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Abstract

Current methods to identify unknown insect (class Insecta) cytochrome c oxidase (COI barcode) sequences often rely

on thresholds of distances that can be difficult to define, sequence similarity cut-offs, or monophyly. Some of the

most commonly used metagenomic classification methods do not provide a measure of confidence for the taxonomic

assignments they provide. The aim of this study was to use a na€ıve Bayesian classifier (Wang et al. Applied and Envi-

ronmental Microbiology, 2007; 73: 5261) to automate taxonomic assignments for large batches of insect COI sequences

such as data obtained from high-throughput environmental sequencing. This method provides rank-flexible taxo-

nomic assignments with an associated bootstrap support value, and it is faster than the BLAST-based methods com-

monly used in environmental sequence surveys. We have developed and rigorously tested the performance of three

different training sets using leave-one-out cross-validation, two field data sets, and targeted testing of Lepidoptera,

Diptera and Mantodea sequences obtained from the Barcode of Life Data system. We found that type I error rates,

incorrect taxonomic assignments with a high bootstrap support, were already relatively low but could be lowered

further by ensuring that all query taxa are actually present in the reference database. Choosing bootstrap support

cut-offs according to query length and summarizing taxonomic assignments to more inclusive ranks can also help to

reduce error while retaining the maximum number of assignments. Additionally, we highlight gaps in the taxonomic

and geographic representation of insects in public sequence databases that will require further work by taxonomists

to improve the quality of assignments generated using any method.
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Introduction

Currently, identification of insects collected from the

field using morphological traits is time-consuming and

requires specialist knowledge. Identification of adult

specimens is often only possible for relatively inclusive

taxonomic ranks such as family or order, and the identi-

fication of immature or larval specimens is even more

challenging. As a result of this, the public databases

(GenBank and BOLD) are filled with many insufficiently

identified DNA barcode sequences (Kwong et al. 2012).

We borrow the term ‘insufficiently identified’ from

Nilsson et al. (2005) to describe sequences that are identi-

fied to higher (more inclusive) taxonomic ranks, as

opposed to ‘fully identified’ sequences that are identified

to the species rank. What is urgently needed is a refer-

ence set of DNA barcode sequences from fully identified

insects classified to the species rank. Primers and proto-

cols already exist for generating the sequence data (Fol-

mer et al. 1994; Hebert et al. 2003), and methods have

been optimized so that sequences can be generated in a

high-throughput manner (Hajibabaei et al. 2005). As in

many other fields, the main bottleneck in this process is

not the production of sequences, but rather the accurate

taxonomic identification of samples to the species rank

by acknowledged specialists. The quality of the taxo-

nomic identification of samples ultimately determines
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the usefulness of DNA barcode sequences in the refer-

ence databases.

Despite substantial gaps in the reference sequence da-

tabases, they are still being used for both automated and

manual classifications using tools such as BLAST (Altschul

et al. 1997), lowest common ancestor methods (Huson

et al. 2011), phylogeny-based methods (Munch et al.

2008) or kmer-based methods (Wang et al. 2007). As a

result of the decreasing costs of next-generation sequenc-

ing (NGS), many insufficiently identified cytochrome

c oxidase subunit 1 (COI, CO1, cox1, coxI) sequences are

being generated from metagenomic samples (Damon

et al. 2010; Hajibabaei et al. 2011, 2012; Porter et al. 2013).

As it is impractical to identify sequences from bulk sam-

ples manually, we currently rely on automated sequence

comparison tools for classification. NGS platforms

produce short sequences or partial ‘mini-barcode’

sequences (Hajibabaei et al. 2006) from bulk samples.

Previous studies using various regions of ribosomal

DNA have shown that decreasing query sequence length

and taxonomic assignment rank both affect the accuracy

of taxonomic assignments requiring that any new

method provides classification accuracy estimates for a

range of parameters so that users can implement intelli-

gent experimental designs (Liu et al. 2008; Porter &

Golding 2011, 2012; Mizrahi-Man et al. 2013).

A method that improves confidence for taxonomic

assignments is required for large studies to quickly and

accurately screen out unreliable assignments. In this con-

text, confidence estimates (bootstrap support values) are

provided in an attempt to reduce the rate of erroneous

taxonomic assignments. Considering the incomplete nat-

ure of current DNA barcode reference databases (Kwong

et al. 2012; Kvist 2013), automated assignment methods

are particularly prone to error due to missing taxa in the

reference database.

The purpose of this study was to set up a fast, easy-

to-use resource to classify large batches of unknown

insect (class Insecta) sequences. We used the na€ıve

Bayesian classifier (NBC or ‘the classifier’) initially devel-

oped for classifying bacterial 16S rRNA genes (Wang

et al. 2007). We created three training sets to classify

Insecta COI sequences by mining COI sequences from

GenBank. We show that a na€ıve Bayesian classifier can

quickly and accurately generate taxonomic assignments

for full- and partial-length insect COI DNA barcode

sequences.

Methods

Na€ıve Bayesian classifier

The na€ıve Bayesian classifier that we used was first

developed to classify prokaryote 16S ribosomal RNA

sequences (Wang et al. 2007). More recently, a training

set was developed to use this tool to classify fungal large

subunit ribosomal RNA sequences (Liu et al. 2012). In

this study, we used the Ribosomal Database Project

na€ıve Bayesian classifier version 2.5 available from

http://sourceforge.net/projects/rdp-classifier/. Briefly,

the classifier is trained using two files: a Fasta formatted

sequence file and a text file describing the relationships

between taxa at all ranks. For simplicity, we used Gen-

Bank taxonomy, and instructions on how to modify this

are available from Dryad doi:10.5061/dryad.bc8pc. We

describe the details for how we created these training

files in the section below. Details for how the classifier

works are available in the original publication (Wang

et al. 2007). Briefly, once trained, the classifier breaks up

a query sequence into all possible 8-mer oligos (k-mers).

