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Reconstruction of all-sky daily air 
temperature datasets with high 
accuracy in China from 2003 to 2022
Min Wang   1,2, Jing Wei3, Xiaodong Wang4, Qingzu Luan5 ✉ & Xinliang Xu1,2

A high-accuracy, continuous air temperature (Ta) dataset with high spatiotemporal resolution is 
essential for human health, disease prediction, and energy management. Existing datasets consider 
factors such as elevation, latitude, and surface temperature but insufficiently address meteorological 
and spatiotemporal factors, affecting accuracy. Additionally, no high-resolution dataset currently 
includes daily maximum (Tmax), minimum (Tmin), and mean (Tmean) temperatures generated using a 
unified methodology. Here, we introduce the four-dimensional spatiotemporal deep forest (4D-STDF) 
model, integrating 12 multisource factors, encompassing static and dynamic parameters, and six 
refined spatiotemporal factors to produce Ta datasets. This approach generates three high-accuracy 
Ta datasets at 1 km spatial resolution covering mainland China from 2003 to 2022. These datasets, 
in GeoTIFF format with WGS84 projection, comprise daily Tmax, Tmin, and Tmean. The overall RMSE are 
1.49 °C, 1.53 °C, and 1.18 °C for the estimates. The 4D-STDF model can also be applied to other regions 
with sparse meteorological stations.

Background & Summary
In global warming, generating high-resolution Ta datasets is becoming increasingly important. High-precision, 
high spatiotemporal resolution, and long-term continuous temperature datasets, particularly those capturing 
extreme temperatures, are essential for understanding small-scale climate changes1, such as urban heat islands 
and mountain microclimates; identifying seasonal temperature characteristics and abnormal weather events2,3; 
enhancing building energy efficiency4; predicting and controlling diseases5–7; and improving human health 
research8,9. Despite the accurate observation, capture, and recording of spatiotemporal variations in Ta sur-
round stations by widely distributed meteorological stations, they fall short of providing a detailed depiction of 
Ta’s spatiotemporal distribution and variation patterns for the whole area. There are already a lot of gridded Ta 
datasets to fill this gap (Table 1). From the Table 1, we find that existing Ta datasets primarily serve large-scale 
climate assessments and have relatively low spatiotemporal resolution10–15 (e.g., monthly or 8-day intervals, 0.1° 
or 0.05°). While some datasets have achieved daily 1 km spatial resolution, their periods are short (only a par-
ticular year or before 2020), or they estimate only one or two of the Tmax, Tmin, or Tmean temperatures, and their 
estimation accuracy (e.g., for extreme temperature Tmax and Tmin, the highest accuracy is reported by Zhang et al. 
with RMSE above 1.5 °C) still has room for improvement16–19.

Three approaches can be used to estimate gridded Ta products: the temperature vegetation index (TVX) 
assumption model, physical-mechanical models, and statistical models. However, the TVX assumption model 
exhibits significant estimation errors in areas with low vegetation cover20. In contrast, physical models require 
high parameter inputs21, making them computationally intensive and difficult to implement on a large scale. 
Furthermore, methods relying on atmospheric profiles become ineffective when the inversion layer appears22,23. 
Statistical models, such as Spatiotemporal Regression-Kriging16, Geographic Weighted Regression model24, 
Bayesian Kriging Regression Method25, and Spatially Varying Coefficient Models with Sign Preservation 
(SVCM-SP)17, known for their simplicity and high accuracy, have gained widespread application. Although 
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statistical models consider the spatiotemporal heterogeneity of Ta and incorporate some influencing factors, 
they often struggle to integrate all aspects, such as climatic conditions, human activities, and topography, due to 
their computational complexity and efficiency issues. This limitation makes it challenging to accurately capture 
Ta variations over time and space, particularly for extreme temperatures (Tmax and Tmin). For instance, while the 
Spatiotemporal Regression-Kriging model integrates spatial and temporal data correlations and offers rich spa-
tiotemporal prediction capabilities, its RMSE is around 6 °C in areas with sparse weather stations or at altitudes 
above 1000 m, making accurate prediction a challenge16. The GWR method handles spatial non-stationarity 
and establishes local relationships but performs better in warm seasons and flat areas and is less accurate than 
Kriging in cold seasons24. The Bayesian Kriging Regression Method incorporates Kriging regression within a 
Bayesian framework to account for uncertainties in the estimation process but relies solely on LST data without 
considering other influencing factors25. The SVCM-SP model, which introduces signed spatially varying coeffi-
cients, addresses the anomalies in GWR’s relationship between Ta and explanatory variables, offering improved 
accuracy. However, it uses only LST and DEM parameters, neglecting other factors such as clouds, snow, land 
cover types, and meteorological parameters, leading to discrepancies between the estimated and actual Ta spatial 
patterns17.

