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Abstract

Standard magnetic resonance imaging approaches offer high-resolution but indirect

measures of neural activity, limiting understanding of the physiological processes associ-

ated with imaging findings. Here, we used calibrated functional magnetic resonance

imaging during the resting state to recover low-frequency fluctuations of the cerebral

metabolic rate of oxygen (CMRO2). We tested whether functional connections derived

from these fluctuations exhibited organization properties similar to those established by

previous standard functional and anatomical connectivity studies. Seventeen partici-

pants underwent 20 min of resting imaging during dual-echo, pseudocontinuous arterial

spin labeling, and blood-oxygen-level dependent (BOLD) signal acquisition. Participants

also underwent a 10 min normocapnic and hypercapnic procedure. Brain-wide, CMRO2

low-frequency fluctuations were subjected to graph-based and voxel-wise functional

connectivity analyses. Results demonstrated that connections derived from resting

CMRO2 fluctuations exhibited complex, small-world topological properties (i.e., high

integration and segregation, cost efficiency) consistent with those observed in previous

studies using functional and anatomical connectivity approaches. Voxel-wise CMRO2

connectivity also exhibited spatial patterns consistent with four targeted resting-state

subnetworks: two association (i.e., frontoparietal and default mode) and two perceptual

(i.e., auditory and occipital-visual). These are the first findings to support the use of

calibration-derived CMRO2 low-frequency fluctuations for detecting brain-wide organi-

zational properties typical of healthy participants. We discuss interpretations, advan-

tages, and challenges in using calibration-derived oxygen metabolism signals for

examining the intrinsic organization of the human brain.
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Calibrated functional magnetic resonance imaging (fMRI) uses blood-

oxygen-level dependent (BOLD) signal, along with blood flow or

volume signals to recover a signal capturing population-level neural

tissue changes in O2-tension. Recovering this cerebral metabolic rate

of oxygen (CMRO2) provides at least three advantages relative to

more common functional imaging signals: (a) physiological
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interpretation, (b) proximity to neuronal activity, and (c) it circumvents

the vascular confounds of BOLD signal. However, these advantages

are accompanied by lower spatial and temporal resolution, and

decreased signal quality compared with BOLD-based imaging. Given

these limitations, we sought to determine whether functional connec-

tions from low-frequency CMRO2 fluctuations recovered during the

resting state could detect organization properties typical of the

healthy brain.

Calibration-derived CMRO2 promises physiological specificity,

closer proximity to neuronal activity, and, in some cases, greater validity

of functional imaging signals than the BOLD signal (see Buxton, 2010;

Gauthier & Fan, 2018; Germuska & Wise, 2018; Hoge, 2012; Iannetti

and Wise, 2007). Specifically, calibration-derived CMRO2 is closely asso-

ciated with measures of electrical and chemical neuronal activity

(e.g., Herman, Sanganahalli, Blumenfeld, & Hyder, 2009; Herman,

Sanganahalli, Blumenfeld, Rothman, & Hyder, 2013; Hyder, 2004; Hyder

et al., 2001; Hyder, Rothman, & Shulman, 2002; Lin, Fox, Hardies,

Duong, & Gao, 2010; Smith et al., 2002). Compared to BOLD signal,

calibration-derived CMRO2 has been shown to have between 2 and

8 times greater predictive ability for neuronal activation measures

(i.e., local field potentials, multiunit activity; Herman et al., 2013). Addi-

tionally, CMRO2 signals may provide information beyond BOLD or cere-

bral blood flow (CBF) to inform understanding of pathophysiological

processes and aspects of neurocognitive functioning (Hubbard, Sanchez

Araujo et al., 2017; Hubbard, Turner et al., 2017; Hutchison, Lu, &

Rypma, 2013; Mohtasib et al., 2012; West et al., 2020; see Abdelkarim

et al., 2019; Iannetti andWise, 2007).

Despite its promise, calibration-derived CMRO2 is limited in spa-

tial and temporal resolution, as well as signal quality relative to the

more commonly used BOLD signal. These limitations could be particu-

larly problematic when considering use of calibration-derived CMRO2

to examine resting-state functional connectivity because functional

connectivity is sensitive to factors such as sampling rate and within-

participant spatiotemporal variability (Birn, 2012; Hallquist, Hwang, &

Luna, 2013; Power, Barnes, Snyder, Schlaggar, & Petersen, 2012;

Tomasi et al., 2017; Wu et al., 2009). For example, one study

attempted resting-state functional connectivity analyses using posi-

tron emission tomography (PET)-based dynamic glucose metabolism

signals, acquired with an effective sampling rate of 0.01 Hz (Tomasi

et al., 2017). PET glucose measurements failed to detect common

resting-state subnetworks often observed using BOLD-based fMRI,

suggesting that the reduced rate at which glucose was sampled com-

promised the ability to detect established resting-state organizational

properties. Although calibration-derived CMRO2 sampling rates are

around 25 times greater than those currently possible for PET-based

dynamic glucose measurements, current CMRO2 sampling rates are

still between two and eight times slower than common BOLD sam-

pling rates (e.g., 0.25 Hz vs. �1–2 Hz). Along with decreased temporal

resolution, calibration-derived CMRO2 is a lower-quality signal rela-

tive to BOLD. For instance, Wu et al. (2009) assessed calibration-

derived CMRO2 in resting and task-based contexts. These authors

used seed-based functional connectivity analyses to demonstrate that

CMRO2 signals could detect spatial patterns of two resting-state

subnetworks (i.e., default mode and occipital-visual networks). How-

ever, functional connections from CMRO2 were appreciably weaker

than those observed using BOLD signal. These authors noted that dif-

ferences in connection strength probably arose because BOLD had a

contrast-to-noise ratio approximately two times greater than CMRO2

(Wu et al., 2009).

To date, only two studies have used calibration-derived CMRO2

to examine resting-state functional connectivity (Champagne, Cover-

dale, Nashed, Fernandez-Ruiz, & Cook, 2019; Wu et al., 2009).

Although these studies were pioneering efforts, their consideration of

only 1–2 subnetworks provided limited information regarding the

applicability of calibration-derived CMRO2 for interrogating the vast

complexities of the brain-wide organization. This gap is significant

because such research is needed to support or oppose using this more

physiologically-specific signal to assess, for instance, differences in

cognitive abilities, lifespan developmental changes, and the effects of

numerous pathologies on the brain-wide organization (e.g., Achard &

Bullmore, 2007; De Asis-Cruz, Bouyssi-Kobar, Evangelou, Vezina, &

Limperopoulos, 2015; Pandit et al., 2013; van den Heuvel, Stam,

Kahn, & Hulshoff Pol, 2009; see Bassett & Bullmore, 2009; Barbey,

2018; Whitfield-Gabrieli & Ford, 2012). This study is the first to evalu-

ate whether functional connections from low-frequency fluctuations

of calibration-derived CMRO2 could detect expansive brain-wide

organization properties consistent with those previously established

using anatomical or BOLD-based functional connectivity methods.

First, we examined the topological properties of calibration-

derived oxygen metabolism networks (OMN). We tested whether

OMNs exhibited segregation and integration properties consistent

with complex, small-world topologies—a common network architec-

ture observed in anatomical and functional connectivity studies

(Achard & Bullmore, 2007; Kaiser & Hilgetag, 2006; Humphries &

Gurney, 2008; van den Heuvel, Bullmore, & Sporns, 2016; see

Bullmore & Sporns, 2009, 2012). Comparative network analyses were

used between the OMNs and simulations of canonical networks

(i.e., random and lattice networks; e.g., Humphries & Gurney, 2008;

Rubinov, Ypma, Watson, & Bullmore, 2015; see Sporns, Chialvo, Kai-

ser, & Hilgetag, 2004). We tested the hypothesis that, like previous

findings of anatomical and functional connectivity, OMNs exhibited

greater segregation properties than random networks and greater

integration properties than lattice networks (see Sporns et al., 2004;

cf. Watts & Strogatz, 1998). Small-world topologies additionally pro-

vide a high degree of information integration relative to the number

of connections required to achieve this integration (i.e., cost effi-

ciency; Achard & Bullmore, 2007; De Asis-Cruz et al., 2015; see

Bullmore & Sporns, 2012). Thus, we also tested whether OMN topol-

ogies demonstrated cost-efficiency.

Second, we examined whether voxel-wise CMRO2-based func-

tional connections exhibited spatial patterns consistent with two

association (i.e., frontoparietal and default mode) and two perceptual

(i.e., auditory and occipital-visual) resting-state subnetworks.

Calibration-derived CMRO2 relies upon BOLD and CBF signals, thus,

these subnetworks were targeted because they were previously

shown to be reproducible using both BOLD- and CBF-based functional
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connectivity (Jann et al., 2015). CMRO2 subnetwork connectivity pat-

terns were derived using seed regions related to the targeted subnet-

works (e.g., precuneus seed for default mode network). Voxel-wise

CMRO2 connectivity patterns with subnetwork seeds were compared

with the voxel-wise connectivity patterns produced using comparable

seeds within the Neurosynth online platform which provided resting-

state BOLD data from 1,000 participants (Yarkoni, Poldrack, Nichols,

Van Essen, & Wager, 2011).

1 | METHOD AND MATERIALS

1.1 | Participants and procedure

Seventeen, cognitively-typical (MeanMoCA = 28.93, range = 25–30),

right-handed, young participants (Meanage = 23.41, range = 19–31;

41% Female) completed this study. Participants reported no history of

significant neurological trauma or disease, cardiac, respiratory, or vas-

cular disease. Participants were asked to abstain from caffeine use up

to 2 hr before scanning (e.g., Liau, Perthen, & Liu, 2008; Perthen,

Lansing, Liau, Liu, & Buxton, 2007). Two participants' functional images

failed to adequately register to standard space after repeated attempts

and were discarded (N = 15). Procedures were approved by the Uni-

versity of Texas Southwestern Medical Center Institutional Review

Board. Informed consent was obtained from each participant. This was

a single cohort, cross-sectional, study design. Sample size was deter-

mined based upon single-cohort sizes of other calibrated imaging stud-

ies (e.g., Ances et al., 2009; Ances, Vaida, Ellis, & Buxton, 2011; Hoge

et al., 1999; Hubbard, Sanchez Araujo et al., 2017; Hubbard, Turner

et al., 2017; Hutchison et al., 2013; Wu et al., 2009).