The probability of a query with this particular set of oli-

gos belonging to any of the genera in the training set is

calculated. The genus with the highest probability score

becomes the taxonomic assignment, and the associated

lineage (family, order, class, phylum, kingdom) is

retrieved. Statistical support for the assignment is calcu-

lated by sampling a subset of 8-mer oligos from the

query sequence and repeating the assignment process.

Bootstrap confidence estimations are performed by re-

sampling the data 100 times.

Mining insect sequences from GenBank

The term ‘insect’, as used here, refers to taxa within the

class Insecta unless otherwise specified. In GenBank

query 1, we used the terms ‘“Insecta”[ORGN] AND “spe-

cies”[RANK]’ to search the taxonomy database [20 March

2013] to retrieve a list of all insects identified to the spe-

cies rank using an Ebot script (written by Eric W. Sayers,

available from http://www.ncbi.nlm.nih.gov/Class/

PowerTools/eutils/ebot/ebot.cgi). We excluded species

names if they were not fully identified to the species

rank, that is, they contained the terms ‘sp.’, ‘nr.’, ‘aff.’ or

‘cf.’. A second modified query 1 was also used to target

insect taxa identified to at least the family rank, and

permitted names containing the terms ‘sp.’, ‘aff.’, etc., so

as to include as many quality GenBank sequences as pos-

sible in our family trained classifier. These two taxon lists

were alternatively used in GenBank query 2 ‘ (“cox1”[-

gene] OR “coxI”[gene] OR “CO1”[gene] OR “COI”[-

gene]) AND taxa from query 1[ORGN]’ to search the

nucleotide database [20 March 2013] to retrieve all anno-

tated COI sequences for insects using custom Perl scripts

and Bioperl modules (Stajich et al. 2002). The additional

term ‘AND “barcode”[keyword]’ was appended to Gen-

Bank query 2 for another nucleotide database search [25

April 2013]. Sequences shorter than 500 bp, containing

missing data (Ns), or containing nucleotide ambiguity
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codes were excluded. Duplicate sequences for the same

species were retained when possible. This was done to

improve the representation of sequence variation within

species. The GenBank taxonomic lineage (kingdom,

phylum, class, order, family, genus, species) for each

sequence was retained. Occasionally, classifications to

intermediate ranks were missing (not provided to Gen-

Bank). These sequences were discarded if the missing

rank was at the genus level (for a set trained to the genus

rank) or to the family level (for a set trained to the family

rank).

Training and testing the na€ıve Bayesian classifier

Three training sets were created: (i) a ‘GenBank-genus’

set to train the classifier to make taxonomic assignments

to the genus rank, (ii) a ‘GenBank-barcode’ set to train

the classifier to make assignments to the genus rank and

(iii) a ‘GenBank-family’ set to train the classifier to make

assignments to the family rank. The GenBank-genus

training set is therefore comprised of all the annotated

COI insect sequences (>500 bp, no N’s or other nucleo-

tide ambiguities) in GenBank with a species-level identi-

fication. The GenBank-barcode training set is comprised

of all the annotated COI insect sequences in GenBank

with a species-level identification whose record contains

the ‘barcode’ keyword. GenBank records with the bar-

code keyword indicate that these sequences are contribu-

tions to the BOLD database and are associated with a

sequence chromatogram, pictures and additional meta-

data. The GenBank-family training set is comprised of all

the annotated COI insect sequences in GenBank requir-

ing at least a family-level identification. Custom scripts

were used to prepare a Fasta formatted file of reference

sequences and a taxonomy text file based on the Gen-

Bank taxonomy according to the RDP classifier version

2.5 instructions (Wang et al. 2007). Leave-one-out cross-

validation (LOOCV) was used to test the accuracy of the

classifier, by counting the number of correct assignments

at variable taxonomic ranks, using the module provided

by the RDP classifier version 2.5. The LOOCV process

works by removing a sequence from the training set,

making a taxonomic assignment while the reference set

does not contain the query, then replacing the sequence

before the next assignment is made. This process is

repeated for each sequence in the training set. The results

simulate making taxonomic assignments when the refer-

ence database is potentially incomplete, that is, lacking

an exact match to the query sequence. We also made tax-

onomic assignments by taking each sequence from the

training set and classifying each one using the original,

complete training set. This simulates making taxonomic

assignments when the reference database is known to be

complete, that is, contains an exact match to the query

sequence. This type of testing can reveal areas where tax-

onomic coverage of the training set is problematic. Addi-

tionally, we performed partial sequence length LOOCV

testing using the method provided by the RDP classifier

version 2.5. We tested lengths of 50, 100, 200 and 400 bp

fragments that were randomly sampled from each full-

length query sequence to assess classifier performance of

the shorter sequence lengths generated by NGS plat-

forms.