Machine learning (ML) methods have demonstrated superior data mining capabilities compared to tradi-
tional regression models. Their high computational efficiency26,27 and significant enhancement of estimation 
accuracy28,29 make ML models, such as Rule-based Cubist Regression30, Cubist Matching Learning Algorithm31, 
Random Forest32–34, Spatiotemporal Random Forest35, and fusion of various statistical models36, widely appli-
cable in Ta estimation. ML models notably improve Ta estimation accuracy compared to statistical regression 
methods28,29. However, most current Ta estimation models simplistically adopt ML techniques, often neglecting 
the spatiotemporal heterogeneity of Ta. This neglect leads to significant errors, especially in areas with complex 
terrain or sparse monitoring stations. To address this issue, integrating spatiotemporal information with ML 
models is becoming an essential trend. For example, Sun et al.37 integrated deep learning models with spatial sta-
tistical information for estimating urban and rural surface ozone products from 1990 to 2019. Similarly, Wei et al.  
successfully fused spatiotemporal information with artificial models for estimating PM2.5

38–40, NO2
41, PM1

42, and 
PM2.5 chemical composition43. These studies highlight the advantages of incorporating spatiotemporal infor-
mation to improve model performance by extrapolating station observation data to the surface. However, its 
application in Ta estimation models has been relatively limited.

Although ML models have significantly improved Ta estimation accuracy, the precision of these models 
is highly dependent on the proper selection of parameters. Incorrect or suboptimal parameter choices can 
still lead to significant errors, especially in areas with complex terrain or sparse monitoring stations26. Based 
on existing research, there is high consistency in the selection of variables when establishing the relationship 
between observed Ta at stations and auxiliary variables. Primary considerations include static parameters such 
as geographical factors (longitude, latitude, and elevation) and temporal parameters10,24,44. However, static 
parameters alone cannot capture the influence of biophysical factors such as land cover, vegetation charac-
teristics, and human activities. Subsequently, dynamic parameters such as Land Surface Temperature (LST), 
Normalized Difference Vegetation Index (NDVI), Downward Shortwave Radiation (DSR), Surface Albedo 
(ALB), and Leaf Area Index (LAI) have been added to the model to enhance further its ability to depict details 
of Ta28,45,46. Although selecting these parameters considers the impact of topography and human activities, 

Literature Spatial extent
Spatial 
resolution Temporal frequency

Coverage 
time

Accuracy

MAE RMSE R²

1 (Hooker et al.)11 Global 0.05° Monthly (Tmean) 2003–2016 — 1.14–1.55 °C —

2 (Funk et al.)12 Global 0.05° Monthly (Tmax) 1983–2016 0.8–1.0 °C — 0.61–0.85

3 (Yao et al.)13 Global 30 arcsecond Monthly (Tmax, Tmin, and Tmean) 2001–2020
Validated using CMIC:
Tmax: 1.373 °C
Tmin: 1.105 °C
Tmean: 0.770 °C

Validated using 
CMIC:
Tmax: 2.223 °C
Tmin: 1.516 °C
Tavg: 1.056 °C

Validated 
using CMIC:
Tmax: 0.959
Tmin: 0.984
Tavg: 0.991

4 (Chen et al.)10 China 1 km 8-day (Tmax, Tmin, and Tmean) 2010 —
Tmax: 1.45 °C
Tmin: 1.29 °C
Tavg: 1.2 °C

0.93–0.99

5 (Fang et al.)14 China 0.1° Daily (Tmax, Tmin, and Tmean) 1979–2018
Tmax: 0.63–1.40 °C
Tmin: 0.58–1.60 °C
Tmean:0.27–0.68 °C

Tmax: 0.86–1.78 °C
Tmin: 0.78–2.09 °C
Tmean:0.35–1.00 °C

Tmax: 0.96–0.99
Tmin: 0.95–0.99
Tmean:0.99–1.00

6 (P. Wang et al.)15 China 0.1° Daily (Tmax) 1979–2018 1.07 °C 1.52 °C —

7 (Chen et al.)18 Mainland China 1 km Daily (Tmean) 2003–2019 1.033K–1.100 K 1.342K–1.440 K 0.984–0.986

8 (Kilibarda et al.)16 Global 1 km Daily (Tmax, Tmin, and Tmean) 2011 —
Tmax: 2.6 °C
Tmin: 2.7 °C
Tavg: 2.4 °C

Tmax: 0.96
Tmin: 0.94
Tavg: 0.97

9 (Zhang et al.)17 Mainland China 1 km Daily (Tmax and Tmin) 2003–2016 Tmax: 1.22 °C
Tmin: 1.30 °C

Tmax: 1.75 °C
Tmin: 1.82 °C

Tmax: 0.93
Tmin: 0.94

10 (Zhang et al.)19 Global 1 km Daily (Tmax and Tmin) 2003–2020
Europe and Asia:
Tmax: 1.29 ± 0.15 °C
Tmin: 1.28 ± 0.20 °C

