one-
status itemsets, we find that (i1,1) is also frequent in time windows [1–3], and
its support is 6/15, which meets minsup. Then, by considering the minimum
time coverage threshold, we find that tcr(i1,1) = 3/5 > 40%, so the maximum
frequent time windows of (i1,1) are [1–3,5]. Similarly, using the same method,
we find that the frequent time windows of (i3,1) are [1–4]. Summarily, using
the same method, we mined the frequent one-status itemsets with the largest
time window, namely 1-MFSITW.

(B) k-FSITW Based on the 1-FSITW, this paper finally mines all FSITWs, and makes
a simple comparison between FSITW and FSI, as shown in Table 4.
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Figure 10. An example illustrating FSITW.

Table 4. Comparison between FSITW and FSI.

FSITW FSI

Status
Itemset

Time
Window Support

Time
Coverage

Rate

Status
Itemset

L1

(i1,1) [1–3,5] [0.4,0.4] 0.8

(i1,2)
(i1,2) [1–5] [0.48] 1.0
(i2,1) [1,3,5] [0.4,0.4,0.4] 0.6
(i2,2) [1–3,5] [0.4,0.4] 0.8

(i3,1) [1,3,5] [0.4,0.4,0.4] 0.6
(i3,2) [1–4] [0.4] 0.8

L2

(i1,2)(i2,1) [1,3,5] [0.4,0.4,0.4] 0.6
∅(i1,2)(i3,1) [1,3,5] [0.4,0.4,0.4] 0.6

(i2,1)(i3,1) [1,3,5] [0.4,0.4,0.4] 0.6

L3
(i1,2)

(i2,1)(i3,1) [1,3,5] [0.4,0.4,0.4] 0.6 ∅

Number 10 1

It can be seen from the table that 10 FSITWs satisfying the conditions can be mined in
the local time window, while only one FSI can be mined in the whole time period. Through
comparison, it can be found that the proposed method can mine those status itemsets that
are not frequent in the whole time period but are frequent in the local time window.

Step 2. Mining SSPTWs

When mining sequential patterns of status sets with time windows, we need to
consider the constraints of support, confidence and time coverage. Only when the sequence
meets the threshold of minsup, minconf and mintcr can it be judged as sequential patterns of
status sets with time windows. Among them, minsup = 40%, minconf = 60%, mintcr = 40%.
The specific SSPTW is shown in Table 5. In the following table, L1 represents an SSPTW
with a length of 1, that is, all FSITWS, and LK represents the k-status set sequence pattern
with time window.



Entropy 2021, 23, 738 17 of 28

Table 5. Status-set sequential pattern with time window.

SSPTW TW Support Confidence Coverage Rate TCR

L1 (i1,1) . . . (i1,2)(i2,1)(i3,1) ※ ※ ※ ※ ※

L2

(i1,1)→(i1,2) [1,3,5] [0.4,0.4,0.4] [0.67,1.0,1.0] [1.0,1.0,1.0] 0.6
(i1,1)→(i2,1) [1,3,5] [0.4,0.4,0.4] [0.67,1.0,1.0] [1.0,1.0,1.0] 0.6

... ... ... ... ... ...
(i2,1)(i3,1)→(i2,2) [1,3,5] [0.4,0.4,0.4] [1.0,1.0,1.0] [0.67,1.0,1.0] 0.6

(i1,2)(i2,1)(i3,1)→(i2,2) [1,3,5] [0.4,0.4,0.4] [1.0,1.0,1.0] [0.67,1.0,1.0] 0.6

L3

(i1,1)→(i1,2)→(i2,2) [1,3,5] [0.4,0.4,0.4] [1.0,1.0,1.0] [0.67,1.0,1.0] 0.6
(i1,1)→(i2,1)→(i2,2) [1,3,5] [0.4,0.4,0.4] [0.67,1.0,1.0] [0.67,1.0,1.0] 0.6

... ... ... ... ... ...
(i1,1)→(i2,1)(i3,1)→(i2,2) [1,3,5] [0.4,0.4,0.4] [0.67,1.0,1.0] [0.67,1.0,1.0] 0.6

(i1,1)→(i1,2)(i2,1)(i3,1)→(i2,2) [1,3,5] [0.4,0.4,0.4] [0.67,1.0,1.0] [0.67,1.0,1.0] 0.6

Step 3. Mining Strong SSPTWs

On the basis of SSPTWs, strong SSPTWs can be mined by considering the coverage
threshold, where mincov = 60%.