Imaging data were collected during a single session on a 3 Tesla

MRI scanner equipped with a 32-channel head coil (Philips

Healthcare, Best, The Netherlands). Pseudocontinuous arterial spin

labeling (pCASL) and BOLD images (together referred to as dual-echo

images) were acquired using an interleaved-echo scanning protocol

(see Lu & van Zijl, 2005). Twenty minutes of dual-echo images were

acquired while participants rested and were instructed to keep their

eyes open and fixate on a white cross centered on a black screen

(resting-state images). Dual-echo images were also acquired during a

10-min room air and a 5% carbon dioxide (CO2) solution breathing-

challenge run. These and similar procedures, sequences, biophysical

modeling, and breathing-challenges recover reliable measurements of

steady-state CMRO2 changes (see Bright, Croal, Blockley, & Bulte,

2019; Buxton, 2010; Hoge, 2012; Hubbard, Sanchez Araujo et al.,

2017; Hubbard, Turner et al., 2017; Hutchison et al., 2013).

1.2 | CO2 challenge and spontaneous breathing
circuit

CO2 challenges permit estimation of a theoretical maximum change in

BOLD signal, M. M is used to scale BOLD signal and recover CMRO2

(see Bright et al., 2019; Hoge, 2012; Hubbard, Sanchez Araujo

et al., 2017; Hubbard, Turner et al., 2017; Hutchison et al., 2013). Par-

ticipants underwent normocapnic (room air; �.03% CO2: 21% O2:

78% N2) and hypercapnic (5% CO2: 21% O2: 74% N2) conditions dur-

ing dual-echo imaging (see Figure 1). Vital signs were monitored

throughout this procedure. After CO2 challenge, the breathing appara-

tus and physiological monitors were removed. Participants then

underwent rest-state imaging procedures.

1.3 | Image parameters

Sequences were similar to those used to recover CMRO2 detailed

elsewhere (Hubbard, Sanchez Araujo et al., 2017; Hubbard, Turner

et al., 2017). Briefly, 75 dual-echo volumes were acquired during the

breathing-challenge run. The pCASL sequence consisted of a labeling

duration of 1,550 ms and a post-labeling delay of 1,500 ms, followed

by multi-slice 2D acquisitions of echo-planar images (EPI) at two TE

values of 13 and 30 ms, respectively. The first echo was used for CBF

and the second echo was used for BOLD. Other imaging parameters

were: flip angle = 90�, TR = 4,006 ms, 3.44 × 3.44 × 5 mm voxel with

0 mm gap, 18 slices, labeling gap = 106.5 mm. One-hundred and fifty

dynamics of dual-echo volumes were acquired while participants were

at rest. Dual-echo resting volumes were acquired using the same

sequence as room-air/breathing-challenge run (detailed above). One

T1-weighted magnetization-prepared rapid acquisition gradient-echo

(MPRAGE) image was also acquired for each participant: 12� flip

angle, TR = 8.3 ms, TE = 3.8 ms, short-interval 2,100 ms, 1 mm3

isovoxel, 160 slices.

1.4 | Image processing workflows and CMRO2

recovery

1.4.1 | Processing and CMRO2 recovery

CBF was interpolated from the interleaved label and control pCASL

images using the surround-subtraction method (Liu & Wong, 2005;

Lu, Donahue, & van Zijl, 2006). BOLD data were interpolated via

pairwise averaging of temporally-adjacent images (Hubbard, Sanchez

Araujo et al., 2017; Hubbard, Turner et al., 2017; Hutchison

et al., 2013). Dual-echo images were preprocessed using common

resting-state operations (e.g., Behzadi, Restom, Liau, & Liu, 2007; Joon

Jo et al., 2013). Specifically, large spikes (≥2.5 SD) in dual-echo time

series owing to motion or potentially non-neural physical events were

interpolated to the average of their nearest temporal-neighbors

(scrub-interpolation) using an automated algorithm. Data were then

rigid-body corrected for participant motion. Dual-echo images were

linearly aligned to a BOLD volume and then registered using an

affine-transformation to the participant's MPRAGE. Images were then

nonlinearly warped to a standard stereotaxic space (Talaraich &

Tournoux, 1988). A bandpass filter (0.01–0.1 Hz) was applied to dual-

echo signals. CBF time series were lagged two time points to account

for temporal differences in BOLD-CBF interpolations (cf. Champagne

1954 HUBBARD ET AL.



et al., 2019). CMRO2 was recovered from the filtered and spatially/

temporally aligned dual-echo signals. Motion parameters and the first

five principal components of white matter and cerebral spinal fluid sig-

nals (Joon Jo et al., 2013) were removed from CMRO2 images, and a

separate bandpass filter (0.01–0.1 Hz) was applied. Global signal

regression was not utilized here (Behzadi et al., 2007; see Murphy &

Fox, 2017).

Detailed theory and formalisms of the deoxyhemoglobin dilution

model for recovering CMRO2 from BOLD and CBF are given else-

where (Davis, Kwong, Weiskoff, & Rosen, 1998; Hoge et al., 1999;

Hubbard, Sanchez Araujo et al., 2017; Hubbard, Turner et al., 2017;

Hutchison et al., 2013; see Bright et al., 2019; Buxton, 2010;

Hoge, 2012). Briefly, BOLD signal reflecting a confluence of blood

flow/volume and oxygen metabolism changes may be decomposed to

recover CMRO2, if several other parameters are measured and several

empirical constants are assumed (see Formula 1.1).

Processed BOLD and CBF images, along with a dynamic adapta-

tion of the deoxyhemoglobin dilution model were used to recover

low-frequency fluctuations in CMRO2. Here CMRO2t reflects dynamic

changes in voxel-level oxygen metabolism:

CMRO2t = 1−
BOLDt

M

� �� �1=β

CBFtð Þ1−α=β jCBFt j
CBFt

� �
ð1:1Þ

where subscript t reflects a voxel time series at time t. Thus, CMRO2t

reflects the mean-scaled amplitude of voxel oxygen metabolism at

time t. Although unlikely, to avoid complex numbers if CBFt was

negative, the absolute value of CBFt was used and then the sign (+/−)

was corrected by multiplying the derived CMRO2t term by jCBFtj
divided by CBFt (equaling 1 or − 1). This step allowed the model to

recover real instead of complex values for CMRO2t, but did not mod-

ify the absolute values of CMRO2t. There were � 110 M (voxel × time

× participant) timepoints for CBF, thus, this correction was applied in

anticipation of some anomalous CBFt.

M was derived at each voxel from the CO2-challenge using the

deoxyhemoglobin-dilution model of BOLD signal change (Davis

et al., 1998; Hoge et al., 1999; Hubbard, Sanchez Araujo et al., 2017;

Hubbard, Turner et al., 2017; Hutchison et al., 2013) and using the

50th percentile values of BOLD and CBF of room air breathing com-

pared to the 95th percentile values of BOLD and CBF during the

CO2-challenge. This procedure assured that average normocapnic sig-

nal fluctuations were compared to maximum (but not improbable)

hypercapnic fluctuations. α was assumed equal to .38 (Grubb, Raichle,

Eichling, & Ter-Pogossian, 1974) and β was assumed equal to 1.33

(Lu & van Zijl, 2005). Negative M voxels were removed to further

eliminate misclassified or noisy voxels from resting images (cf. Lajoie,

Tancredi, & Hoge, 2016). Thus, M served to recover CMRO2t and as a

spatial filter used to remove voxels which, due to their tissue hetero-

geneity or noise levels, would probably not be optimal for accurately

recovering CMRO2. On average, 15% of voxels (range = 3–35%) per

participants' whole-brain mask were removed using M-filtering. This

procedure resulted in an average of 24,559.67 voxels per participant

(range = 18,121–27,742 voxels). As expected, most voxels removed

by M-filtering were in low-signal gray matter areas (i.e., infratentorial,

F IGURE 1 Diagram of spontaneous breathing circuit and CO2-challenge procedure. Before the gurney entered the bore of the magnet, a
pulse-oximetry sensor was placed on the participant's index finger, and participants were fitted with a two-way non-rebreathing valve/
mouthpiece (2,600 series, by Hans Rudolph, KS, USA) and nose-clip. The two-way, non-rebreathing valve, emitted exhaled air and also allowed

room air or the CO2-solution (depending on challenge phase) to flow inward. During scanning, portions of expired gases were sampled through
accessory tubing that flowed to a capnograph (sampling End-tidal CO2 [EtCO2] and breath rate [BR]) and heart rate (HR) and peripheral oxygen
saturation (SpO2) were sampled using pulse oximetry. EtCO2, SpO2, BR, and HR measures were collected using capnography (Capnogard, Model
1,265, by Novametrix Medical Systems, CT, USA) and pulse-oximetry (MEDRAD, PA, USA). Normocapnic conditions occurred for 4 min wherein a
valve attached to a hose on the two-way mouthpiece remained open so that the participant received room air. After 4 min of room-air breathing
the three-way valve was opened, blocking room air, and allowing the 5% CO2-solution to flow in from a 200 L Douglas Bag for 6 min
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inferior orbital, and CSF-boundary voxels) or white matter voxels.

Figure S1 demonstrates the proportion of filtered voxels across partic-

ipants in the whole-brain mask.

1.4.2 | Node and connection workflows

CMRO2 data were processed using two workflows (i.e., node and con-

nection workflows). The majority of processing steps were common

to both workflows (see Processing and CMRO2 Recovery). However,

these workflows fulfilled different purposes and thus differed in their

use of the M-filter and spatial smoothing.