Europe and Asia:
Tmax: 1.80 ± 0.19 °C
Tmin: 1.75 ± 0.26 °C

—

Table 1.  The ten mainly existing gridded Ta datasets.
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meteorological factors such as evapotranspiration, wind speed, precipitation, and atmospheric pressure, which 
are equally crucial to Ta, are usually neglected in model incorporation33,34. Moreover, incorporating spatiotem-
poral information in ML models has yielded superior estimations of various air pollution indicators, such as 
ozone37, PM2.5

38–40, NO2
41, PM1

42, and PM2.5 chemical composition43. In this study, we pay particular attention 
to meteorological factors and spatiotemporal information in model training and inversion to improve Ta esti-
mation accuracy.

Numerous studies have indicated that LST improves estimation accuracy and captures spatiotemporal var-
iations of Ta in detail, making it a key parameter in the inversion process of Ta products. However, due to data 
gaps caused by factors such as clouds, LST data may not fully support the production of continuous spatiotem-
poral temperature products. Currently, there are generally two strategies to address this issue. The first strategy 
involves estimating Ta based on available LST data and then using various interpolation and reconstruction 
methods to complete Ta. The second strategy consists of producing fully covered LST products for the inversion 
of Ta. Previous research has shown that models estimating surface temperature with gap-filling perform better 
overall, demonstrating satisfactory accuracy and the ability to overcome issues related to cloud contamination30. 
Therefore, this study adopts the second strategy, selecting high-precision, full-coverage LST products as training 
parameters for all-sky daily continuous Ta estimation.

Based on previous research, our study adopts the 4D-STDF model, which considers the inherent character-
istics of Ta and comprehensively accounts for spatial differences, seasonality, and diurnal variations to estimate 
high-quality daily Tmax, Tmin, and Tmean products over a long time series. To our knowledge, this is the first recon-
struction of all-sky daily Tmax, Tmin, and Tmean datasets at a 1 km resolution (2003–2022) in China. These datasets 
effectively support applications such as extreme climate monitoring, urban thermal environment ecological 
assessments, and energy consumption evaluations at small scales.

Methods
The workflow developed for reconstructing daily Tmax, Tmin, and Tmean datasets based on the 4D-STDF model 
using multisource data is depicted in Fig. 1. The approach consists of three main steps. First, we pre-process 
multisource data, perform spatiotemporal matching and calculate spatiotemporal factors. Second, we train and 
adjust the estimation models for daily Tmax, Tmin, and Tmean using the 4D-STDF model on an annual basis. Finally, 
we evaluate the model’s performance through 10-fold cross-validation spanning the years 2003 to 2022.

Data sources and processing.  We obtained point measurements of near-surface air temperature (NSAT) 
and spatially continuous variables (Table 2) used in NSAT estimation models from publicly available datasets 
outlined in Fig. 2.

Ground-based air temperature.  The ground-based temperature data could obtain from the Chinese National 
Meteorological Information Center (http://data.cma.cn/) of the China Meteorological Administration (CMA), 
including 2,461 ground sites across mainland China, covering the period from 2003 to 2022 (Fig. 2). These data-
sets, including daily Tmax, Tmin, and Tmean temperatures, were used to build the Ta estimation models and assess 
the performance of the models. Before dataset publication, rigorous quality control procedures were applied 
to ensure data integrity. However, to further ensure data quality, we excluded overflow values, identified and 
removed outliers, and handled missing values. Additionally, a thorough verification of the spatiotemporal con-
sistency of the station data was performed, retaining meteorological stations with long monitoring durations 
and stable temperature values.

Seamless daily LST.  The global seamless daily LST dataset from 2003 to 2022 was acquired from Iowa State 
University’s DataShare (https://doi.org/10.25380/iastate.c.5078492) with a resolution of 1 km in the ellipse sinu-
soidal projection47. The dataset contains daytime and nighttime LST data in GeoTIFF format, with a unit of 0.1 
degrees Celsius (°C), and has higher accuracies with RMSEs of 1.88 and 1.33 °C, respectively48. The seamless 
daily LST data for mainland China were selected, and the daily average LST was calculated from day and night 
data, which were used as the primary input variables for building the Ta estimation models.