It can be seen from the “coverage rate” column in Table 5 that all SSPTWs meet the
mincov constraint, that is, SSPTWs in Table 5 are strong SSPTWs.

Step 4. Mining Factor Set of FSITWs

When considering the factor set rate constraint, we can mine the major factor set of
FSITW with time windows. We took frequent status itemsets with time windows {(i2,2)-[1–
3,5]} as an example, in which we assumed that (i2,2) was an important part that users pay
close attention to. Finally, we discovered the major factor set of (i2,2), as shown in Table 6.

Table 6. Major factor set of FSITW.

FSI Lk Major Factor Set TW Support Confidence TCR

(i2,2)-
[1–3,5]

L1

(i1,2) [1,3,5] [0.4,0.4,0.4] [1.0,1.0,1.0] 0.6
(i2,1) [1,3,5] [0.4,0.4,0.4] [1.0,1.0,1.0] 0.6

... ... ... ... ...
(i1,2)(i2,1)(i3,1) [1,3,5] [0.4,0.4,0.4] [1.0,1.0,1.0] 0.6

L2

(i1,1)→(i1,2) [1,3,5] [0.4,0.4,0.4] [0.67,1.0,1.0] 0.6
(i1,1)→(i2,1) [1,3,5] [0.4,0.4,0.4] [0.67,1.0,1.0] 0.6

... ... ... ... ...
(i1,1)→(i1,2)(i2,1)(i3,1) [1,3,5] [0.4,0.4,0.4] [0.67,1.0,1.0] 0.6

In Table 6, we can find all the major factor sets that may lead to (i2,2)–[1–3,5]. At the
same time, we sorted the support, confidence and time coverage of each SSPTW that led to
(i2,2)–[1–3,5] from large to small so that we could quickly lock high-frequency and effective
SSPTWs, which is convenient for users to focus on monitoring these sequential patterns.

3.3.2. Periodic Analysis of SSPTW

Using the periodic analysis of SSPTWs in Table 5, we finally found periodic SSPs, as
shown in Table 7.
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Table 7. Periodic SSPs.

TW Lk Periodic SSP Support Confidence Coverage Rate TCR

[1,3,5]

L2

(i1,2)→(i2,2) [0.4,0.4,0.4] [1.0,1.0,1.0] [1.0,1.0,1.0] 0.6
(i2,1)→(i2,2) [0.4,0.4,0.4] [1.0,1.0,1.0] [0.67,1.0,1.0] 0.6

... ... ... ... ...
(i1,1)→(i1,2)(i2,1)(i3,1) [0.4,0.4,0.4] [0.67,1.0,1.0] [1.0,1.0,1.0] 0.6

L3

(i1,1)→(i2,1)→(i2,2) [0.4,0.4,0.4] [0.67,1.0,1.0] [0.67,1.0,1.0] 0.6
(i1,1)→(i3,1)→(i2,2) [0.4,0.4,0.4] [0.67,1.0,1.0] [0.67,1.0,1.0] 0.6

... ... ... ... ...
(i1,1)→(i1,2)(i2,1)(i3,1)→(i2,2) [0.4,0.4,0.4] [0.67,1.0,1.0] [0.67,1.0,1.0] 0.6

[2,4] L2
(i3,2)→(i1,2) [0.4,0.4,0.4] [1.0,0.67,1.0] [1.0,0.67,0.67] 0.6
(i1,2)→(i3,2) [0.4,0.4] [0.67,0.67] [0.67,1.0] 0.4

It can be seen from Table 7 that there are two periodic laws in the table: the periodic
time windows are [1,3,5], [2,4] and the cycle width of these two windows is 1; the cycle
interval is also 1, and the periodic time coverage is 100% and 66.7%, respectively.

Table 7 not only excavates periodic SSP but also sorts them according to support,
confidence, coverage rate and TCR, so that users can select relatively high value periodic
status set sequence patterns.

4. Large-Scale Example Experiment

This section will use large-scale examples to verify the feasibility and efficiency of
the methods and algorithms proposed in the article. The data used in this section include
96,554 sets of transaction data composed of 1000 items. The description of the dataset is
shown in Table 8.

Table 8. Dataset description.