1.4.3 | Node workflow

The goal of the node workflow was to segment participants' CMRO2

images into discrete gray matter regions of interest, thus forming the

nodes of the OMN. In order to create a CMRO2-based segmentation

map we used the spatially-constrained spectral clustering method

(Craddock, James, Holtzheimer III, Hu, & Mayberg, 2012). This method

delineated nodes based upon group-wide similarities in spatially-

contiguous voxel correlations between participants' low-frequency,

resting CMRO2 fluctuations in gray matter voxels. The recommended

two-step approach was applied that required clusters of spatially-

contiguous voxels at both the participant- and group-levels (Craddock

et al., 2012). At the participant-level, the node workflow needed to

supplement a small number of gray matter voxels that were removed

by the M-filter. Here, CMRO2 fluctuations within the M-filtered voxels

were estimated by using a participant's BOLD and CBF signals within

this voxel, and the average M-value from their gray matter voxels that

survived filtering. In doing so, the required spatial contiguity was

retained for gray matter voxels. At the group-level, a contiguous gray

matter mask was also required. Here, a binary group mask was created

retaining supra-tentorial voxels wherein all participants had a gray

matter voxel represented. Supra-tentorial gray matter was targeted

because infra-tentorial areas had few contiguous voxels both within

and between participants, as these areas were largely affected by sig-

nal loss. In this workflow, spatial smoothing of each participant's

CMRO2 voxel time series (6 mm FWHM Gaussian kernel) was under-

taken within the group mask to ensure that only data that were used

in the final spectral analysis (i.e., those that were part of the group

mask) contributed to the individual voxel time series used in this

analysis.

1.4.4 | Connection workflow

The purpose of the connection workflow was to recover low-

frequency fluctuations in CMRO2 for functional connectivity analyses.

Here, spatial contiguity of voxels was not required, thus CMRO2 low-

frequency fluctuations were only recovered from voxels that survived

M-filtering. Therefore, in contrast to the node workflow, no M-values

were imputed. Also in contrast to the node workflow, because a

spatially-contiguous group mask was not required, spatial smoothing

was performed within the participant's brain mask using a 6 mm

FWHM Gaussian kernel.

1.5 | OMN construction

1.5.1 | Nodes

Nodes (n) were determined by segmenting gray matter into 200 corti-

cal and subcortical regions using spatially-constrained spectral cluster-

ing of CMRO2 fluctuations (see Node Workflow; Craddock

et al., 2012). A 200-node solution was chosen consistent with previ-

ous work, to generate a segmentation scheme to, as precisely as pos-

sible, represent local functional connectivity patterns, while also

maintaining anatomical interpretation (Craddock et al., 2012). Six

nodes were discarded from the network due to their locations in low

signal regions (e.g., ventral regions, frontal/temporal poles). Thus,

n was equal to 194 (Figure 2).

1.5.2 | Connections

Binary, undirected networks were constructed using the 194 nodes

described above. Connections within the OMN were derived using

Pearson correlations between average low-frequency CMRO2 fluctua-

tions (see Connection Workflow) extracted from each node. There is no

optimal or standard threshold for determining binary connections in a

brain network (see Bullmore & Sporns, 2009). Thus, multiple OMNs

were constructed for each participant using a range of Pearson corre-

lation thresholds (rt = .20, .25, .30, .35). This range was chosen

because (a) it is consistent with a range of thresholds detailed in

extant reports using BOLD-based connectivity (e.g., Achard, Salvador,

Witcher, Suckling, & Bullmore, 2006; Buckner et al., 2009; Cole,

Pathak, & Schneider, 2010), (b) all rt values were statistically signifi-

cant (p < .001), and (c) increasing the threshold beyond 0.35 (e.g., to

0.40) led the OMN to break into many fractions—which precludes the

use of many graph-based analyses.

1.6 | Assessment of complexity and small-world
properties

We tested the hypothesis that, like anatomical and BOLD-based func-

tional brain networks (Humphries & Gurney, 2008; Rubinov et al., 2015;

see Bullmore & Sporns, 2009, 2012; Sporns et al., 2004), OMNs

exhibited properties consistent with complex, small-world topologies.

Specifically, OMN topologies should demonstrate greater segregation

properties than random networks and greater integration properties

than lattice networks (Figure 3; cf. Watts & Strogatz, 1998).

Random and lattice networks were simulated to measure their

segregation and integration properties and compare these properties
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to those of the OMNs. The simulated networks were the same size

and similar densities relative to OMNs. Segregation properties of net-

works were assessed using the clustering coefficient (C) that quanti-

fied the tendencies for groups of nodes to interconnect with one

another. Integration properties of networks were assessed using the

reciprocal path length metric (1/L) that quantified the reciprocal of the

average shortest path length in the network. C and 1/L were calcu-

lated using Brain Connectivity Toolbox (formalisms in

Newman, 2008), at each rt, for each participant's OMNs and their sim-

ulated networks.

Random networks (RNs) were simulated with n = 194 and with

each participant's number of connections (ki), for each rt. Thus, kijt

reflected the number of connections for a given participant's OMN,

for a given correlation threshold (rt). In typical RNs, each node is

equally likely to share a connection to another node. Thus, RNs have

a low probability of many, well-defined clusters of neighboring nodes

(low segregation/low C). However, because of equitable connection

distributions, RNs have a relatively short path length between any

two nodes (high integration/high 1/L). Lattice-like networks (LNs)

were simulated using code amended from Brain Connectivity Toolbox

(Rubinov & Sporns, 2010) with n = 194 and � kijt. These networks

were termed “lattice-like” because an exact lattice topology was not

mathematically possible with n = 194 and � kijt. In LNs, each connec-

tion was made as close as possible to the main connection matrix

diagonal (see Figure 3). The result of this procedure was typical of lat-

tice networks, wherein topological neighbors were closely connected

to one another (high segregation/high C). However, longer-distance

connections within LNs were nearly exclusively prohibited (low inte-

gration/low 1/L).

Algorithms constructing both RNs and LNs do not create identical

patterns of connection placement. Thus, there will be modest varia-

tion between simulations of RNkijt and LNkijt in C and 1/L estimates.

To ensure reliable results, average C and 1/L estimates were calcu-

lated from 500 simulations of RNkijt, and LNkijt (500 simulations × 15

participants = 7,500 for RN and LN, per each rt). We additionally

examined small-worldness coefficients which quantified a relative

ratio of segregation and integration properties (SWS; Humphries &

Gurney, 2008) at each rt using 500 newly simulated RNs for each par-

ticipant (500 × 15 = 7,500 per rt).

1.7 | Assessment of network cost-efficiency

Cost efficiency was defined as 1/L – Costwiring, where positive values

reflect a globally economical network (Achard & Bullmore, 2007; De

Asis-Cruz et al., 2015; formalism in Latora and Marchori, 2001). Wir-

ing cost was defined as the number of connections in the OMN scaled

to the number of all possible connections (Costwiring; formalism in

F IGURE 2 Low-frequency fluctuations in cerebral oxygen metabolism and oxygen metabolism network nodes. (a) Low-frequency fluctuations
of CMRO2 were recovered from BOLD and CBF, as demonstrated here with data from a participant's posterior cingulate region. (b) Correlations
between low-frequency fluctuations of CMRO2 in spatially-proximal voxels were used to create nodes of the OMN via the spatially-constrained
spectral clustering of approach (see Node Workflow; Craddock et al., 2012). One-hundred and ninety-four nodes are displayed here which were
derived from participants' low-frequency fluctuations of CMRO2
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Achard & Bullmore, 2007). 1/L and Costwiring were calculated using

Brain Connectivity Toolbox.

1.8 | Recovering resting-state subnetworks from
CMRO2 correlations

1.8.1 | CMRO2

We also assessed whether voxel-wise CMRO2 functional connections

demonstrated expected spatial patterns consistent with auditory,

default mode, frontoparietal, and occipital-visual resting-state subnet-

works (e.g., Jann et al., 2015). A seed-based approach was applied to

low-frequency CMRO2 fluctuations to derive voxel-wise connectivity

weights for these subnetworks. The average CMRO2 time series was

extracted from 10 mm spherical volumes centered upon seed regions.

Right superior temporal gyrus (i.e., primary auditory cortex) served as

the auditory network seed (RAI: −43, 20, 6). Precuneus served as the

default mode network seed (RAI: 1, 50, 28). The average time series

from two bilateral seeds were used to recover frontoparietal network

from left and right dorsolateral prefrontal cortex (RAI: −47, −9,

34 [left]; 47, −9, 34 [right]; cf. Jann et al., 2015). Lingual gyrus

(i.e., primary visual cortex) served as the occipital-visual network seed

(RAI: 0, 85, 2). Pearson correlation values were Fisher z-transformed

for second-level analyses.

1.8.2 | CMRO2 and Neurosynth BOLD subnetwork
connectivity comparisons

CMRO2 subnetwork connectivity patterns were compared to voxel-

wise BOLD data from over 1,000 participants of the Brain Genomics

Superstruct Project (Buckner, Krienen, Castellanos, Diaz, & Yeo, 2011;

Yeo et al., 2011). Neurosynth's online platform (Yarkoni et al., 2011;

neurosynth.org) provided open access to these data and performed

seed-based, voxel-wise connectivity. We considered the comparison

of CMRO2 connectivity patterns to Neurosynth connectivity patterns

to be more rigorous than comparisons to the dual-echo BOLD data

from which CMRO2 is derived. Specifically, examining relationships

between CMRO2 and Neurosynth BOLD-based functional connectiv-

ity provided an out-of-sample comparison to a large database

(N = 1,000 participants), as well as a comparison to data acquired from

independent investigators, using different scanners, with different res-

olutions and sequences, and different processing workflows (cf. Woo,

F IGURE 3 Oxygen metabolism and canonical network topologies. Illustration of the complex topology of a randomly-selected participant's
oxygen metabolism network (OMN) at rt = .25. Random, lattice-like, and oxygen metabolism networks had identical numbers of nodes and a
similar number of connections. Circular (top) and force-directed (bottom) algorithms were applied. Colors = node neighborhoods, sizes = node
betweenness centrality. Graphs were created using Gephi (Bastian, Heymann, & Jacomy, 2009). In circular graphs, random and OMN were sorted
by neighborhood, but the lattice-like network was sorted by row number to demonstrate connections primarily between nearest-neighbors. In
force-directed graphs, scaling factors were increased to illustrate the effects
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Chang, Lindquist, & Wager, 2017). Additionally, unlike dual-echo

BOLD signals, the Neurosynth BOLD signals were not used to recover

the CMRO2 signals. Together, comparing CMRO2 to Neurosynth cir-

cumvented many of the inherent linear dependencies between

CMRO2 and dual-echo BOLD. Thus, this approach provided a conser-

vative and robust estimate of relationships between CMRO2 and

BOLD subnetwork connectivity patterns.