Auxiliary data.  The auxiliary data used in this study include meteorological, radiational, land use, topographic, 
and population data. The meteorological variables were sourced from the ERA5-Land hourly data (available 
from 1950 to the present) provided by Copernicus Climate Data Store (https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5-land?tab=overview). These variables include boundary layer height (BLH), 
evaporation (ET), total precipitation (PRE), relative humidity (RH), surface pressure (SP), wind speed (WS), 
and wind direction (WD). All hourly data were aggregated into daily data to align with the daily seamless LST 
data. The radiational were obtained from the MODIS MCD18A1 products, accessible through NASA’s Earth 
Observing System Data and Information System (EOSDIS) (https://search.earthdata.nasa.gov/search?q=M-
CD18A1). Land use data were derived from the MODIS MOD13A3 normalized difference vegetation index 
(NDVI) product, also available through EOSDIS (https://search.earthdata.nasa.gov/search?q=MOD13A3). 
Topographical data were acquired from the Shuttle Radar Topography Mission (SRTM) datasets provided by 
the CGIAR Consortium for Spatial Information (CGIAR-CSI) (http://srtm.csi.cgiar.org/). Population data were 
sourced from the Monthly Cloud-free DNB Composite datasets provided by Earth Observation Group (EOG) 
(https://eogdata.mines.edu/products/vnl/). All variables were resampled to a spatial resolution of 1 km × 1 km 
using the bilinear interpolation method. This resampling was conducted to ensure consistency with maximum, 
minimum, and mean temperatures recorded at each station.
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Data processing and match

Seamless daily LST Meteorology(BLH, ET, PRE,
RH, SP, WS, WD) DSR Land use

(NDVI)
Topography 

(DEM)
Population

(NTL)

Deep forest model

Ground-based Tmax

Ground-based Tmin

Ground-based Tmean

Importance score

Model training and adjustment

Gini Index

Feature selection

Spatial information
(S1,S2,S3)

Temporal
information
(T1,T2,T3)

Four-dimensional spatiotemporal deep forest (4D-STDF) models for
Ta

All-sky daily Tmax, Tmin and Tmean estimation models

4D-STDFTmax 4D-STDFTmin 4D-STDFTmean

Model validation Predictive power

China all-sky daily Tmax, Tmin and Tmean datasets at 1-km resolution
over two decades (2003-2022)

Fig. 1  The workflow for constructing and validating daily Ta (Tmax, Tmin, and Tmean) datasets.

Dataset Variable Content Unit Spatial resolution Temporal resolution Data source

Surface air 
temperature

Tmax
daily maximum 
temperatures

°C

in situ Daily Chinese National Meteorological Information Center

Tmin
daily minimum 
temperatures

Tmean daily mean temperatures

Seamless daily LST LST
Daytime LST

°C 1 km × 1 km Daily Iowa State University’s DataShare
Nighttime LST

Meteorology BLH Boundary layer height m 0.1° × 0.1° 1 h ERA5

ET Evaporation mm 1 h

PRE Total precipitation mm 1 h

RH Relative humidity % 1 h

SP Surface pressure hPa 1 h

WS 10 m wind speed Ms−1 1 h

WD 10 m wind direction degree 1 h

DSR DSR Downward Shortwave 
Radiation Wm−2 1 km × 1 km Daily MCD18A1

Land use NDVI NDVI — 1 km × 1 km Monthly MOD13A3

Topography DEM DEM m 90 m × 90 m — SRTM

Population NTL Nighttime lights W cm−2 
sr−1 500 m × 500 m Monthly VIIRS

Table 2.  Input data sources used in this study.
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All-sky daily Tmax, Tmin and Tmean estimation models.  After rigorous quality control, the number 
of samples used for model training each year exceeds 800,000, constituting a large dataset for model training. 
Therefore, the deep forest model is chosen to construct all-sky daily Tmax, Tmin, and Tmean estimation models. 
Compared to traditional decision trees and random forest, the deep forest model demonstrates higher random-
ness, greater computational efficiency, and stronger generalization ability, especially in cases of large datasets 
with high dimensionality or the need for higher computational efficiency49. The trained predictive model exhibits 
greater robustness and a reduced risk of overfitting, making it more suitable for training and predicting Ta.

In this study, the seamless daily Tmax, Tmin and Tmean should be estimated, so the ground-based Ta of max, min 
and mean are considered true values, respectively. The seamless daily average LST is used as the primary input 
for the 4D-STDF model, along with all auxiliary factors, including meteorological variables (BLH, ET, PRE, 
RH, SP, WS and WD), DSR, NDVI, DEM, NTL, and spatiotemporal variables (S1, S2, S3, T1, T2 and T3) for 
training. Three spherical coordinates (S1, S2, S3) are used to express the spatial variables, and three helix-shape 
trigonometric vectors (T1, T2, T3) are used to express the seasonal cycles and daily variations43 for daily Tmax, 
Tmin and Tmean:
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During model training, the selection of feature importance is determined through the calculation of the Gini 
coefficient. It is essential to note that this result solely reflects the importance of variables in the 4D-STDFTmax, 
4D-STDFTmin, 4D-STDFTmean model training processes, rather than presenting the actual mechanistic contribu-
tion rate50. The results (Supplementary Fig. S1) indicate that, for the 4D-STDFTmax, 4D-STDFTmin, 4D-STDFTmean 
models, LST is the most crucial indicator, with the largest importance scores of approximately 50%, 45%, and 
50%, respectively. Following closely is the temporal factor T2, exhibiting importance scores exceeding 25% in 
all cases. The meteorological factor ET and the spatial factor S1 also play substantial roles, contributing approxi-
mately 10% and greater than 2%, respectively. The NDVI factor representing land use data, holds an importance 