Tid Status Itemset

Timestamp of each transaction The status itemset contained in each transaction

4.1. Analysis of Solution Results
4.1.1. TW-Apriori Algorithm Efficiency Verification

It can be seen from the curve trend in Figure 11 that the total running time increases
with the increase in data size, but it still shows a linear growth trend rather than an
exponential growth. Moreover, when the data scale is 90,000, the running time to finally
mine all modes is only 11 s. Therefore, the curve trend in Figure 11 can prove the efficiency
of the TW-Apriori algorithm proposed in this paper, where minwin = 5000, minsup = 0.035,
minconf = 0.04, mintcr = 0.1.

4.1.2. Analysis of FSITW Mining Results

First, this paper will study the division of time window so as to mine the optimal
minwin, as shown in Figure 12. By analyzing the three curves with minsup values of 0.030,
0.035 and 0.040, it was found that when minsup = 0.030, the number of FSITW decreased
with the increase in minwin threshold. For the other two curves, it was found that the
number of FSITW also showed a decreasing trend, but when the value of minwin was
greater than 70,000, the two curves basically coincided; that is, when the value of minsup
was 0.035 and 0.040, the impact on the number of FSITWs was the same.
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Figure 11. Relationship between “data scale” and “running time”.

Figure 12. MinWin—number of FSITWs.

Minwin = 100,000 represents that the size of the minimum time window is the total
time length of the whole time series database. Moreover, from the curve of minsup = 0.030,
we can see that the number of FSITWs finally mined was greater than the number of FSIs.

4.1.3. Analysis of SSPTW Mining Results

In the FSITW mining stage, we found that when minsup = 0.035, the number of FSITWs
excavated is the largest. Next, this paper will study the value of minimum confidence
because the number of SSPTWs finally mined has a very important relationship with the
values of minsup and minconf.

In Figure 13, minsup has three values, which are 0.033, 0.034 and 0.035, respectively.
It can be seen from Figure 13 that with the increase in the minsup threshold, the number
of SSPTWs finally mined gradually decreases. Moreover, when the minsup threshold is
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constant, the number of SSPTWs decreases with the increase in minconf value, but the
number of SSPTWs does not change in [0.01,0.4] and [0.06,0.1], which indicates that the
confidence has little effect on the number of SSPTWs when it is taken in these two intervals.
Finally, this paper selects the representative points of minconf value, which are 0.02, 0.05
and 0.10.

Figure 13. MinConf–MinSup—number of SSPTWs.

In Figures 14 and 15, the values of minconf are 0.02, 0.05 and 0.10, respectively
(minwin = 5000 and mintcr = 0.1). From these two figures, we can see that when minsup is
constant, the number of SSPTWs decreases with the increase in minconf. However, when
minconf is constant, the number of SSPTWs fluctuates greatly. It can be seen from the
figure that when minsup = 0.035, the number of SSPTWs finally mined by the three curves
is the largest. Therefore, when minsup = 0.035, the number of SSPTWs is greater.

Figure 14. MinSup–MinConf—number of SSPTWs.
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Figure 15. MinSup–MinConf—number of SSPTWs.

4.1.4. Analysis of Results of Strong SSPTW Mining

When the coverage threshold is considered, strong SSPTWs can be mined by this method.
In this paper, minwin = 5000; mintcr = 0.1; and minsup = 0.33, 0.034 and 0.035, respectively.

It can be seen from Figure 16 that, when minsup is constant, the number of strong
SSPTWs finally mined decreases with the increase in the mincov value, but when mincov
is in the interval of [0.01,0.4] and [0.06,0.1], the number curve of strong SSPTWs is a
horizontal straight line, which indicates that the change in the mincov value in the interval
of [0.01,0.04] and [0.06,0.1] has no effect on the number of strong SSPTWs.

Figure 16. MinCov–MinSup—number of strong SSPTWs.

4.1.5. Analysis of the Impact of the Minimum Time Coverage Threshold on the Number
of SSPTWs

This paper studies the value of mintcr and observes the influence of its value on the
number of SSPTWs (minwin = 5000, minsup = 0.035, minconf = 0.04).

It can be seen from Figure 17 that the number of SSPTWs decreases with the increase
in the mintcr value, but when the mintcr value is in the range of [0.03, 1.0], it has little effect
on the number of SSPTWs.
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Figure 17. MinTCR—number of SSPTWs.

In Figure 18, we can see the number of SSPTWs in all combinations of mincov–minsup
intuitively. In addition, according to the different colors and the depth of colors in the
graph, the optimal combination of mincov–minsup is obtained, which is divided into
(0.1,0.03) and (0.1,0.035).

Figure 18. MinTCR–MinSup—number of SSPTWs.