We also assembled three taxonomically defined sets

of sequences for testing classifier performance from the

International Barcode of Life project (iBOL) data release

package 3.75 – v1 available from http://www.boldsys-

tems.org/index.php/datarelease. The sequences in each

set were confirmed to be at least 500 bp in length and

contained no missing or non-nucleotide characters. We

chose three insect orders to focus analyses based on their

abundance in the iBOL data set (Fig. S1, Supporting

Information) and their popularity in previous barcoding

studies. The first set is comprised of 82 sequences from

the order Mantodea (mantids) that were identified to the

genus rank (Table S1, Supporting Information). These

sequences had an average length of 871 bp. The order

Mantodea is represented by relatively few sequences in

the iBOL data set, is present in the GenBank-genus

(N = 74) and GenBank-family (N = 96) training sets but

not in the GenBank-barcode (N = 0) training set and was

used to test whether sequences not present in a training

set would be misclassified or remain unclassified. The

second set is comprised of 8647 sequences from the order

Lepidoptera (butterflies and moths), and each specimen

was identified to the order rank in the iBOL data release.

These sequences had an average length of 637 bp. Lepi-

doptera sequences are widely used in barcoding studies,

are the third most abundant order in the iBOL data set

(10%) and represent the majority of sequences in the

GenBank-genus (50%), GenBank-barcode (81%) and Gen-

Bank-family (56%) training sets. We expected the NBC to

do a very good job at taxonomically assigning Lepidop-

tera sequences based on their representativeness in our

training sets and based on a previous study that showed

North American Lepidoptera species to have limited

intraspecific variation (Hebert et al. 2010). The third set is

comprised of 46 223 sequences from the order Diptera

(true flies) that were identified to the order rank in the

iBOL data release. These sequences had an average

length of 627 bp. Diptera sequences are the most abun-

dant in the iBOL data set (54%), but are less well repre-

sented in the GenBank-genus (11%), GenBank-barcode

(3%) and GenBank-family (7%) trained classifiers. We

expected the GenBank-genus trained classifier to cor-

rectly classify many Diptera sequences, but we also

expected a significant proportion of misclassified and

unclassified sequences based on a previous study that
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showed Diptera species to have high intraspecific vari-

ability (Meier et al. 2006).

Finally, we wanted to test the ability of the classifier

to work with two field data sets. The first field data set

included 1052 COI Sanger sequenced Malaise-caught

insects from Insecta (n = 993), Arachnida (n = 59) and

Ellipura (n = 44) from Costa Rica with an average length

of 310 bp (J. F. Gibson, S. Shokralla, T. M. Porter, I. W.

King, S. van Konynenburg, D. H. Janzen, W. Hallwachs

& M. Hajibabaei, unpublished). Each of the insects

caught was identified to the order rank using morpho-

logical characteristics. We then classified sequences

using our three trained classifiers and imported the

results into MEGAN 4.70.4 for visualization (Huson et al.

2011). MEGAN uses a lowest common ancestor (LCA) algo-

rithm to summarize heterogeneous taxonomic informa-

tion among the best BLAST hits or NBC taxonomic

assignments. We used what we determined to be appro-

priate bootstrap support cut-offs based on the values

shown in Table 3, Tables S5 and S6 (Supporting Informa-

tion). We used the following LCA parameters to process

the NBC results: minimum support 1, minimum score

(i.e. bootstrap support) 20 for order rank assignments

using the GenBank-genus trained classifier, 0 for the

GenBank-barcode trained classifier and 60 for the Gen-

Bank-family trained classifier (or 0 to process all results),

top per cent 100, win score 100, minimum complexity

0.44. We also classified these sequences using BLAST

2.2.26+ (megablast blastn algorithm) against a local

installation of the nucleotide database [15 March 2013]

using an e-value cut-off of 1e-10. We processed the BLAST

results using the following MEGAN LCA parameters: mini-

mum support 1, minimum score (i.e. bit score) 100, top

per cent 1, win score 0, minimum complexity 0.44.

Although the second field data set will be published

elsewhere in full, we provide collection and wet labora-

tory methods here for context. Benthic (aquatic) samples

were collected in July 2010 from the University Woodlot

(Corbett Brook) in Fredericton, New Brunswick, Canada.

The sample examined in this study was from a conserva-

tion area, collected according to Environment Canada’s

standard benthic macro-invertebrate collection method,

a 3-min travelling kick sample (net = 400 lm mesh size),

and preserved in 95% ethanol. A small tissue subsample

from each of 300 separated individuals was transferred

into 96-well plates then subjected to routine analysis fol-

lowing standard DNA barcoding protocols (Folmer et al.

1994; Hajibabaei et al. 2005; Ratnasingham & Hebert

2007). The remainder of the insect bodies were pooled

and divided into multiple MP lysing matrix tubes ‘A’

(100 mg each) and homogenized with the MP FastPrep-

24 Instrument (MP Biomedicals Inc.) at speed 6 for 40 s.

Total DNA of the slurry was extracted using the Nucleo-

Spin Tissue Kit (Macherey-Nagel Inc.) following the

manufacturer’s instructions. Two mini-barcode COI frag-

ments were amplified from the bulk sample (130 and

230 bp; Hajibabaei et al. 2011) and purified by Qiagen’s

MinElute PCR purification columns. The amplicons

were sequenced on a 454 Genome Sequencer FLX Sys-

tem (Roche Diagnostics GmbH) following the amplicon

sequencing protocol. Amplicons were bi-directionally

sequenced using 2 (1/16th) regions of a full 70 9 75 Pi-

coTitre sequencing plate. One set of 454-pyrosequencing

reads (N = 9692) had an average length of 155 bp, and

the second set (N = 9275) had an average length of

254 bp. Sanger sequences had an average length of

626 bp. The identities of insects were unknown, so the

GenBank-genus trained classifier was used to make taxo-

nomic assignments to the family rank.

Results

Training set composition

Training set composition is summarized in Table 1, with

the GenBank-genus and GenBank-family sets being the

largest and the GenBank-barcode set being the smallest.