Fig. 2  The distribution of 2461 meteorological stations on the elevation map of China.
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of around 2%, underscoring its significance. The remaining 13 factors exhibit importance scores below 2%, 
indicating their lesser significance in the model. Of particular note is the significantly higher importance of the 
spatial factor S1 in 4D-STDFTmin compared to the other two models, indicating the crucial role of spatial heter-
ogeneity in estimating Tmin. Throughout the construction and training of 4D-STDF models, parameters were 
judiciously selected based on the importance of factors to ensure the development of robust models.

Assessment of dataset accuracy and effectiveness.  Ten-fold cross-validation (10-CV) is com-
monly used to validate the accuracy of Ta datasets13,17,18,51. In this study, we adopt two different cross-validation 
approaches at sample and spatial scales: sample-based 10-CV and spatial-based 10-CV.

The sample-based 10-CV randomly selects samples for validation, ensuring balanced use of all stations and 
seasons, making it ideal for overall performance evaluation. In this approach, all samples are randomly divided 
into 10 equal subsets. The model is trained using data from 9 of these subsets, while data from the remaining 
subset are used for independent validation. This process is repeated 10 times, and the final evaluation is based 
on the average of all validation results. The spatial-based 10-CV, also known as the out-of-station approach, is 
a spatially independent validation method that accounts for the spatial distribution of monitoring stations. In 
this approach, all monitoring stations in China are randomly divided into 10 equal subsets. The model is trained 
using data from 9 of these subsets (90% of the stations), while data from the remaining subset (10% of the sta-
tions) are used for independent validation. This method is commonly employed to assess a model’s spatial pre-
dictive ability in areas without ground measurements across the entire country in most previous ML studies52,53.

The accuracy of the model is quantitatively assessed using a linear regression equation, and the coefficient 
of determination (R2) and model uncertainty are evaluated through root mean square error (RMSE) and mean 
absolute error (MAE). The annual evaluation accuracy was calculated based on the sample-based CV results 
for all stations. Similarly, for each station, evaluation parameters could be calculated based on the accuracy of 
the time series estimation. For each day, the evaluation accuracy was calculated based on all the stations. This 
method provides a conservative estimate of data uncertainty since the final results used all available data.

Data Records
The all-sky daily Tmax, Tmin, and Tmean datasets covering mainland China are currently freely available on Zenodo. 
Links to these datasets for the period from 2003 to 2022 are provided in Table 3. The datasets consist of six com-
ponents: daily Tmax from the years 2003–201254, daily Tmax from the years 2013–202255, daily Tmin from the years 
2003–201256, daily Tmin from the years 2013–202257, daily Tmean from the years 2003–201258 and daily Tmean from 
the years 2013–202259. All data are in GeoTIFF format with a WGS84 projection and the unit of measurement 
is 0.1 degrees Celsius (°C).

Technical Validation
Overall accuracy assessment.  Figure 3 illustrates the comprehensive sample-based 10-CV results of all 
daily, monthly, and annual Tmax, Tmin, and Tmean estimates from all observed stations across mainland China for all 
study years. Overall, the estimation results exhibit high accuracy, with most samples evenly distributed around 
the 1:1 line, showing good agreement with ground-based Tmax, Tmin, and Tmean observations. The overall RMSE 
values are 1.49 °C, 1.53 °C, and 1.18 °C for daily estimates; 1.38 °C, 1.65 °C, and 0.52 °C for monthly estimates; and 
1.28 °C, 1.83 °C, and 0.41 °C for annual estimates, respectively. Supplementary Table S1 also reveals the strong 
performance of the models in estimating daily Tmax, Tmin, and Tmean with R2 greater than 0.98. In addition, daily 
Tmean exhibits the highest accuracy with MAE ranging from 0.81 °C to 0.99 °C and RMSE ranging from 1.13 °C 
to 1.27 °C. The accuracy of Tmax and Tmin is comparable, with MAE both ranging from 1.03 °C to 1.12 °C, RMSE 
ranging from 1.43 °C to 1.57 °C for Tmax and from 1.46 °C to 1.57 °C for Tmin. Supplementary Fig. S2 shows the 
total validation results of the models with R2 values greater than 0.98 and RMSE values are 1.61 °C, 1.70 °C, and 
1.32 °C for daily estimates, which are very close to the sample-based 10-CV results, indicating the model’s pre-
dictive capability in areas without ground measurements across the entire country. These results suggest that the 
predicted datasets are good quality and suitable for fine-scale studies.