Within the Neurosynth online platform, seed-based connectivity

analyses were performed in MNI152 space, and subnetwork seeds

were placed in LPI coordinates analogous to those used in CMRO2

analyses. Voxel-wise Pearson correlation maps were subsequently

downloaded from neurosynth.org, providing an open and easily verifi-

able comparison (see Supplementary Materials for URLs). Left and

right DLPFC correlations extracted from Neurosynth were averaged

to remain consistent with the dual-seed approach used to recover

frontoparietal network on CMRO2 maps. Voxel-wise Neurosynth cor-

relations were Fisher z-transformed, warped into Colin space (TTN27

template), and then downsampled to the CMRO2 spatial resolution

for comparisons. Voxel-to-voxel relationships between CMRO2 and

Neurosynth subnetwork functional connectivity weights were quanti-

fied using Pearson correlations. Additionally, we quantified the degree

of spatial overlap between thresholded CMRO2 and Neurosynth sub-

network connectivity maps. A relative threshold of the top 10% of

Fisher's z-correlation voxels was applied to each subnetwork map for

each signal type, and the spatial overlap between thresholded maps

was quantified using the ϕ coefficient—which assesses the strength of

the association between two binary variables. Relative threshold

values were chosen because of differences in signal quality and

correlation strength between signal types (e.g., Champagne

et al., 2019; Wu et al., 2009; see Germuska & Wise, 2018).

2 | RESULTS

2.1 | Peripheral physiological measures and M
analyses

Peripheral physiological measures were monitored during nor-

mocapnic and hypercapnic conditions. Participants showed an

expected increase in end-tidal CO2 during CO2-solution inhalation

(Mean = 48.67 mmHg ± 0.669) compared with room air (Mean =

39.87 ± 0.893), t(13) = 14.18, p < .001. On average, voxel-wise

M values (Mean = 3.87% ± 0.197; range = 2.25–5.16%) showed a sig-

nificant change from 0, t(14) = 19.68, p < .001, indicating that the

CO2 challenge was producing significant increases in BOLD signal.

The M range was also within the range of extant reports (Hubbard,

Sanchez Araujo, et al., 2017; Lajoie et al., 2016; Yücel et al., 2014).

Breath rate did not change significantly from room air (11.45 breaths

per minute ±1.08) to the CO2 condition (12.16 ± 1.24; p > .05).

Heart rate did not change significantly from room air (81.39

beats per minute ±3.66) to the CO2 condition (81.60 ± 3.58; p > .05).

Outliers due to technical malfunction (e.g., heart rate = 0)

were removed from these analyses. Peripheral oxygen saturation

increased statistically (but not clinically) significantly from room air

(Mean = 98.27% ± 0.0004) to CO2 condition (Mean = 98.90% ±

0.0003), t(13) = 2.92, p = .012. This could be due to compensatory

F IGURE 4 Comparative analyses of oxygen metabolism network segregation and integration properties. (a) Biplot of segregation (C) and
integration (1/L) measurements. Large circles reflect network average coordinates, smaller dots reflect coordinates from individual networks for
each rt. Contour lines reflect nonparametric cluster densities. (b) Distributions of C and 1/L across participants. Average distribution presented
across study correlation thresholds (rt). Significance does not change at individual rt nor when using nonparametric tests (all ps < .001).
d = Cohen's d effect size. *** = parametric and nonparametric p < .001
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changes in tidal volume associated with increased CO2 inhalation.

Results confirmed that (a) the CO2 challenge caused a significant

change in the partial pressure of expired CO2; and (b) this challenge

produced an expected increase in BOLD signal (i.e., M) within the

range of previous reports (Hubbard, Sanchez Araujo, et al., 2017;

Lajoie et al., 2016; Yücel et al., 2014).

2.2 | Calibration-derived CMRO2 model
assumptions

Because functional connectivity analyses rely on correlations, which

are largely unaffected by the scale of the inputs, connectivity analyses

should be robust to reasonable differences in model specifications

(e.g., Wu et al., 2009; see Liu, 2013). To demonstrate the robustness

of CMRO2 connectivity analyses to α and β specifications, fluctuations

in CMRO2 were recovered using two sets of α and β pairings from

extant literature (Griffeth & Buxton, 2011; Hubbard, Turner,

et al., 2017). These assumption sets were also used in their respective

derivations of M. Predictably, different model assumption sets slightly

altered the proportional amplitude of the CMRO2 fluctuations

(e.g., Wu et al., 2009; see Figure S2). However, the median voxel-to-

voxel relationship for all participants (N = 368,395 correlations), using

the different model assumption sets was r = .994 (MAD = 0.002),

demonstrating that altering model assumptions does not appreciably

alter the temporal pattern of CMRO2 fluctuations (Figure S3).

Figure S3 also demonstrates that altering model assumptions does not

appreciably alter the spatial patterns of CMRO2 correlations, nor does

it appreciably alter the overall strength of CMRO2 correlations. Within

individual participants, interregional differences in α, β, or both α and

β were not observed to have a significant effect on the strength of

the correlations between regions (ps > .90; Figure S4).

2.2.1 | Testing OMN topological properties

The biplot in Figure 4a illustrates that OMN topologies exhibited

segregation (C) and integration (1/L) properties between RNs and

LNs (cf. Sporns et al., 2004). Consistent with complex, small-world

networks the OMN topologies exhibited significantly greater C than

RNs and significantly greater 1/L than LNs (all ps < .001; Figure 4b).

For display efficiency, the illustrated results are based upon average

C and 1/L across rt. However, the significance of the results remains

when testing the OMN versus RNs and LNs at each rt (all

ps < .001). We repeated these analyses for dual-echo BOLD and

CBF data (Supplemental Materials; see Figure S5). As expected,

dual-echo BOLD and CBF networks exhibited similar topological

properties as the OMNs when compared with their respective RNs

and LNs—that is, each signal's topologies exhibited showed greater

segregation (C) than RNs and greater integration (1/L) than LNs (all

ps < .001).

In addition, consistent with previous imaging findings, at all rt

OMN SWS distributions were significantly greater (p < .001) than ran-

dom networks (i.e., random SWS = 1; De Asis-Cruz et al., 2015; Hum-

phries & Gurney, 2008; see Table 1). Dual-echo BOLD and CBF

network SWS distributions were also significantly greater (p < .001)

than their respective random networks (Table S1).

2.3 | OMN cost-efficiency

Consistent with previous studies of anatomical and functional connec-

tivity, we tested whether OMN topologies optimized network integra-

tion from wiring costs by assessing their cost-efficiency metric

(Achard & Bullmore, 2007; De Asis-Cruz et al., 2015; see Bullmore &

Sporns, 2009, 2012). t tests were used to test whether the OMN's

TABLE 1 Oxygen metabolism
network small-worldness coefficients

Connection
threshold (rt) Mean Lower CI Upper CI p-value

.20 3.90 3.89 3.91 <.001

.25 5.68 5.66 5.70 <.001

.30 7.78 7.71 7.84 <.001

.35 10.42 10.19 10.65 <.001

Note: Average small-worldness coefficients (SWS) from 7,500 simulations at each rt. Mean and 99.9%

confidence intervals of mean. For rt = .35, 5/7500 (<.1%) simulations failed to converge and were

discarded.

TABLE 2 Oxygen metabolism
network cost-efficiency

Connection threshold (rt) Mean Lower CI Upper CI t p-value

.20 .365 .355 .375 148.67 <.001

.25 .317 .290 .344 49.22 <.001

.30 .256 .209 .304 22.22 <.001

.35 .198 .134 .258 13.05 <.001

Note: Cost-efficiency estimates of the oxygen metabolism network across rt. Single-sample t test against

a mean of 0. Lower and upper 99.9% confidence intervals of mean estimate.
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F IGURE 5 Comparison of seed-based connectivity weights using calibration-derived CMRO2 (top) and resting BOLD from Neurosynth
database (bottom). Here, Neurosynth images were warped to Colin space but kept in their original resolution to illustrate spatial resolution
differences. Opacities were decreased on reference images to emphasize anatomical features

F IGURE 6 Voxel-to-voxel relationships between seed-based functional connectivity weights using calibration-derived CMRO2 and
Neurosynth BOLD
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cost-efficiency was, on average, greater than 0. Table 2 demonstrates

the OMN's cost-efficiency averaged across all rt and for each individ-

ual rt. In all analyses, OMNs were significantly greater than

0 (p < .001); thus, the OMN may be considered to be cost-efficient

(Achard & Bullmore, 2007; De Asis-Cruz et al., 2015). Dual-echo

BOLD and CBF network topologies also demonstrated cost-efficiency

metrics significantly greater than 0 (ps < .001; Table S2).

2.3.1 | Subnetwork connectivity patterns

Figure 5 illustrates averaged voxel-wise connectivity weights pro-

duced by subnetwork seeds using CMRO2 and Neurosynth BOLD

data. Figure 6 demonstrates large effect-size (rs > .55) voxel-to-voxel

relationships between the CMRO2 and Neurosynth BOLD functional

connectivity weights for each seed-region. Figure 7 shows the spatial

overlap between the thresholded top 10% of functional connectivity

weights from each signal type and ϕ coefficients. RAI coordinates

and anatomical labels of overlapping voxel clusters are detailed in

Table 3. We repeated these analyses to compare CMRO2 to dual-

echo BOLD subnetwork functional connectivity patterns

(Supplemental Materials; see Figures S6–S8). As expected, relation-

ships were similar but stronger between CMRO2 and dual-echo

BOLD subnetwork connectivity patterns, relative to CMRO2 and

Neurosynth BOLD.