A breakdown of the total number of unique taxa at each

rank is shown in Table S2 (Supporting Information). The

GenBank-genus and GenBank-family training sets are

represented by 27 370 and 46 815 species, respectively.

Note that insufficiently identified species were retained

in the GenBank-family training set to increase the diver-

sity of insects represented. Approximately 32% of the

genera in the GenBank-genus set, 20% of the genera in

the GenBank-barcode set and 13% of the families in the

GenBank-family set are comprised of singletons (repre-

sented by a single sequence; Table S3, Supporting Infor-

mation). The taxonomic profile for each training set is

summarized in Fig. 1 and for each set is dominated by

Lepidoptera sequences.

LOOCV testing results

The proportion of correctly classified queries from LOO-

CV testing, of various lengths, and at various taxonomic

ranks is shown in Fig. 2 for the GenBank-genus

trained classifier. Results for the GenBank-barcode and

Table 1 Composition of three COI insect training sets for the

na€ıve Bayesian classifier

Training set

Trained

rank

Number of

taxa (all ranks)

Number of

sequences

GenBank-genus Genus 9350 190 333

GenBank-barcode Genus 3841 92 098

GenBank-family Family 750 279 130
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GenBank-family trained classifiers are shown in Fig S2

and S3 (Supporting Information). For each version of

the classifier, the proportion of correct queries was

calculated from the ‘total number of correct queries’/

‘total number of tested queries’ 9 100. Note that the

default behaviour of the RDP classifier version 2.5 is that

the results for singleton taxonomic assignments are not

summarized, thus not shown in these figures. Generally,

summarizing taxonomic assignments to more inclusive

taxonomic ranks, and using longer query lengths, results

in more correctly classified sequences even when no

bootstrap support cut-off is applied. Note that the pres-

ence of identical sequences for the same genus in the

training sets is not expected to affect classification results

after the classifier is trained; however, accuracies mea-

sured during LOOCV testing may be inflated.

Reducing taxonomic assignment error

LOOCV taxonomic assignments from the GenBank-

genus trained classifier were analysed without any boot-

strap support cut-off and after applying a 90% bootstrap

support cut-off to target high confidence assignments

(Fig. 3). The proportion of misclassified queries per

insect order tended to decrease as the number of

sequences that represented the order in the reference

database increased (Table S4, Supporting Information).

Additionally, there was a distinct shift in the proportion

of misclassified sequences per order when a 90% boot-

strap support cut-off was applied. We noted that two

orders, Raphidioptera ‘snakeflies’ and undef_Insecta

consistently showed relatively high misclassification

rates after LOOCV testing. The category ‘undef_Insecta’

is artificial and is a result of these sequences lacking an

order rank classification in GenBank, although many

likely belong to the order Zygentoma (silverfish). Apply-

ing a minimum bootstrap support cut-off decreased the

number of misclassified sequences by 7537 or 4% during

LOOCV testing.

Using a potentially incomplete reference database

increased rates of type I and type II error as shown in

Table 2. For all three versions of the classifier, error rates

are reduced when a complete reference database is used.

Additionally, the rate of type II error (false negatives)

tends to be higher than the rate of type I error (false posi-

tives). The level of type II error is particularly high for

the GenBank-family trained classifier.

In Table 3, we provide bootstrap support cut-offs that

result in at least 99% of tested queries being correctly

classified during LOOCV testing using the GenBank-

genus trained classifier. Results for the GenBank-barcode

and GenBank-family trained classifiers are shown in

Tables S5 and S6 (Supporting Information). Generally,

increasing initial query length results in increased classi-

fication coverage, even when higher bootstrap support

cut-offs are used. Generally, summarizing taxonomic

assignments to higher taxonomic ranks enables lower
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bootstrap support cut-offs to be used, also resulting in

the inclusion of a greater number of classifications.

Targeted taxonomic comparisons

In Table 4, we compare taxonomic assignments

made with the classifier and those made based on

morphology-based taxonomic assignments. ‘Matches’

refer to cases where the classifier- and morphology-

based assignments match. ‘Nonmatches’ refer to cases

where the classifier- and morphology-based assignments

do not match. The proportion of Mantodea queries with

taxonomic assignments that matched morphology-based

assignments was 100% at the order rank for the

GenBank-genus and GenBank-family classifiers

(Table 4). In a situation where there are no exact refer-

ence sequences available, as in the GenBank-barcode

training set, there are also no correct taxonomic assign-

ments. There are, however, many nonmatch assignments,

that is, the Mantodea query sequences were assigned to

the next best matching sequences in the training set. Even

when representative sequences are missing from the

training set, using a sufficiently high bootstrap support

cut-off, as well as summarizing assignments to more

inclusive taxonomic ranks, could help to avoid making

nonmatch taxonomic assignments (Tables S7 and S8,

Supporting Information).

For each version of the classifier, 99–100% of Lepidop-

tera queries had order rank taxonomic assignments that

matched the iBOL morphology-based taxonomic assign-

ments (Table 4). We expected this high level of taxonomic

assignment success because of the well-sampled reference

database and relatively low amount of intraspecific varia-

tion in Lepidoptera (Hebert et al. 2010). There was little

advantage to increasing the bootstrap support cut-off val-

ues from 0% for Lepidoptera order rank assignments

(Table S7, Supporting Information). However, using an

80% bootstrap support cut-off, we show that the Gen-

Bank-genus trained classifier can putatively refine 47%

and 41% of assignments to the family and genus ranks,

respectively (Table S9, Supporting Information). The

iBOL Lepidoptera sequences originate from 67 different

countries, but the bulk of the sequences represent speci-

mens collected from Canada (32%), Australia (16%) and

the United States (16%; Fig. S4, Supporting Information).