Spatial distribution of the accuracy.  The spatial distribution of the accuracy of Ta estimation is assessed 
for Tmax, Tmin and Tmean across mainland China (Fig. 4). The 4D-STDF methods applied in different regions 
demonstrate varying levels of precision, with higher accuracy observed in the eastern regions (R2 > 0.95, MAE 
and RMSE <1.5 °C) and lower accuracy in the western regions (R2 < 0.9, MAE and RMSE > 1.5 °C). Tmean esti-
mates exhibit relatively small variations across the entire spatial domain, with most sites in the eastern region 
achieving RMSE <1 °C. However, there are sporadic instances of lower precision in the western region, where 

Dataset name Links Description

Daily Tmax
https://doi.org/10.5281/zenodo.10983219 Daily Tmax from the years 2003–2012

https://doi.org/10.5281/zenodo.10983207 Daily Tmax from the years 2013–2022

Daily Tmin
https://doi.org/10.5281/zenodo.10951765 Daily Tmin from the years 2003–2012

https://doi.org/10.5281/zenodo.10983199 Daily Tmin from the years 2013–2022

Daily Tmean
https://doi.org/10.5281/zenodo.10947354 Daily Tmean from the years 2003–2012

https://doi.org/10.5281/zenodo.10983177 Daily Tmean from the years 2013–2022

Table 3.  The datasets links in Zenodo.
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RMSE exceeds 2.0 °C; Tmax estimates generally show higher accuracy in the south-eastern region, with RMSE 
predominantly below 1.5 °C, and in some isolated areas, estimation errors fall below 1.0 °C. Conversely, in the 
western and northern regions experience higher errors, with RMSE generally exceeding 2.0 °C and some sites 
surpassing 2.5 °C, particularly in the arid northwest; For Tmin, the highest accuracy is observed in the central 
region of China, with errors generally below 1.0 °C. However, higher errors are concentrated in the cold areas of 
the northeast and northwest, where RMSE generally exceeds 2.5 °C. These spatial variations in Ta provide robust 
evidence for the reliability of our Ta datasets.

Seasonal distribution of the accuracy.  We also evaluate the model performance at different seasons. The 
daily RMSE values of Tmax, Tmin, and Tmean at the annual scale are presented in Fig. 5. The RMSE of Tmax, Tmin, and 
Tmean show a clear seasonal variation, with peaks in winter and valleys in summer, indicating higher accuracy in 
summer and lower in winter. For Tmax, the RMSE ranges from 1.3 °C to 1.7 °C, with a maximum seasonal differ-
ence of 0.4 °C, indicating relatively stable accuracy throughout the year. Compared to Tmax, Tmin exhibits a broader 
fluctuation range (1.0 °C to 2.0 °C), with a maximum seasonal difference of 1.0 °C, reflecting greater seasonal var-
iability. The RMSE for Tmean is consistently lower than that for Tmax and Tmin throughout the year, consistent with 
prior research13,44. The RMSE for Tmean fluctuates between 0.9 °C and 1.5 °C, with a maximum seasonal difference 
of 0.6 °C, indicating that its accuracy shows a similar seasonal stability to Tmax. Notably, during winter, the RMSE 
for Tmin is around 1.8 °C, which is higher than the RMSE for Tmax (around 1.5 °C), whereas in summer, the RMSE 
for Tmin is around 1.2 °C, lower than that for Tmax (around 1.4 °C). For Tmean, the estimation accuracy is not only 
higher than that for Tmax and Tmin throughout the year, but it also achieves the highest accuracy in summer, with 
RMSE dropping below 1 °C. These findings underscore the validity of the dataset in capturing seasonal variations 
and providing reliable Ta estimates, particularly for Tmax, Tmin, and Tmean during summer.

Fig. 3  Scatter diagrams illustrating the comprehensive sample-based 10-CV results for daily, monthly and 
annual estimates of Tmax, Tmin and Tmean from ground-based stations throughout the period from 2003 to 2022 in 
mainland China.
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Spatial variations of Ta datasets.  The evaluations above indicate that our model demonstrates robust 
performance across multiple spatial and temporal scales. To illustrate the potential of our datasets, we examine 

Fig. 4  Spatial patterns of R², MAE, and RMSE for Tmax, Tmin, and Tmean at stations of mainland China from 2003 
to 2022.

Fig. 5  Daily RMSE of Tmax (red line), Tmin (blue line), and Tmean (green line) across mainland China from 2003 
to 2022.
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the yearly changes of Ta and spatial variations averaged from 2003 to 2022 (Fig. 6). The lowest Tmax values are 
observed in high-altitude regions, such as the Qinghai-Tibet Plateau, where temperatures hover around 15 °C. 
Conversely, lower latitudes tend to experience generally higher Tmax values, with the maximum Tmax occurring 
in arid and semi-arid regions at high latitudes, reaching an average Tmax of approximately 41.1 °C. Tmin values are 
lower in high latitudes, particularly in the northern areas and at high altitudes, reaching a minimum of −31.2 °C. 
As latitude decreases, Tmin values tend to increase, with the highest reaching 0.5 °C. Tmean values are lowest in high 
latitudes and altitudes, gradually rising with decreasing latitude, with a maximum of 18.9 °C.