3 | DISCUSSION

We tested whether brain-wide functional connections from resting

calibration-derived oxygen metabolism signals demonstrated organi-

zation properties typical of the healthy brain. Networks constructed

from low-frequency fluctuations of oxygen metabolism exhibited clus-

tering coefficients, reflecting segregation properties, greater than

those of equally-sized and dense random networks. Reciprocal path

length measures of these OMN, reflecting integration properties,

were greater than equally-sized and similarly dense lattice-like net-

works. These findings, along with significant small-worldness coeffi-

cients and cost-efficiency metrics suggest that connections from

resting calibration-derived oxygen metabolism signals feature com-

plex, small-world topologies (Achard & Bullmore, 2007; De Asis-Cruz

et al., 2015; Humphries & Gurney, 2008; Kaiser & Hilgetag, 2006;

Rubinov et al., 2015; van den Heuvel et al., 2016; see Bullmore &

Sporns, 2009, 2012; Sporns et al., 2004), consistent with previous

anatomical and functional connectivity findings.

Parity observed in supplemental analyses of dual-echo BOLD-

and CBF-based networks lends additional evidence for the complex,

small-world organization of the brain's topology across multiple func-

tional signals. Oxygen metabolism functional connectivity patterns

with four resting-state subnetwork seeds also demonstrated large-

effect relationships with subnetwork connectivity patterns from a

large, independent sample of BOLD data. Additionally, medium- to

F IGURE 7 Spatial overlap of thresholded (top 10%) functional connectivity weights from calibration-derived CMRO2 and Neurosynth BOLD
maps using each subnetwork seed. Displays top 10% of positive correlations with each subnetwork seed for CMRO2 overlaid upon top 10% of
positive correlations with each subnetwork seed for Neurosynth BOLD. ϕ= phi coefficient of binary association. RAI coordinates and anatomical
labels for overlapping voxel clusters are found in Table 3
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large-effect size relationships were observed for thresholded sub-

network voxels of oxygen metabolism and thresholded subnetwork

voxels of the independent sample of BOLD data. Together, these find-

ings demonstrate that functional connections from resting calibration-

derived oxygen metabolism detect wide-spread organization proper-

ties typical of the healthy brain.

3.1 | Use and interpretations of CMRO2-based
functional connections

Using calibrated imaging to recover low-frequency fluctuations of

oxygen metabolism offers a neurophysiological interpretation of func-

tional connectivity. A connection reflects a significant degree of meta-

bolic coherence between neural units, and topological properties

reflect brain-wide patterns of this coherence. For example, connec-

tions within a specific subnetwork reflect elevated coherence of met-

abolic fluctuations between the voxels of this subnetwork.

Importantly, a connection does not imply that absolute metabolism is

equivalent between neural units of a subnetwork (cf. Hyder

et al., 2016), but rather, provides a measure of the synchrony of basal

metabolic fluctuations over time.

Along with increased physiological specificity, oxygen metabolism-

based functional connectivity could provide a close link between the

brain's macroscale organization and its actual neuronal communication

networks. Coherent interregional low-frequency fluctuations of brain

activity may be the macroscale product of neuronal-activity-dependent

communication networks (Krishnan, González, & Bazhenov, 2018;

Leopold & Maier, 2012; also Sur & Rubenstein, 2004). It is challenging

to infer this interpretation from BOLD-based functional connectivity

alone, due to the confluence of physiological sources that give rise to it

(e.g., Whittaker, Driver, Venzi, Bright, & Murphy, 2019; see Leopold &

Maier, 2012). Oxygen metabolism signals however have a stronger

and better-understood relationship with electrical and chemical neuro-

nal activity. For instance, relationships observed between calibration-

derived CMRO2 and electrical and chemical neuronal activity suggest

that CMRO2 can offer the most proximal MR-based measure of neuro-

nal activity presently available (e.g., Herman et al., 2009, 2013; Hyder

et al., 2001, 2002; Lin et al., 2010; Smith et al., 2002). Additionally,

spontaneous neural oscillations are strongly influenced by interstitial

oxygen tension emphasizing the critical role that oxygen metabolism has

in the maintenance of resting neural communication (Huchzermeyer

et al., 2008). Finally, neuronal communication processes are the most

prolific consumer of metabolic resources in the brain (Yu, Herman,

TABLE 3 Oxygen metabolism and
Neurosynth BOLD subnetwork overlap

Subnetwork Label (BA) X Y Z Voxel count

Auditory R superior temporal (13, 22) −48 15 08 917

L superior temporal (13, 32) 45 16 06 578

Thalamus 00 16 04 110

R postcentral (3, 4, 40) −32 30 51 007

R precentral (2, 3, 4) −40 21 37 005

Default mode Posterior cingulate (23, 31) 00 51 24 753

Medial frontal (9, 10) −01 −51 14 422

L middle temporal (39) 44 62 27 257

R superior temporal (39) −48 57 26 140

L superior frontal (8, 6) 29 −18 49 071

R superior frontal (8) −24 −30 46 027

L middle temporal (21) 62 32 −04 020

L middle temporal (21, 22) 58 12 −09 013

L superior frontal (8) 17 −40 44 007

L superior frontal (10) 10 −67 17 006

Frontoparietal L middle frontal (9, 46) −44 −14 27 530

R middle frontal (9, 46) −46 −13 28 484

L inferior parietal (40) 38 51 42 376

R inferior parietal (40) −39 51 43 265

Superior frontal (8, 6) −01 −18 53 005

Occipital-visual Lingual (18, 30) −01 75 05 2,444

L parahippo/thalamus (28, 35) 24 23 −05 005

Note: Label and coordinates reflect center of mass of voxel cluster of at least 5 voxels. Brodmann's areas

(BA) are given within 5 mm of cluster center. Lateral distinctions removed from voxels within 5 mm of

midline.
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Rothman, Agarwal, & Hyder, 2017), implying a strong physiological need

for oxidative metabolism to accompany neuronal-activity-dependent

communication. In sum, oxygen metabolism-based functional connectiv-

ity mapping holds promise for using MR-based methods to explore the

organization of intrinsic neuronal communication.

Our findings provide the initial bridge between calibrated imaging

and brain-wide connectomics. This bridge has implications for general

systems-level research, as well as patient populations wherein altered

neurometabolism or network dysfunction are implicated in the pathol-

ogy (e.g., Alzheimer's Disease, multiple sclerosis, schizophrenia). Based

upon task-based CMRO2 literature, we speculate that resting CMRO2

network analyses may also provide the means for gaining advanced

insight into neurological and psychological diversity (Ances

et al., 2011; Hubbard, Sanchez Araujo et al., 2017; Hubbard, Turner

et al., 2017; Hutchison et al., 2013; Mohtasib et al., 2012). For

instance, calibration-derived CMRO2 has revealed new and stronger

relationships to white-matter damage and primary symptomology in

patients with multiple sclerosis relative to BOLD (Hubbard, Turner,

et al., 2017). Additionally, connectomic analyses themselves have

yielded unique insights into cognitive abilities, lifespan development

factors, and numerous pathologies (e.g., Achard & Bullmore, 2007; De

Asis-Cruz et al., 2015; Pandit et al., 2013; van den Heuvel et al., 2009;

see Bassett & Bullmore, 2009; Barbey, 2018; Whitfield-Gabrieli and

Ford, 2012). We showed that applying graph-based or voxel-wise

analyses to calibration-derived CMRO2 functional connections can

produce expected organizational features of the healthy brain. These

findings inspire confidence that calibrated imaging and brain-wide

functional connectivity methods may be applied together in future

research to gain novel insights into the group or individual differences

via examinations of neurometabolic network organization.

3.2 | Modeling low-frequency fluctuations
of CMRO2

The deoxyhemoglobin dilution model is the most commonly used

modeling approach in calibrated imaging and provides reliable and

valid measurement of CMRO2 changes in steady-state activation con-

texts (see Bright et al., 2019; Buxton, 2010; Hoge, 2012). Its applica-

tion for recovering CMRO2 changes in dynamic contexts, such as

moment-to-moment fluctuations or event-related task activations,

remains understudied and controversial (Herman et al., 2009; Hyder

et al., 2010; Kida, Rothman, & Hyder, 2007; Simon & Buxton, 2015).

Potential uncoupling between CBF and blood volume poses a primary

concern for using the deoxyhemoglobin dilution model to recover

dynamic fluctuations in CMRO2. Specifically, putative uncoupling

between vascular compartments may be problematic because

dynamic adaptations of this model assume that arterial CBF relates to

venous blood volume in a predictable manner over both longer and

shorter periods of time (i.e., α).

There is a paucity of research directly examining blood flow-

volume coupling during the resting state. However, research investi-

gating brief stimulations offer one analog for understanding dynamic

blood flow and volume relationships. On one hand, some studies sug-

gest uncoupling between blood flow and volume in dynamic contexts

(Kida et al., 2007; Obata et al., 2004; Simon & Buxton, 2015). For

instance, results from one simulation study showed that during brief

exposures to stimuli, slower changes in blood volume did not immedi-

ately follow faster changes in the blood flow response (Simon &

Buxton, 2015). Another study showed that blood flow-volume

uncoupling may change the shape and magnitude of transient BOLD

responses (Obata et al., 2004). On the other hand, at least one study

has demonstrated that during brief exposures to stimuli (i.e., dynamic

fluctuations), blood flow and volume responses are tightly coupled in

time (Herman et al., 2009). Moreover, during small or moderate

vasodilatory events like those occurring during the human resting

state, blood flow and volume conform to the exponential relationship

(i.e., α) specified by the deoxyhemoglobin dilution model (Lorthois,

Cassot, & Lauwers, 2011). Additionally, one in vivo study demon-

strated a significant temporal relationship between changes in arterial

and venous tone during resting, spontaneous neural events (Drew,

Shih, & Kleinfeld, 2011). These authors found that arteriole and

venule dilations showed significant coherence in this low-frequency

spectrum, also providing evidence for temporal coupling between

resting arterial and venous exchange.