For each version of the classifier, 72–90% of Diptera

had order rank taxonomic assignments that matched

morphology-based assignments (Table 4). We expected

slightly lower taxonomic assignment success for Diptera

compared with Lepidoptera because of the relatively

high intraspecific variation previously found in Diptera

(Meier et al. 2006). The proportion of Diptera queries

with order rank taxonomic assignments that do not

match the iBOL data is relatively high at 1–28%, and the

proportion that remained unclassified ranges from 0

to 9%. When the bootstrap support cut-off is increased

and taxonomic assignments are summarized to more

inclusive taxonomic ranks, the number of nonmatch
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assignments was reduced (Tables S7 and S9, Supporting

Information). The iBOL Diptera sequences originate from

40 different countries, but the bulk of the sequences rep-

resent specimens collected from Canada (80%; Fig. S4,

Supporting Information).

Analysis of insects collected in Malaise traps

We tested the ability of the classifier to handle nontarget

query sequences when we used three versions of the

classifier with the ‘Insecta+Arachnida+Ellipura’ Malaise

data set (N = 1052). Note that arthropods in the classes

Arachnida and Ellipura were not included in any of

our training sets. We determined that it would have

been necessary to increase the bootstrap support cut-

offs to 45%, 55%, and 55% for the GenBank-genus,

GenBank-barcode and GenBank-family trained classifi-

ers, respectively, to reduce the error rate to 0%, assuming

that all morphology-based taxonomic identifications to

the order rank are correct.

We then processed the Insect only portion of the Mal-

aise trap data set (N = 949), and for each version of the

classifier, 62–73% of order rank taxonomic assignments

matched morphology-based assignments (Table 4). The

proportion of order rank taxonomic assignment mis-

matches ranged from ~1 to 35%, and the proportion of

unclassified queries ranged from 0 to 38%. When the

bootstrap support cut-off was increased to 79%, the num-

ber of nonmatch assignments was reduced to zero for

the GenBank-barcode classifier (Tables S7, Supporting

Information).

Diversity profiles of the Insecta only portion of the

Malaise data set (N = 949) were analysed using the tax-

onomic assignments provided by morphology, BLAST

and the three versions of the NBC after MEGAN parsing

(Fig. 4). Assignments were summarized to the order

rank. The dominant groups identified using BLAST and

NBC (no bootstrap support cut-off) were similar: Dip-

tera (flies), Hymenoptera (sawflies, wasps, bees, ants),

Coleoptera (beetles) and Lepidoptera (moths and but-

terflies). Another somewhat dominant group is Psocop-

tera (booklice) represented by 133 insect queries, but

only some of these were identified with BLAST (76), Gen-

Bank-genus (2) and the GenBank-family (48) trained

classifiers. Psocoptera were not detected at all using the

GenBank-barcode training set, but note that Psocoptera

were absent from this training set. Applying boot-

strap support cut-offs reduced the overall number of

Table 3 Bootstrap support cut-offs that result in at least 99%

correctly classified queries during leave-one-out cross-validation

of the GenBank-genus trained insect COI classifier

Rank

% Bootstrap support cut-off to obtain 99% correctly

classified queries*

50 bp 100 bp 200 bp 400 bp FULL (500 bp+)

Genus N/A 70 70 70 80

Family N/A 50 40 40 40

Order 95 50 20 0 0

Rank

% Queries classified with the appropriate bootstrap

support cut-off (from above)*

50 bp 100 bp 200 bp 400 bp FULL (500 bp+)

Genus 0 55 83 91 93

Family 0 75 93 97 98

Order 28 94 ~100 ~100 ~100

N/A, not available.

*Results from singletons not summarized.

Table 2 Comparison of type I and type II error rates for three

versions of the insect COI classifier used with a complete or

potentially incomplete reference database

Rank

90% bootstrap support cutoff used

GenBank-

genus

GenBank-

barcode

GenBank-

family

Type I error (%)*

Complete

reference

database

Genus 0.5 0.2 N/A

Family 0.2 0.0 0.3

Order 0.1 0.0 0

Type I error (%)†

Potentially

incomplete

reference

database

Genus 0.9 0.3 N/A

Family 0.2 0 0.6

Order 0.1 0 0.1

Type II error (%)‡

Complete

reference

database

Genus 1.6 1.0 N/A

Family 1.1 0.6 11.8

Order 0.3 0.0 1.9

Type II error (%)§

Potentially

incomplete

reference

database

Genus 2.8 1.8 N/A

Family 3.1 1.5 15.1

Order 1.4 0.3 3.6

*Calculated after querying a complete reference database: (total

misclassified with 90% bootstrap support or greater (including

singletons)/total number of queries) 9 100.

†Calculated after querying a potentially incomplete reference

database after leave-one-out cross-validation: (total misclassified

with 90% bootstrap support or greater (including singletons)/

total number of queries) 9 100.

‡Calculated after querying a complete reference database: (total

correctly classified with <90% bootstrap support (including sin-

gletons)/total number of queries) 9 100.

§Calculated after querying a potentially incomplete reference

database after leave-one-out cross-validation: (total correctly

classified with <90% bootstrap support/total number of que-

ries) 9 100.
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taxonomic assignments from the NBCs by 0–38%.

Using any version of the NBC, all queries were pro-

cessed in about 2 min or less, compared with BLAST

searches that took approximately 13 min for this mod-

estly sized data set (N = 949; Fig. 5).