In summary, in arid and semi-arid regions at high latitudes, Ta is generally higher than in surrounding areas. 
The results indicate that the lack of vegetation and higher surface albedo lead to increased surface temperature, 
contributing to rise in Ta. These variations in Ta provide robust evidence for the reliability of our datasets.

Comparison with existing Ta datasets.  Existing datasets typically have temporal resolutions focused 
on daily, monthly, or 8-day intervals, with spatial resolutions ranging from 30 arcseconds to 0.1° (Table 1). We 
compare our dataset’s accuracy (Table 4) with the existing datasets in a comprehensive way.

The estimation of daily datasets.  Fang et al.14 achieved high precision in their temperature correction method, 
with RMSE ranging from 0.86 °C to 1.78 °C, 0.78 °C to 2.09 °C, and 0.35 °C to 1.00 °C. Still, their study’s spatial 
resolution (0.1°) limited its ability to capture fine-scale temperature variations. Similarly, Wang et al.15 estimated 
daily Tmax with an accuracy similar to our study, yielding an MAE of 1.07 °C and an RMSE of 1.52 °C, yet their 
spatial resolution was also restricted to 0.1°. Kilibarda et al.16 provided global daily Tmax, Tmin, and Tmean datasets 
but with lower accuracy, as their RMSE exceeded 2 °C. Chen et al.18 estimated daily Tmean at a 1 km resolution in 
China, with a minimum RMSE of 1.342 °C, which is 0.162 °C higher than the RMSE in our study. Zhang et al.17 
reported RMSE averages of 1.75 °C for Tmax and 1.82 °C for Tmin, which are 0.26 °C and 0.29 °C higher, respec-
tively, than our findings. When Zhang et al. 19 extended their study globally, their RMSE values for Tmax and Tmin 
were 1.80 ± 0.19 °C and 1.75 ± 0.26 °C, about 0.3 °C higher than those in our study.

The estimation of monthly datasets.  Hooker et al.11 produced a global monthly Tmean dataset for 2003–2016 at 
a 0.05° resolution, with RMSE values ranging from 1.14 °C to 1.55 °C, which are notably higher than our study’s 
RMSE of 0.52 °C. Funk et al.12 estimated a global 0.05° monthly Tmax dataset, achieving an MAE of 0.8–1.0 °C, 
slightly better than our study’s MAE of 1.03 °C, but with a lower spatial resolution. Yao et al.13 estimated global 
monthly Tmax, Tmin, and Tmean at 30 arcseconds resolution from 2001 to 2020. Their results, with MAE and RMSE 
values of 1.373 °C, 1.105 °C, 0.770 °C and 2.223 °C, 1.516 °C, and 1.056 °C respectively, show lower accuracy for 
Tmax and Tmean compared to our study, while the Tmin estimates are comparable to ours. Chen et al.10 achieved 
high precision for a 1 km Ta dataset in China for 2010, with RMSE values of 1.45 °C, 1.29 °C, and 1.2 °C for Tmax, 
Tmin, and Tmean, respectively. However, their study had a lower temporal resolution of 8 days, which limits direct 
comparison to our study’s higher temporal resolution and accuracy.

Fig. 6  Spatial pattern of average estimated Ta in mainland China from 2003 to 2022.

Tmax Tmin Tmean

Daily

MAE(°C) 1.07 1.09 0.85

RMSE(°C) 1.49 1.53 1.18

R2 0.98 0.98 0.99

Monthly

MAE(°C) 1.03 1.22 0.38

RMSE(°C) 1.38 1.65 0.52

R2 0.98 0.98 0.99

Table 4.  Accuracy of Ta datasets in this study.
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Comparison of temporal and spatial accuracy for extreme temperature.  Since the datasets conducted by Zhang 
et al.17 and Zhang et al.19 are consistent with this study’s spatial and temporal resolution, a comparison of the 
accuracy from spatial and temporal in extreme temperature estimates was conducted. Figure 4 in Zhang et al.17  
shows that the RMSE for Tmax estimated using the SVCM-SP method is predominantly between 1.0 and 1.5 °C, 
with few eastern stations having RMSE below 1.0 °C. In comparison, western regions with sparse stations often 
have RMSE above 1.5 °C, reaching up to 3.5 °C. Similarly, Fig. 4 in Zhang et al.19 indicates Tmax RMSE ranging 
from 1.0 to 2.0 °C in most parts of China, with the western plateau between 2.0 and 2.5 °C, and the northeast 
between 1.0 and 1.5 °C, with no regions below 1.0 °C. In contrast, this study significantly improves in Tmax accu-
racy, with RMSE below 1.0 °C in North China and between 1.0 and 1.5 °C in South China and central regions. 
Even in sparsely monitored northwest areas, the maximum RMSE remains below 3.0 °C (Fig. 4). For Tmin, 
although Zhang et al.17 and Zhang et al.19 show that regions with RMSE below 1 °C are mainly in the southeast, 
and sparsely monitored northwest areas have RMSE ranging from 2.0 to 4.0 °C, this study achieves reduced Tmin 
RMSE across various regions, controlling values between 2.0 and 3.0 °C in sparsely monitored northwest and 
northeast areas. These results underscore the enhanced precision and broader applicability of the method used 
in this study across diverse geographic and climatic conditions.