More research is needed to directly test the feasibility of using

the deoxyhemoglobin dilution model for recovering moment-to-

moment changes in CMRO2. However, even assuming flow-volume

uncoupling biases the specified exponential relationship between CBF

and blood volume (i.e., α; e.g., Kida et al., 2007; Simon &

Buxton, 2015), it should not be problematic to use this model to

recover low-frequency fluctuations of CMRO2 if these are used for

functional connectivity. That is, if the α term alone is affected, only

the amplitude of the CMRO2 signal should be altered. Because func-

tional connectivity is primarily assessed using a scale-invariant correla-

tion coefficient, a biased estimate of CMRO2 amplitudes should have

minimal effects on CMRO2-based functional connectivity.

Similarly, the deoxyhemoglobin dilution model for resting-state

CMRO2 functional connectivity is resilient to influence from model

assumptions (i.e., α, β, and M). It is important to note that considerable

human, animal, and computational research has examined the specifi-

cation of model assumptions for calibration-derived amplitudes of

CMRO2 (Griffeth & Buxton, 2011; Kida et al., 2007; Lu & van

Zijl, 2005; see Hoge, 2012). Moreover, other studies have investi-

gated whether the hypercapnic challenge is isometabolic and whether

it might also influence the amplitude of CMRO2 by virtue of affecting

the M parameter (Peng, Ravi, Sheng, Thomas, & Lu, 2017; Yücel

et al., 2014). As we demonstrated, altering α and β assumptions of the

deoxyhemoglobin dilution model alters the amplitude of dynamic

CMRO2 fluctuations. However, such alterations do not markedly

change either (a) the temporal pattern of CMRO2 fluctuations, (b) the

overall strength of CMRO2 correlations, or (c) the spatial distribution

of CMRO2 correlations. Additionally, individually altering M-values

has little or no effect on calibration-derived CMRO2 functional con-

nectivity patterns (Wu et al., 2009). In sum, because changes to model

assumptions mostly affect the amplitude of the CMRO2 fluctuations
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and not the coherence of the fluctuations themselves, reasonable

specifications consistent with animal, human, and computational find-

ings are unlikely to affect resting-state CMRO2 functional connectiv-

ity analyses (Liu, 2013).

3.3 | Technical challenges and developments

Users of calibrated fMRI for resting functional connectivity analyses

face additional technical challenges relative to more standard

approaches (for review see Bright et al., 2019). For instance, due to

reduced spatial coverage accompanying the dual-echo acquisition

method used here, the effective field-of-view available was largely

restricted to supra-tentorial structures. Future work using multiband

dual-echo acquisition may sufficiently increase effective fields-of-

view to reliably accommodate both supra- and infra-tentorial struc-

tures (e.g., Cohen, Nencka, & Wang, 2018). Additionally, the use of

hypercapnic challenges is difficult to employ and could be problematic

for use in specific populations (e.g., anxious participants). Advances

using asymmetric spin echo, quantitative susceptibility mapping,

breath-hold challenges, and other techniques suggest promise for

recovering CMRO2 signals without the use of a gas challenge (Biswal,

Kannurpatti, & Rypma, 2007; Blockley, Griffeth, Simon, Dubowitz, &

Buxton, 2015; Kannurpatti, Motes, Rypma, & Biswal, 2010, 2011;

Sanganahalli, Herman, Rothman, Blumenfeld, & Hyder, 2016; Shu

et al., 2016; Zhang et al., 2018), offering optimism for more conve-

nient and inclusive opportunities in calibrated imaging research. Addi-

tionally, relaxometry approaches employing exogenous contrasts are

capable of recovering voxel-wise estimates of β—which circumvents

the need to assume this parameter (Kida, Kenna, Rothman, Behar, &

Hyder, 2000; Shu et al., 2016).

Another challenge facing users of low-frequency fluctuations of

calibration-derived oxygen metabolism for functional connectivity

analyses is that signal quality decreases will affect the strength of

functional connections. Consistent with BOLD-based connectivity,

decreased or altered temporal signal-to-noise distributions between

neural units will reduce their measured functional connectivity (see

Liu, 2013). Low-frequency fluctuations of calibration-derived CMRO2

have reduced temporal signal-to-noise distributions relative to BOLD

(Wu et al., 2009). Thus, low-frequency fluctuations of calibration-

derived CMRO2 will inherently produce lower functional connectivity

estimates compared with those based upon BOLD (cf. Liu, 2013). This

may be problematic in at least two ways. First, disparate signal-to-

noise distributions will bias quantitative comparisons of BOLD-based

and CMRO2-based functional connectivity. This bias is evident in the

Wu et al. (2009) study, wherein they demonstrated overall decreased

correlation coefficients for CMRO2-based functional connections

along with overall decreased contrast-to-noise ratios relative to BOLD

(also Champagne et al., 2019). In terms of comparing BOLD and

CMRO2 graph-based networks, differences in the strength of correla-

tions will also bias prospective quantitative comparisons of these sig-

nals' network properties (cf. Garrison, Sheinost, Finn, Shen, &

Constable, 2015; Hilgetag & Goulas, 2016). Because of baseline

increases in functional connectivity coefficients for BOLD relative to

CMRO2, a similar absolute correlation threshold will yield different net-

work densities across these two signal types, biasing direct network

comparisons (cf. Garrison et al., 2015; Hilgetag & Goulas, 2016). How-

ever, as we demonstrate here, lower signal quality does not preclude

qualitative (e.g., determining whether a signal type demonstrates a com-

plex, small-world topology) or relative (e.g., comparisons of spatial over-

lap with relative thresholds) comparisons of network or subnetwork

organization between CMRO2 and BOLD, or other imaging approaches.

A related challenge concerns the sensitivity of CMRO2-based

functional connectivity analyses. Decreased strength of CMRO2 func-

tional connections decreases the probability of detecting statistically

significant connections. When considering this technique relative to

BOLD, increased noise in the CMRO2 signal will likely require greater

sample sizes to achieve equivalent statistical power. For example,

Champagne et al. (2019) reported changes in BOLD- and CMRO2-

based default mode networks pre- and post-head impacts in collegiate

athletes. Effect sizes for pre- and post-condition comparisons were

markedly larger for BOLD-based relative to CMRO2-based functional

connectivity analyses, suggesting that CMRO2-based analyses may

require greater sample sizes for inferential tests to achieve the same

statistical power as BOLD. Additionally, because of slower sampling

rates for dual-echo signals relative to BOLD alone, longer acquisition

times may also be necessary to achieve the same statistical power for

functional connectivity analyses within participants.

4 | CONCLUSIONS

This is the first study to demonstrate that brain-wide calibration-

derived CMRO2 functional connections could detect both topological

and subnetwork properties consistent with those previously

established in the healthy brain. Functional connectivity analyses

using low-frequency fluctuations of calibration-derived CMRO2

showed qualitatively similar complex, small-world network topologies

compared with those described by previous functional and anatomical

connectivity studies. Further, seed-based functional connectivity

using calibration-derived CMRO2 and an independent BOLD data set

showed large effect-size relationships between voxel-wise sub-

network connectivity patterns, and medium to large effect-size rela-

tionships in their binary spatial overlap. Calibrated imaging is still in its

infancy and there are many additional challenges facing users of this

method that should be addressed in future research. However, for

those seeking to acquire a functional signal that is unambiguous,

closely related to neural communication, and that yields novel infor-

mation about neurological or psychological diversity; our results sug-

gest that the present challenges associated with calibrated imaging

can be overcome to investigate the brain-wide organization of

resting-state oxygen metabolism.

ACKNOWLEDGMENTS

This work was supported in part by National Institute of Health grants

to NAH (F32MH114525; P20GM130461[6026]), KRS (F31DC015695),

HUBBARD ET AL. 1965



and BR/HL (R01AG047972). This work was also partially supported

by Friends of the Air Force Academy Library of Brain Health Distin-

guished Scientist Award, Brain and Behavior Research Foundation

Award, and the Nebraska Biomedical Research Development Funds

(NAH); the National Multiple Sclerosis Society (BR: RG-150-06687). The

authors would like to thank Lindsey Michelle for assistance in figure cre-

ation, James Capella, Jimmy Chen, and Danielle Clark for assistance with

manuscript preparation. The authors would also like to thank Drs. John

Gabrieli, Satrajit Ghosh, and Susan Whitfield-Gabrieli for providing

thoughtful discussions about previous drafts of the manuscript.

CONFLICT OF INTERESTS

The authors declare no known competing interests.

DATA AVAILABILITY STATEMENT

De-identified data and code will be made available upon request to

the corresponding author.

ORCID

Nicholas A. Hubbard https://orcid.org/0000-0002-8209-4295

REFERENCES

Abdelkarim, D., Zhao, Y., Turner, M. P., Sivakolundu, D. K., Lu, H., &

Rypma, B. (2019). A neural-vascular complex of age-related changes in

the human brain: Anatomy, physiology, and implications for

neurocognitive aging. Neuroscience and Biobehavioral Reviews, 107,

927–944. https://doi.org/10.1016/j.neubiorev.2019.09.005
Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain

functional networks. Computational biology, 3, 174–183.
Achard, S., Salvador, R., Witcher, B., Suckling, J., & Bullmore, E. (2006). A

resilient, low-frequency, small-world human brain functional network

with highly connected association cortical hubs. The Journal of Neuro-

science, 26, 63–72.
Ances, B., Vaida, F., Ellis, R., & Buxton, R. B. (2011). Test–retest stability of

calibrated BOLD-fMRI in HIV− and HIV subjects. NeuroImage, 54,

2156–2162. https://doi.org/10.1016/j.neuroimage.2010.09.081

Ances, B. M., Liang, C. L., Leontiev, O., Perthen, J. E., Fleisher, A. S.,

Lansing, A. E., & Buxton, R. B. (2009). Effects of aging on cerebral

blood flow, oxygen metabolism, and blood oxygenation level depen-

dent responses to visual stimulation. Human Brain Mapping, 30(4),

1120–1132. https://doi.org/10.1002/hbm.20574

Barbey, A. K. (2018). Network neuroscience theory of human intelligence.