4.1.6. Factor set of FSITW Mining Result Analysis

When considering the ratio constraint value of the factor set, this paper can mine the
major factor set of FSITWs (minwin = 5000, minsup = 0.035, minconf = 0.1).

From Figure 19, it can be seen that with the increase in the minfs value, the number of
factor sets eventually mined will gradually decrease, and when the minfs value is in three
intervals, [0.1,0.3], [0.4,0.6], [0.7,1.0], the change in the corresponding minfs value has no
effect on the number of factor sets.
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Figure 19. MinFS—number of factor sets.

4.1.7. The Periodicity Analysis of Pattern

By analyzing the periodicity of SSPTWs, we can find the periodic status set sequence
patterns which satisfy the cycle width and cycle interval.

Figure 20 shows the number of periodic sequence patterns corresponding to all combi-
nations of “period interval–period width”. Moreover, through the different colors and the
changes of color depth, we can intuitively see which combinations ultimately produce the
most periodic pattern data so as to provide users with valuable information and facilitate
users to make decisions (minwin = 5000, minsup = 0.035, minconf = 0.04, mintcr = 0.1,
minptcr = 0.1).

Figure 20. Periodic time interval–periodic width—number of periodic SSPs.

Next, we will fix the value of “cycle width–cycle interval” to study the periodic time
coverage and observe the influence of the value of periodic time coverage on the number
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of periodic sequence patterns. The cycle width is 5000, and the cycle interval is 5000. From
Figure 21, we can see that the number of periodic sequence patterns decreases with the
increase in minptcr value. However, when the minptcr value is in the range of [0.1,0.4]
and [0.5,0.9], the corresponding minptcr value has little effect on the number of periodic
sequence patterns. Additionally, as the minptcr threshold increases, the regularity of the
periodic SSPs becomes stronger, and the practical application value becomes greater.

Figure 21. MinPTCR—number of periodic SSPs.

4.2. Comparison and Analysis of Solution Results of SSPM and SSPMTW
4.2.1. Comparative Analysis of FSITW Mining and FSI Mining

Next, this paper will use the TW-Apriori algorithm and Apriori algorithm to mine FSI
and make a comparative analysis (minwin = 5000, mintcr = 0.1). The specific figures are
shown in Figures 22 and 23.

Figure 22. MinSup—number of FSIs.
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Figure 23. MinSup—number of FSIs.

It can be seen from Figures 22 and 23 that the number of FSI mined by Apriori
algorithm decreases with the increase of the minsup threshold, while the mining results
of the TW-Apriori algorithm do not show a monotonic decreasing trend, among them;
when minsup is greater than 0.35, the number of FSI decreases rapidly; while minsup is
greater than 0.37, the number of FSI increases by a small margin. At this time, the number
of FSI mined by Apriori algorithm does not change with the growth of minsup. When
the value of minsup is in the interval [0.032,0.036] and [0.037,0.039], the number of FSIs
excavated has three peaks, and in these two intervals, the number of FSIs mined by the
TW-Apriori algorithm is more than that mined by traditional algorithms, especially when
minsup = 0.035. The TW-Apriori algorithm mined the largest number of FSIs. In addition,
it can be seen from Figure 22 that the average value of the mining results of the TW-Apriori
algorithm is higher than that of traditional algorithms. In this graph, it is proved that the
status set sequential pattern mining method with time window can mine the status itemset
in the local time window, which makes up for the defects of traditional sequential pattern
mining methods and verifies the important value and significance of SSPMTW.

4.2.2. Comparison and Analysis of SSPTW Mining and SSP Mining

Table 9 shows that the TW-Apriori algorithm and the Apriori algorithm are used to
mine status set sequential patterns, respectively. From the last two columns of Table 9,
it can be seen that the number of SSPs mined by the two methods shows a downward
trend with the increase in the support threshold. When the support threshold is 3.0%, the
number of SSPs mined by the two methods is the largest, and the number of SSPs mined by
SSPMTW is 40. The number of SSPs mined by traditional methods is 31; when the support
threshold is the same, the number of SSPs with time windows is more than that without
time windows. The average number of SSPs with time windows is 12.7, while the average
number of SSPs without time windows is 5.1. The red words in the table indicate that
when the minsup value is in the interval [3.4%, 3.9%] and the mintcr value is in the interval
[10%, 30%] the traditional method was unable to mine SSPs, while SSPMTW can still mine
a certain number of SSPs, which means that the traditional method ignores the sequence
patterns existing in the local time window, and the SSPMTW proposed in this paper can
solve this problem well.
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Table 9. Comparative analysis of the two algorithms under the constraint of “mintcr–minsup”.