In comparing the temporal distribution of RMSE, all three datasets exhibit a consistent seasonal variation 
trend, with higher accuracy in summer than in winter. In this study, the seasonal distribution of Tmax RMSE 
ranges from 1.3 to 1.7 °C, and Tmin from 1.0 to 2.0 °C, highlighting the high accuracy achieved (Fig. 5). In con-
trast, Fig. 5 from Zhang et al.17 shows Tmax RMSE between 1.5 to 2.0 °C and Tmin from 1.5 to 3.0 °C. Similarly, 
Fig. 5 from Zhang et al.19 shows that the temporal variation of RMSE for Tmax and Tmin across Asia ranges from 1 
to 2.0 °C. This study demonstrates superior control over seasonal RMSE, achieving higher accuracy.

Although our datasets offer an approximately 0.3 °C improvement in the estimation of daily Tmax and Tmin 
compared to similar datasets, this enhancement is crucial given that a mere 0.5 °C increase in global tempera-
tures can significantly amplify the occurrence of regional extreme heat events in China60. This 0.3 °C improve-
ment in accuracy enables us to capture subtle temperature variations more precisely, leading to more reliable 
predictions of extreme events. Compared with the monitoring of heatwaves or extreme cold days based on 
weather stations or spatial interpolation data (e.g., Zhang et al.61; Liu et al.62 and Ding and Qian9), this dataset 
provides a more detailed representation of the spatial distribution and trends of extreme weather events. Upon 
these analyses, our study’s inverted dataset shows superior performance in terms of daily and monthly temporal 
scale, optimal spatial resolution (1 km), and maximum accuracy, especially for Tmax and Tmin.

Limitations and future work.  Our study takes a more detailed approach by decomposing spatial and tem-
poral coordinates to better capture their influence on the Ta estimation model. By incorporating 18 factors, using 
a deep forest model, and selecting optimal parameters based on spatiotemporal locations, we achieve greater 
accuracy, making these datasets and their estimation method valuable addition to existing temperature estima-
tion products.

However, we should also notice that, despite achieving satisfactory accuracy when estimating daily, monthly, 
or annual Ta (Fig. 3), there may be instances of underestimating Tmax or overestimating Tmin. Specifically, results 
for Tmax and Tmin may skew rightward or leftward of the 1:1 line, respectively. This phenomenon can be attributed 
to ML models prioritizing general training samples over extreme temperature events63. Moreover, it is essential 
to emphasize that regions with lower station density may significantly impact the model’s performance. The 
spatial variability of estimation errors is primarily due to differences in terrain and the uneven distribution of 
meteorological stations. Although the model accounts for elevation factors, the challenging terrain and lower 
station density in remote and mountainous areas can reduce accuracy compared to the eastern plains. Limited 
station density may not adequately capture temperature variations due to terrain fluctuations, leading to higher 
estimation errors. This effect is more pronounced when estimating daily Tmax and Tmin than Tmean, due to the 
temporal discontinuity of extreme temperature values and their susceptibility to terrain influence. Therefore, 
future research must comprehensively acknowledge the distinct influences of factors such as complex terrain, 
landscape heterogeneity, and meteorological station density. Developing temperature inversion strategies tai-
lored for mountainous and sparse regions with fewer stations is imperative.

Moreover, temporal variability in RMSE, with lower errors in summer and higher in winter, is primarily 
due to more minor temperature variations between stations in summer13 and reduced LST accuracy in cold, 
dry winter conditions64. The error pattern, where Tmax has lower RMSE than Tmin in winter and the reverse 
in summer, is influenced by the temporal lag between Ta and LST, and the stronger correlation between 
summer Tmin and LST65. Although the estimation models have accounted for the influences of daily and 
monthly cycles in Ta parameters, this may still be insufficient to counteract the effects of seasonal changes 
fully. Therefore, in further research, it is advisable to consider separate monthly modelling to enhance the 
precision of the models.

Code availability
Codes for data and result analysis are freely available at https://zenodo.org/records/1190810666.
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