TICS, 22(1), 8–20.
Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: an open source

software for exploring and manipulating networks. International AAAI

Conference on Weblogs and Social Media.

Bassett, D., & Bullmore, E. (2009). Human brain networks in health and

disease. Current Opinion in Neurology, 22(4), 340–347.
Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based

noise correction method (CompCor) for BOLD and perfusion based

fMRI. NeuroImage, 37, 90–101.
Bright, M. G., Croal, P. L., Blockley, N. P., & Bulte, D. P. (2019). Multi-

parametric measurement of cerebral physiology using calibrated fMRI.

NeuroImage, 187, 128-144.

Birn, R. M. (2012). The role of physiological noise in resting-state func-

tional connectivity. NeuroImage, 2(15), 864–870.
Biswal, B. B., Kannurpatti, S. S., & Rypma, B. (2007). Hemodynamic scaling

of fMRI-BOLD signal: Validation of low-frequency spectral amplitude

as a scalability factor. Magnetic Resonance Imaging, 25, 1358–1369.

Blockley, N. P., Griffeth, V. E., Simon, A. B., Dubowitz, D. J., &

Buxton, R. B. (2015). Calibrating the BOLD response without adminis-

tering gases: Comparison of hypercapnia calibration with calibration

using an asymmetric spin echo. NeuroImage, 104, 423–429. https://
doi.org/10.1016/j.neuroimage.2014.09.061

Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C., & Yeo, B. T.

(2011). The organization of human cerebellum estimated by intrinsic

functional connectivity. Journal of Neurophysiology, 106, 2322–2345.
Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T.,

… Johnson, K. A. (2009). Cortical hubs revealed by intrinsic functional

connectivity: Mapping, assessment of stability, and relation to

Alzheimer's disease. The Journal of Neuroscience, 29, 1860–1873.
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoret-

ical analysis of structural and functional systems. Nature Reviews Neu-

roscience, 10(3), 186–198. https://doi.org/10.1038/nrn2575
Bullmore, E., & Sporns, O. (2012). The economy of brain network organiza-

tion. Nature Reviews Neuroscience, 13, 336–349.
Buxton, R. B. (2010). Interpreting oxygenation-based neuroimaging signals:

The importance and the challenge of understanding brain oxygen

metabolism. Frontiers in Neuroenergetics, 2, 1–16. https://doi.org/10.
3389/fnene.2010.00008

Champagne, A. A., Coverdale, N. S., Nashed, J. Y., Fernandez-Ruiz, J., &

Cook, D. J. (2019). Resting CMRO2 fluctuations show persistent net-

work hyper-connectivity following exposure to sub-concussive colli-

sions. NeuroImage:Clinical, 22, 101753.

Cohen, A. D., Nencka, A. S., & Wang, Y. (2018). Multiband multi-echo

simultaneous ASL/BOLD for task-induced functional MRI. PLoS One,

13(2), 1–21. https://doi.org/10.1371/journal.pone.0190427
Cole, M. W., Pathak, S., & Schneider, W. (2010). Identifying the brain's

most globally connected regions. NeuroImage, 49, 3132–3148.
Craddock, R. C., James, G. A., Holtzheimer, P. E., III, Hu, X. P., &

Mayberg, H. S. (2012). A whole brain fMRI atlas generated via spatially

constrained spectral clustering. Human Brain Mapping, 33, 1914–1928.
Davis, T. L., Kwong, K. K., Weiskoff, R. M., & Rosen, B. R. (1998). Cali-

brated functional MRI: Mapping the dynamics of oxidative metabo-

lism. Proceedings of the National Academy of Sciences of the United

States of America, 95, 1834–1839.
De Asis-Cruz, J., Bouyssi-Kobar, M., Evangelou, I., Vezina, G., &

Limperopoulos, C. (2015). Functional properties of resting state net-

works in healthy full-term newborns. Scientific Reports, 5, 1–14.
https://doi.org/10.1038/srep17755

Drew, P. J., Shih, A. Y., & Kleinfeld, D. (2011). Fluctuating and sensory-

induced vasodynamics in rodent cortex extend to arteriole capacity.

PNAS, 108(20), 8472–8478.
Garrison, K. A., Sheinost, D., Finn, E. S., Shen, X., & Constable, R. T. (2015).

The (in)stability of functional brain network measures across thresh-

olds. NeuroImage, 18, 651–661.
Gauthier, C., & Fan, A. (2018). BOLD signal physiology: Models and appli-

cations. NeuroImage, 187, 116–127. https://doi.org/10.1016/j.

neuroimage.2018.03.018

Germuska, M., & Wise, R. G. (2018). Calibrated fMRI for mapping absolute

CMRO2: Practicalities and prospects. NeuroImage, 187, 145–153.
https://doi.org/10.1016/j.neuroimage.2018.03.068

Griffeth, V. E. M., & Buxton, R. B. (2011). A theoretical framework for esti-

mating cerebral oxygen metabolism changes using the calibrated-

BOLD method: Modeling the effects of blood volume distribution,

hematocrit, oxygen extraction fraction, and tissue signal properties on

the BOLD signal. NeuroImage, 58, 198–212.
Grubb, R. L., Raichle, M. E., Eichling, J. O., & Ter-Pogossian, M. M. (1974).

The effects of changes in PaCO2 on cerebral blood volume, blood

flow, and vascular mean transit time. Stroke, 5, 630-639.

Hallquist, M. N., Hwang, K., & Luna, B. (2013). The nuisance of nuisance

regression: Spectral misspecification in a common approach to resting-

state fMRI preprocessing reintroduces noise and obscures functional

connectivity. NeuroImage, 82(15), 208–225.

1966 HUBBARD ET AL.

https://orcid.org/0000-0002-8209-4295
https://orcid.org/0000-0002-8209-4295
https://doi.org/10.1016/j.neubiorev.2019.09.005
https://doi.org/10.1016/j.neuroimage.2010.09.081
https://doi.org/10.1002/hbm.20574
https://doi.org/10.1016/j.neuroimage.2014.09.061
https://doi.org/10.1016/j.neuroimage.2014.09.061
https://doi.org/10.1038/nrn2575
https://doi.org/10.3389/fnene.2010.00008
https://doi.org/10.3389/fnene.2010.00008
https://doi.org/10.1371/journal.pone.0190427
https://doi.org/10.1038/srep17755
https://doi.org/10.1016/j.neuroimage.2018.03.018
https://doi.org/10.1016/j.neuroimage.2018.03.018
https://doi.org/10.1016/j.neuroimage.2018.03.068


Herman, P., Sanganahalli, B. G., Blumenfeld, H., & Hyder, F. (2009). Cere-

bral oxygen demand for short-lived and steady-state events. Journal of

Neurochemistry, 109, 73–79.
Herman, P., Sanganahalli, B. G., Blumenfeld, H., Rothman, D. L., &

Hyder, F. (2013). Qunatitative basis for neuroimaging of cortical

laminae with calibrated functional MRI. Proceedings of the National

Academy of Sciences of the United States of America, 110,

15115–15120.
Hilgetag, C. C., & Goulas, A. (2016). Is the brain really a small-world net-

work? Brain Structure & Function, 221, 2361–2366.
Hoge, R. D. (2012). Calibrated fMRI. NeuroImage, 62, 930–937.
Hoge, R. D., Atkinson, J., Gill, B., Crelier, G. R., Marrett, S., & Pike, G. B.

(1999). Investigation of BOLD signal dependence on cerebral blood

flow and oxygen consumption: The deoxyhemoglobin dilution model.

Magnetic Resonance in Medicine, 42, 849–863.
Hubbard, N. A., Sanchez Araujo, Y., Caballero, C., Ouyang, M.,

Turner, M. P., Himes, L., … Rypma, B. (2017). Evaluation of visual-

evoked cerebral metabolic rate of oxygen as a diagnostic marker in

multiple sclerosis. Brain Sciences, 7(6), 5375–5390. https://doi.org/10.
3390/brainsci7060064

Hubbard, N. A., Turner, M. P., Ouyang, M., Himes, L., Thomas, B.,

Hutchison, J. L., … Rypma, B. (2017). Calibrated imaging reveals altered

grey matter metabolism related to white matter microstructure and

symptom severity in multiple sclerosis. Human Brain Mapping, 38,

5375–5390.
Huchzermeyer, C., Albus, K., Gabriel, H., Otahal, J., Taubenberger, N.,

Heinemann, U., … Kann, O. (2008). Gamma oscillations and spontane-

ous network activity in the hippocampus are highly sensitive to

decreases in pO2 and concomitant changes in mitochondrial redox

state. The Journal of Neuroscience, 28, 1153–1162.
Humphries, M. D., & Gurney, K. (2008). Network ‘small-world-ness’: A

quantitative method for determining canonical network equivalence.

PLoS One, 3, 1–10. https://doi.org/10.1371/journal.pone.0002051
Hutchison, J. L., Lu, H., & Rypma, B. (2013). Neural mechanisms of age-

related slowing: The CBF/CMRO2 ratio mediates age-differences in

BOLD signal and human performance. Cerebral Cortex, 23,

2337–2346.
Hyder, F. (2004). Neuroimaging with calibrated fMRI. Stroke, 35

(11_suppl_1), 2635–2641. https://doi.org/10.1161/01.str.