Number of SSPs
MinTCR (TW-Apriori)

Total Apriori
10%~20% 20%~30% 30%~40% 40%~50% 50%~60% 60%~70% 70%~80% 80%~90% 90%~100%

MinSup

3.0% 17 8 1 0 1 0 0 13 0 40 31

3.1% 4 0 0 3 0 0 11 2 0 20 12

3.2% 2 1 0 0 0 12 1 0 0 16 6

3.3% 4 0 0 1 16 0 0 0 0 21 2

3.4% 4 1 0 1 0 0 0 0 0 6 0

3.5% 17 2 0 0 0 0 0 0 0 19 0

3.6% 1 1 0 0 0 0 0 0 0 2 0

3.7% 2 0 0 0 0 0 0 0 0 2 0

3.8% 1 0 0 0 0 0 0 0 0 1 0

3.9% 0 0 0 0 0 0 0 0 0 0 0

Therefore, through comparative analysis, it was found that because SSPM is carried
out over the whole time period of the time series database, when the support threshold
increases, it may not be able to mine SSPs that meet the constraints; however, SSPMTW
is carried out over the local time window, so it can mine some SSPs that do not meet the
constraints in the whole time period but do meet the constraints in the local time window.

4.2.3. Analysis of the Influence of Time Window and Non-Time Window on
Pattern Diversity

SSPM without considering time windows can mine FSIs, SSPs, strong SSPs and factor
sets of FSIs, while SSPMTW can not only mine FSITWs, SSPTWs, strong SSPTWs and factor
sets of FSITWs but can also mine periodic SSPs.

Therefore, compared with SSPM, SSPMTW can mine the rules existing in the local
time window and analyze the periodicity of the rules.

5. Discussion and Conclusions
5.1. Discussion

Experiments show that the proposed method can discover the relationship between
items with different attributes. The algorithm proposed in this paper can mine more
frequent itemsets and sequential patterns than the traditional algorithm, which shows
that the traditional sequential pattern mining methods ignore the rules in the local time
window, and the method proposed in this paper makes up for this. In addition, by
adding the confidence threshold, coverage threshold and factor set ratio, and analyzing the
periodicity of the status set sequence pattern with time windows, this paper has revealed
the strong status set sequence pattern with time windows, the main factor set of frequent
status itemsets with time windows and the periodic status set sequence patterns; these
rules are more regular and valuable, overcoming the limitations of traditional sequential
pattern mining algorithms. These more regular sequential patterns can better predict the
future state of the system, make the operation of the system more stable and orderly, and
reduce the entropy of the system.

The mining problem of the rule of “heatstroke→complication” mentioned above can
be solved well by the method proposed in this paper. The occurrence of heatstroke and
its complications is not frequent over the whole period of time. After dividing the whole
study period into months, we found that the occurrence of these diseases was frequent in
the months with higher temperatures. On this basis, the corresponding laws can be easily
mined out. According to these rules, appropriate preventive measures can be taken for
these diseases. Therefore, the method and algorithm proposed in this paper can solve some
practical problems well and have certain practical significance.
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5.2. Conclusions

In this paper, the problem of mining sequential patterns of status sets with time
windows was proposed by considering the case of time windows. Firstly, the concepts in-
volved in SSPMTW process were defined, and the corresponding properties were proposed,
including some new constraints, such as minimum time window, minimum time coverage
and minimum periodic time coverage. The periodicity of SSPMTWs was analyzed, and the
constraints of cycle width and interval are proposed. According to the research content, this
paper proposes the TW-Apriori algorithm and explains the idea of the algorithm. Finally,
through small-scale and large-scale examples, the feasibility, effectiveness and efficiency of
the proposed method and algorithm were verified, and a variety of patterns and rules were
finally mined, such as FSITW, SSPTW, strong SSPTW, factor set of FSITW and periodic
SSP; these rules can make the system more orderly and reduce the entropy of the system.
Through the comparative analysis of SSPM and SSPMTW, it can be seen that compared
with SSPM, SSPMTW can excavate the laws existing in the local time window and analyze
the periodicity of the laws, which solves the problem of SSPM ignoring the laws existing
in the local time window. In addition, by increasing the confidence threshold, coverage
threshold and factor set ratio, we discovered more regular and valuable sequential patterns
in the local time window, which overcomes the limitations of traditional sequential pattern
mining methods.
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