Analysis of benthic insect larvae from Corbett Brook

A total of 19 249 sequences were analysed from ben-

thic insects collected from New Brunswick, Canada.

These sequences fell into three read length classes

according to amplicon size and sequencing method

with the following average lengths: 155 bp (454-pyrose-

quencing), 254 bp (454-pyrosequencing) and 626 bp

(Sanger sequencing). As shown in Fig. 6, the propor-

tion of reads classified with higher bootstrap support

values increases with read length. Nearly 20% more

reads are classified with a bootstrap support value

greater or equal to 80% when the average query length

increases from 155 bp (64%) to 254 bp (84%). The

proportion of reads classified with bootstrap support

greater or equal to 80% is similar for reads with

an average read length of 254 and 626 bp. For compar-

ison, a similar histogram is shown for tropical Malaise-

trap-collected insects from Costa Rica. Generally,

Canadian benthic insect larvae were classified with

higher support values than the tropical Malaise-trap-

collected insects from Costa Rica.

Discussion

Speed and accuracy of the na€ıve Bayesian classifier

Previous studies have shown the na€ıve Bayesian classi-

fier to be both fast and accurate when providing taxo-

nomic assignments for prokaryote 16S ribosomal RNA

and fungal large subunit ribosomal RNA genes (Wang

et al. 2007; Liu et al. 2008, 2012; Porter & Golding 2012).

In this study, we show that on a 2.2-GHz AMD Opteron

6174 processor, the program classifies and performs 100

bootstrap replicates for approximately 8–78 queries per

second for the GenBank-genus and GenBank-family

trained classifiers, respectively. Because this method per-

forms significantly faster than BLAST-based methods, this

makes it particularly well suited for quick classification

of sequences from high-throughput environmental sur-

veys or biomonitoring studies (such as Baird & Hajiba-

baei 2012; Wang et al. 2013). We demonstrate the

accuracy of insect COI taxonomic assignments, to vari-

able taxonomic ranks, during LOOCV testing. We found

that the largest GenBank-genus and GenBank-family

training sets resulted in NBCs able to make the most

automated taxonomic assignments that matched mor-

phology-based assignments. This result is in line with a

previous study that recommends using the most diverse

training set available (Werner et al. 2012). We show that

partial-length COI sequences 200 bp or greater can be

Table 4 Comparison of order rank taxonomic assignments using three versions of the classifier and morphology-based taxonomic

assignments. A ‘match’ is when the classifier and morphology-based taxonomic assignments match. A ‘nonmatch’ is when the classifier

and morphology-based taxonomic assignment do not match. ‘Not classified’ refers to when the classifier taxonomic assignment has

bootstrap support less than the cut-off value. Bootstrap support cut-offs appropriate for each data set are based on the values from

Table 3, Tables S5 and S6 (Supporting Information)

Dataset

Taxonomic

assignment

status

Na€ıve Bayesian classifier version

GenBank-genus GenBank-barcode GenBank-family

Mantodea* Match (%) 82 (100) 0 (0) 82 (100)

Non-match (%) 0 (0) 82 (100) 0 (0)

Not classified (%) 0 (0) 0 (0) 0 (0)

Lepidoptera† Match (%) 8608 (~100) 8612 (~100) 8601 (99)

Non-match (%) 39 (~0) 35 (~0) 5 (~0)
Not classified (%) 0 (0) 0 (0) 41 (~1)

Diptera‡ Match (%) 40 636 (88) 33 058 (72) 41 395 (90)

Non-match (%) 5586 (12) 13 165 (28) 481 (1)

Not classified (%) 1 (~0) 0 (0) 4347 (9)

Malaise§ Match (%) 696 (73) 616 (65) 588 (62)

Non-match (%) 165 (17) 333 (35) 5 (~1)
Not classified (%) 88 (9) 0 (0) 356 (38)

*Mantodea (N = 82, average length = 871 bp) with bootstrap cut-offs: 0%, 0%, 40% for GenBank-genus, GenBank-barcode and Gen-

Bank-family trained classifiers.

†Lepidoptera (N = 8647, average length = 637 bp) with bootstrap cut-offs: 0%, 0%, 40%.

‡Diptera (N = 46 223, average length = 627 bp) with bootstrap cut-offs: 0%, 0%, 40%.

§Malaise (N = 949, average length = 310 bp) with bootstrap cut-offs: 20%, 0%, 60%.
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used to make correct taxonomic assignments to variable

taxonomic ranks with accuracy similar to using full-

length COI sequences during LOOCV testing. Addition-

ally, we show that Canadian benthic insect larvae

(254 bp) are assigned to the family rank with similar sta-

tistical support as full-length COI sequences (626 bp).

These results are consistent with previous studies work-

ing with animal COI mini-barcodes (Meusnier et al. 2008;

Shokralla et al. 2011). Even with these encouraging

results with partial COI sequences, we still recommend

using the longest possible COI sequences for classifica-

tion whenever possible to obtain the greatest taxonomic

specificity, accuracy and statistical support.

Described insect diversity vs. database sequence
representation

Our training sets contain sequences representing up to

29 insect orders with the Lepidoptera, Hymenoptera,

Coleoptera and Diptera orders represented by the most

sequences. These orders also contain the greatest number

of described insect species (Zhang 2011). Based on LOO-

CV testing with the GenBank-genus trained classifier,

taxa from the orders Strepsiptera, Mecoptera, Mantodea,

Zygentoma and Psocoptera resulted in misclassification

rates exceeding 10% when no bootstrap support cut-off

was enforced. Caution when classifying taxa from these

orders is warranted even when a bootstrap support cut-

off is applied, because the overall number of sequences

representing these orders can be relatively small. A com-

parison of the number of described extant insect taxa

and the number of taxa included in the GenBank-genus
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Fig. 4 Taxonomic profiles for insects

caught in a Malaise trap in Costa Rica.