0000143324.31408.db

Hyder, F., Herman, P., Bailey, C. J., Møller, A., Globinsky, R.,

Fulbright, R. K., … Gjedde, A. (2016). Uniform distribution of glucose

oxidation and oxygen extraction in gray matter of normal human brain:

No evidence of regional differences in aerobic glycolysis. (2016). Jour-

nal of Cerebral Blood Flow & Metabolism, 36(5), 903–916.
Hyder, F., Kida, I., Behar, K. L., Kennan, R. P., Maciejewski, P. K., &

Rothman, D. L. (2001). Quantitative functional imaging of the

brain: Towards mapping neuronal activity by BOLD fMRI. NMR

in Biomedicine, 14(7–8), 413–431. https://doi.org/10.1002/

nbm.733

Hyder, F., Rothman, D. L., & Shulman, R. G. (2002). Total neuroenergetics

support localized brain activity: Implications for the interpretation of

fMRI. PNAS, 99, 10771–10776.
Hyder, F., Sanganahalli, B. G., Herman, P., Coman, D., Maandag, N. J. G.,

Behar, K. L., … Rothman, D. L. (2010). Neurovascular and neuro-

metabolic couplings in dynamic calibrated fMRI: Transient oxidative

neuroenergetics for block-design and event-related paradigms. Fron-

tiers in Neuroenergetics, 2, 1–11. https://doi.org/10.3389/fnene.2010.
00018

Iannetti, G. D., & Wise, R. G. (2007). BOLD functional MRI in disease and

pharmacological studies: Room for improvement? MRI, 25, 978-988.

Jann, K., Gee, D. G., Kilroy, E., Schwab, S., Smith, R. X., Cannon, T. D., &

Wang, D. J. (2015). Functional connectivity in BOLD and CBF data:

Similarity and reliability of resting brain networks. NeuroImage, 106,

111–122.

Joon Jo, H., Gotts, S. J., Reynolds, R. C., Bandettini, P. A., Martin, A.,

Cox, R. W., & Saad, Z. S. (2013). Effective preprocessing procedures

virtually eliminate distance-dependent motion artifacts in resting state

FMRI. Journal of Applied Mathematics, 2013, 1–9. https://doi.org/10.
1155/2013/935154

Kaiser, M., & Hilgetag, C. C. (2006). Nonoptimal component placement,

but short processing paths, due to long-distance projections in neural

systems. PLoS Computational Biology, 2, 805–815. https://doi.org/10.
1371/journal.pcbi.0020095

Kannurpatti, S. S., Motes, M. A., Rypma, B., & Biswal, B. B. (2010). Neural

and vascular variability and the fMRI-BOLD response in normal aging.

Magnetic Resonance Imaging, 28, 466–476.
Kannurpatti, S. S., Motes, M. A., Rypma, B., & Biswal, B. B. (2011). Non-

neural BOLD variability in block and event-related paradigms. Mag-

netic Resonance Imaging, 29, 140–176.
Kida, I., Kenna, R. P., Rothman, D. L., Behar, K. L., & Hyder, F. (2000). High-

resolution CMRO2 mapping in rat cortex: A multiparametric approach

to calibration of BOLD image contrast at 7 tesla. Journal of Cerebral

Blood Flow & Metabolism, 20, 847–860.
Kida, I., Rothman, D. L., & Hyder, F. (2007). Dynamics of changes in blood

flow, volume, and oxygenation: Implications for dynamic functional

magnetic resonance imaging calibration. Journal of Cerebral Blood

Flow & Metabolism, 27, 690–696.
Krishnan, G. P., González, O. C., & Bazhenov, M. (2018). Origins of slow

spontaneous resting-state neural fluctuations in brain networks. PNAS,

115(26), 6858–6863.
Lajoie, I., Tancredi, F. B., & Hoge, R. D. (2016). Regional reproducibility of

BOLD calibration parameter M, OEF and resting-state CMRO2 mea-

surements with QUO2 MRI. PLoS One, 11, 1–31. https://doi.org/10.
1371/journal.pone.0163071

Leopold, D. A., & Maier, A. (2012). Ongoing physiological processes in the

cerebral cortex. NeuroImage, 62(4), 2190–2200. https://doi.org/10.

1016/j.neuroimage.2011.10.059

Liau, J., Perthen, J. E., & Liu, T. T. (2008). Caffeine reduces the activation

extent and contrast-to-noise ratio of the functional cerebral blood

flow response but not the BOLD response. NeuroImage, 42, 296-305.

Lin, A., Fox, P. T., Hardies, J., Duong, T. Q., & Gao, J. (2010). Nonlinear cou-

pling between cerebral blood flow, oxygen consumption, and ATP pro-

duction in human visual cortex. Proceedings of the National Academy of

Sciences of the United States of America, 107, 8446–8451.
Liu, T. T. (2013). Neurovascular factors in resting-state functional MRI.

NeuroImage, 80, 339–348.
Liu, T. T., & Wong, E. C. (2005). A signal processing model for arterial spin

labeling functional MRI. NeuroImage, 24, 207–215.
Lorthois, S., Cassot, F., & Lauwers, F. (2011). Simulation study of brain

blood flow regulation by intra-cortical arterioles in an anatomically

accurate large human vascular network. Part II: Flow variations

induced by global or localized modifications of arteriolar diameters.

NeuroImage, 54, 2840–2853.
Lu, H., Donahue, M. J., & van Zijl, P. C. M. (2006). Detrimental effects of

BOLD signal in arterial spin labeling at high field strength. Magnetic

Resonance in Medicine, 56(3), 546–552.
Lu, H., & van Zijl, P. C. M. (2005). Experimental measurement of parenchy-

mal BOLD effects and tissue oxygen extraction fractions using multi-

echo vassal fMRI at 1.5 and 3.0 T. Magnetic Resonance in Medicine, 53,

808–816.
Mohtasib, R. S., Lumley, G., Goodwin, J. A., Emsley, H. C. A., Sluming, V., &

Parkes, L. M. (2012). Calibrated fMRI during a cognitive Stroop task

reveals reduced metabolic response with increasing age. NeuroImage,

59, 1134-1151.

Murphy, K., & Fox, M. D. (2017). Towards a consensus regarding global

signal regression for resting state functional connectivity MRI.

NeuroImage, 154, 169–173.
Newman, M. E. (2008). The mathematics of networks. In L. Blume (Ed.), The

new Palgrave Encyclopedia of economics. Basingstoke: Palgrave Macmillan.

HUBBARD ET AL. 1967

https://doi.org/10.3390/brainsci7060064
https://doi.org/10.3390/brainsci7060064
https://doi.org/10.1371/journal.pone.0002051
https://doi.org/10.1161/01.str.0000143324.31408.db
https://doi.org/10.1161/01.str.0000143324.31408.db
https://doi.org/10.1002/nbm.733
https://doi.org/10.1002/nbm.733
https://doi.org/10.3389/fnene.2010.00018
https://doi.org/10.3389/fnene.2010.00018
https://doi.org/10.1155/2013/935154
https://doi.org/10.1155/2013/935154
https://doi.org/10.1371/journal.pcbi.0020095
https://doi.org/10.1371/journal.pcbi.0020095
https://doi.org/10.1371/journal.pone.0163071
https://doi.org/10.1371/journal.pone.0163071
https://doi.org/10.1016/j.neuroimage.2011.10.059
https://doi.org/10.1016/j.neuroimage.2011.10.059


Obata, T., Liu, T. T., Miller, K. L., Luh, W.-M., Wong, E. C., Frank, L. R., &

Buxton, R. B. (2004). Discrepancies between BOLD and flow dynamics

in primary and supplementary motor areas: Application of the balloon

model to the interpretation of BOLD transients. NeuroImage, 21,

144–153.
Pandit, A. S., Expert, P., Lambiotte, R., Bonnelle, V., Leech, R.,

Turkheimer, F. E., & Sharp, D. J. (2013). Traumatic brain injury impairs

small-world topology. Neurology, 80(20), 1826–1833. https://doi.org/
10.1212/wnl.0b013e3182929f38

Peng, S., Ravi, H., Sheng, M., Thomas, B. P., & Lu, H. (2017). Searching for

a truly “iso-metabolic” gas challenge in physiological MRI. Journal of

Cerebral Blood Flow and Metabolism, 37(2), 715–725.
Perthen, J. E., Lansing, A. E., Liau, J., Liu, T. T., & Buxton, R. B. (2007). Caf-

feine-induced uncoupling of cerebral blood flow and oxygen metabo-

lism: A calibrated BOLD fMRI study. NeuroImage, 40, 237–247.
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E.

(2012). Spurious but systematic correlations in functional connectivity

MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154.
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain

connectivity: Uses and interpretations. NeuroImage, 52, 1059–1069.
Rubinov, M., Ypma, R. J. F., Watson, C., & Bullmore, E. T. (2015). Wiring

cost and topological participants of the mouse brain connectome. Pro-

ceedings of the National Academy of Sciences of the United States of

America, 112, 10032–10037.
Sanganahalli, B. G., Herman, P., Rothman, D. L., Blumenfeld, H., &

Hyder, F. (2016). Metabolic demands of neural-hemodynamic associ-

ated and dissociated areas in brain. Journal of Cerebral Blood Flow &

Metabolism, 36(10), 1695–1707.
Shu, C. Y., Herman, P., Coman, D., Sanganahalli, B. G., Wang, H.,

Juchem, C., … Hyder, F. (2016). Brain region and activity-dependent

properties of M for calibrated fMRI. NeuroImage, 125, 848–856.
Shu, C. Y., Sanganahalli, B. G., Coman, D., Herman, P., Rothman, D. L., &

Hyder, F. (2016). Quantitative β mapping for calibrated fMRI.

NeuroImage, 126, 219–228.
Simon, A. B., & Buxton, R. B. (2015). Understanding the dynamic relation-

ship between cerebral blood flow and the BOLD signal: Implications

for quantitative functional MRI. NeuroImage, 116, 158–167.
Smith, A. J., Blumenfeld, H., Behar, K. L., Rothman, D. L., Shulman, R. G., &

Hyder, F. (2002). Cerebral energetics and spiking frequency: The neu-

rophysiological basis of fMRI. Proceedings of the National Academy of

Sciences, 99(16), 10765–10770. https://doi.org/10.1073/pnas.

132272199

Sporns, O., Chialvo, D. R., Kaiser, M., & Hilgetag, C. C. (2004). Organiza-

tion, development and function of complex brain networks. Trends in

Cognitive Sciences, 8(9), 418–425.
Sur, M., & Rubenstein, J. L. R. (2004). Patterning and plasticity of the cere-

bral cortex. Science, 310, 805–810.
Tomasi, D. G., Shokri-Kojori, E., Wiers, C. E., Kim, S. W., Demiral, Ş. B.,
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