Sequences were classified using morpho-

logical characteristics, three versions of

the na€ıve Bayesian classifier (NBC; Gen-

Bank-genus, GenBank-barcode, GenBank-

family) and BLAST. Results were imported

into MEGAN and taxonomic assignments

were summarized at the order rank.

Results are shown when: (a) no bootstrap

support cut-off was used for NBC assign-

ments and (b) when bootstrap support

cut-offs were used for NBC assignments

(GenBank-genus 20%, GenBank-barcode

0% and GenBank-family 60%). Bootstrap

support cut-offs are chosen from Table 3,

Tables S5, and S6 (Supporting Informa-

tion).
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taxonomically assigned per minute when using BLAST or the

na€ıve Bayesian classifier. For each method, 949 ‘Insecta only’

queries were processed and elapsed times recorded. For BLAST

(megablast), the time for a search using a single processor

against a local installation of the nucleotide database was

recorded. For the na€ıve Bayesian classifier, the time to make tax-

onomic assignments and 100 bootstrap support replicates with

the GenBank-genus, GenBank-barcode and GenBank-family

trained classifiers are recorded.
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training set are shown in Table 5. On average, only 65%

of family-level taxa and 14% of genus level taxa in the

class Insecta are represented in the GenBank-genus train-

ing set and, by extension, represented by high-quality

annotated COI sequences identified to the species rank

in the GenBank nucleotide database. These results are in

line with those from a previous study (Kvist 2013) and

help to explain, at least in part, why classifying bulk field

data for insects remains challenging.

Under-sampled reference databases

A lack of representative sequences is a common problem

in fungal, microbial and meiofaunal environmental

sequencing studies and likely applies to many highly

diverse insect communities as well (Creer et al. 2010;

Virgilio et al. 2010; Hibbett et al. 2011; Wilson et al.

2011; Bergsten et al. 2012; Wang et al. 2013). Certainly,

insufficient barcode sampling across species or popula-

tions may impact species assignment success (Meier et al.

2008; Lou & Golding 2010, 2012; Yassin et al. 2010;

Dupuis et al. 2012; Wang et al. 2013). In fact, simulations

lowering taxon coverage in reference databases have

been shown to increase identification error for Diptera,

Lepidoptera and Hymenoptera data sets (Virgilio et al.

2012). Most taxonomic assignment methods, including

the na€ıve Bayesian classifier, are not meant to be used for

novelty testing and assume that the appropriate refer-

ence sequences are present in the database. One study

has developed a method to flag taxa that are not present

in a reference database using ad hoc distance-based

thresholds (Virgilio et al. 2012). An alternative approach

uses a ‘detector’ to flag sequences that represent taxa not

present in the reference data set so that they can be

removed prior to making taxonomic assignments (Rosen

et al. 2011; Lan et al. 2012). Both of these methods

avoid classifying taxa not actually present in a reference

database. We assume that these methods have not yet

been widely adopted because they have only been

recently developed, and possibly because of the technical
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Fig. 6 Distribution of na€ıve Bayesian clas-

sifier bootstrap support values for a Cana-

dian benthic insect data set and one

Malaise insect data set from Costa Rica.

Taxonomic assignments are summarized

to the family rank. Bootstrap proportions

are pooled into 0.1 (10% bootstrap sup-

port) bins, and the proportion of

sequences from each data set in each bin

is recorded. Data are shown for Canadian

benthic insects: (a) 9692 454-pyrosequenc-

ing reads with an average length of

155 bp, (b) 9275 454-pyrosequencing

reads with an average length of 256 bp

and (c) 282 Sanger sequences with an

average length of 646 bp, as well as Mal-

aise-caught insects from Costa Rica: (d)

949 Sanger sequences with an average

length of 310 bp. Reads are classified

using the GenBank-genus trained classi-

fier. The red dotted line shows minimum

bootstrap support cut-offs from Table 3.
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difficulties in creating the appropriate sets to train a

detector in laboratories that do not have access to bioin-

formatics expertise.

In spite of the shortcomings of the currently available

public databases, we have shown the classifier and our

training sets to be robust and conservative when taxo-

nomic assignments are filtered by bootstrap support con-

fidence values and summarized to more inclusive

taxonomic ranks when possible. The representativeness

and accuracy of our training sets at variable taxonomic

ranks are a reflection of the current state of taxonomic

annotation and sequence quality in GenBank that will

improve over time.

Geographically biased reference databases

By analysing the metadata associated with iBOL

sequences, we noticed that the majority of sequences

Table 5 Summary of class Insecta orders described in the literature and represented in the GenBank-genus training set

Order

Families Genera

References

No. extant taxa

described

No. taxa included

in GenBank-genus

training set

(% of extant)

No. extant taxa

described

No. taxa included in

GenBank-genus

training set

(% of extant)

Archaeognatha

[Microcoryphia]

2 2 (100) 64 9 (14) Mendes (2002)

Blattodea

[incl. Isoptera]

17 12 (71) 738 72 (10) Beccaloni & Eggleton (2011)

Coleoptera 176 118 (67) 29500 1956 (7) Slipinski et al. (2011)

Dermaptera 11 4 (36) 182 5 (3) Sakai (1982)

Diptera 158 79 (50) 9323 739 (8) Pape et al. (2011)

Embioptera

[Embiidina]

11 6 (55) 84 9 (11) Miller (2009)

Ephemeroptera 42 21 (50) 405 76 (19) Barber-James et al. (2008)

Grylloblattodea 1 1 (100) 5 1 (20) Grimaldi & Engel (2005)

Hemiptera 108 83 (77) ? 892 (?) Cryan & Urban (2012); no

estimate for number of

genera is available

Hymenoptera 89 53 (60) 8359 728 (9) Huber (2009)

Lepidoptera 131 110 (84) 15528 3362 (22) van Nieukerken et al. (2011)

Mantodea 14 8 (57) 436 56 (13) Svenson & Whiting (2009)

Mantophasmatodea 2 2 (100) 10 5 (50) Eberhard et al. (2011)

Mecoptera 9 5 (56) 32 7 (22) Whiting (2002)

Megaloptera 2 2 (100) 33 5 (15) Winterton et al. (2010)

Neuroptera 16 16 (100) ? 69 (?) Winterton et al. (2010); no

estimate for number of

genera is available

Odonata 31 13 (42) 642 57 (9) Kalkman et al. (2008)

Orthoptera 40 19 (48) 4418 243 (6) Ingrisch (2011)

Phasmatodea

[Phasmida]

13 9 (69) 454 63 (14) Brock & Marshall (2011)

Phthiraptera 15 7 (47) 50 10 (20) Durden & Musser (1994)

Plecoptera 16 11 (69) 286 46 (16) Fochetti & Tierno de

Figueroa (2008)

Psocoptera 40 2 (5) 320 2 (1) Lienhard & Smithers (2002)

Raphidioptera 2 2 (100) 18 4 (22) Winterton et al. (2010)

Siphonaptera 16 3 (19) 246 6 (2) Whiting et al. (2008)

Strepsiptera 8 4 (50) ? 6 (?) Kathirithamby (1989); no

estimate for number of

genera is available

Thysanoptera 9 3 (33) 767 44 (6) Mound (2011)

Trichoptera 49 35 (71) 601 203 (34) Holzenthal et al. (2011)

Zygentoma 3 3 (100) 117 4 (3) Mendes (2002)

Total 1031 633 (61) 72 618 8679 (12)

Average 37 23 (65) 2905 310 (14)
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for some insect orders are derived from a single geo-

graphic region, for example, 80% of Diptera sequences

are from Canada. The dearth of reference sequences

from tropical locales may limit the usefulness of this

tool (and others) for automating taxonomic assignments

of tropical insects at this time. In such cases, our

recommendation is consistent with previous studies

and we suggest summarizing taxonomic assignments to

more inclusive taxonomic ranks such as order or family

(Wang et al. 2007; Porter & Golding 2011, 2012; Miz-

rahi-Man et al. 2013). This conservative approach maxi-

mizes the number of taxonomic assignments and their

accuracy at variable taxonomic ranks, although at the

cost of reduced taxonomic resolution.

The impacts of increased geographic scale of DNA bar-

code sampling on species identification rates vary accord-

ing to study (Lukhtanov et al. 2009; Bergsten et al. 2012;

Dupuis et al. 2012). In our study, testing with a data set

comprised of Canadian benthic insects resulted in very

good family rank taxonomic assignments, whereas simi-

lar testing with a data set of tropical Malaise-caught

insects resulted in relatively poor family rank taxonomic

assignments. The tropical data set was hyperdiverse with

representatives from 11 different arthropod orders (of 14

orders in the original study). Up to 51% of theMalaise trap

data set queries in this study could not be reliably taxo-

nomically assigned. We think this is due to an incomplete

reference database particularly a lack of representative

sequences from tropical locales in our training sets. Our

results highlight the need for geographically broad sam-

pling, in particular for insect groups with high rates of

intraspecific diversity, to make sound taxonomic assign-

ments (Meier et al. 2006; Lou&Golding 2012).

Conclusions

This study shows that a na€ıve Bayesian classifier can be

effectively applied to classify large numbers of mito-

chondrial COI barcode sequences from insects. We

benchmarked the performance of our training sets using

partial-length COI sequences, such as those commonly

generated by NGS platforms and provided bootstrap

support cut-off guidelines. After thorough testing using

LOOCV, targeted taxonomic and field data sets, we

have developed the following recommendations: (i) If

query taxa are suspected to be largely present in Gen-

Bank already, then we recommend using the GenBank-

genus trained classifier with bootstrap support cut-offs

from Table 3 to make the largest number of assign-

ments. Summarizing assignments to more inclusive

ranks whenever possible will increase the number of

correct taxonomic assignments and the overall number

of assignments. (ii) If query taxa are from a tropical

locale, or otherwise not likely to be well represented in

GenBank already, then we recommend using either the

GenBank-genus or GenBank-family trained classifiers

combined with bootstrap support cut-offs higher than

those recommended in Tables 3 and S6. The GenBank-

family trained classifier tends to be more conservative

than the GenBank-genus trained classifier, generally

requiring higher bootstrap support cut-offs, but making

fewer incorrect taxonomic assignments at the expense of

making fewer overall taxonomic assignments, but it also

has the fastest run-time. Again, summarizing assign-

ments to more inclusive taxonomic ranks will reduce

the chance of making incorrect assignments. With the

continued efforts of entomologists willing to share their

sequences in public databases, users will be able to reap

the benefits of having high-quality sequences from fully

identified specimens to help provide accurate taxonomic

assignments using automated tools such as this one.

With this in mind, future work will develop new train-

ing sets that increase the breadth of taxa, and markers,

that can be used with the na€ıve Bayesian classifier.
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