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Background: Although elevation of HDL-C levels by pharmaceutical drugs have no

benefit of cardiovascular endpoint, the effect of high-density lipoprotein/apolipoprotein

A1 (HDL/apoA-1) replacement therapy on atherosclerosis is controversial. The

current meta-analysis analyzed the effects of HDL/apoA-1 replacement therapies on

atherosclerotic lesions both in humans and mice.

Methods: The PubMed, Cochrane Library, Web of Science, and EMBASE databases

were searched through June 6, 2020. The methodological quality of the human studies

was assessed using Review Manager (RevMan, version 5.3.). The methodological quality

of the mouse studies was assessed using a stair list. STATA (version 14.0) was used to

perform all statistical analyses.

Results: Fifteen randomized controlled human trials and 17 animal studies were

included. The pooled results showed that HDL/apoA-1 replacement therapy use did not

significantly decrease the percent atheroma volume (p= 0.766) or total atheroma volume

(p= 0.510) in acute coronary syndrome (ACS) patients (N= 754). However, HDL/apoA-1

replacement therapies were significantly associated with the final percent lesion area, final

lesion area, and changes in lesion area (SMD, −1.75; 95% CI: −2.21∼-1.29, p = 0.000;

SMD, −0.78; 95% CI: −1.18∼-0.38, p = 0.000; SMD: −2.06; 95% CI, −3.92∼-0.2,

p = 0.03, respectively) in mice.

Conclusions: HDL/apoA-1 replacement therapies are safe but do not

significantly improve arterial atheroma volume in humans. The results in animals

suggest that HDL/apoA-1 replacement therapies decrease the lesion area.

Additional studies are needed to investigate and explain the differences in

HDL/apoA-1 replacement therapy efficacies between humans and animals.
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Trial registration number: Human pooled analysis: PROSPERO, CRD42020210772.

prospectively registered.
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KEY POINTS

1 HDL/apoA-1 replacement therapies significantly benefit
plaque inhibition in atherosclerosis mouse models but do not
significantly benefit human atheroma volume.

2 Trials with mice preliminarily suggest that HDL/apoA-1
replacement therapies more effectively inhibit atherosclerosis
development in earlier stages than in mature lesions.

INTRODUCTION

Cardiovascular disease (CVD) claimed an estimated 17.9
million lives in 2016, and it remains the leading cause of
death worldwide, representing 31% of all global deaths (1).
Effective strategies for preventing and treating CVD is a major
public health challenge worldwide. Lipid modification is the
major method for cardiovascular risk reduction, especially
low-density lipoprotein cholesterol (LDL-C)-lowering therapy,
but patients with controlled LDL-C in the normal range still
have increased residual cardiovascular risk (2). High-density
lipoprotein (HDL) plays a crucial role in cholesterol reverse
transportation and metabolism. Since Miller discovered that a
reduction in plasma HDL concentrations may accelerate the
development of atherosclerosis, HDL-C has become a new
focus in the investigation of preventive therapy for CVD (3).
However, studies over the past several decades that increased
the self-production of HDL-C showed different results regarding
CVD prevention (4–8). A great number of studies have
been performed to explain these differences. (1) HDL is a
conglomerate of protein, triglycerides, phospholipids, cholesterol
esters, and cholesterol that performs various functions, including
cholesterol efflux and reverse cholesterol transportation, anti-
inflammatory effects, antioxidant effects, nitric oxide-promoting
and endothelial function-enhancing effects, antithrombotic
effects, and antiapoptotic effects (9). (2) HDL particles that
fail to perform the biological functions mentioned above are
termed “dysfunctional.” (3) Changes in HDL composition may
cause dysfunction. Serum amyloid A is a significant predictor
of cardiovascular disease risk, and it replaces apoA-1 in HDL
during acute phase induction and prevents access of HDL to
the plasma membrane (10, 11). Reductions in the antioxidative
and anti-inflammatory properties of HDL-associated enzymes,
such as paraoxonase 1 activity, lecithin cholesterol acyltransferase
deficiency were accompanied by HDL oxidation and the
promotion of atherosclerotic lesion formation (12, 13). Changes
in lipid components, including triglyceride(s) and cholesteryl
ester, also caused HDL dysfunction (14). In addition to losing
its cardioprotective role, dysfunctional HDL may be harmful to
patients via conversion into a proinflammatory and pro-oxidant
component that promotes LDL oxidation (15, 16). Therefore,

the use of normal-functioning HDL/apoA-1 or mimetics may
ultimately elucidate the role of HDL/apoA-1 in CVD prevention.

Thus, in the present meta-analysis, we aimed to investigate
the efficiency of HDL/apoA-1 replacement therapies in mouse
models and patients with atherosclerosis.

METHODS

The meta-analysis was performed according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) statement (Supplementary Table 1). The
methodological quality of the human studies was assessed
using Review Manager (RevMan) software (version 5.3). The
methodological quality of the mouse studies was assessed by
using a stair list.

Participants included in the efficacy analysis were acute
coronary syndrome (ACS) patients. The intervention was
HDL/apoA-1 replacement therapy. The comparison was
atheroma volume in the coronary artery measured via
intravascular ultrasonography. The outcomes were changes
in percent atheroma volume (PAV) and total atheroma volume
(TAV), and the study type was randomized controlled trials.
The mice included in the efficacy analysis were apolipoprotein
E-deficient or low-density lipoprotein receptor-deficient mice
fed with regular rodent chow or a high-fat diet. The intervention
was HDL/apo-A1 replacement therapy. Comparisons included
the lesion areas in the aortic sinus, aortic root, aorta, innominate
artery, or carotid arteries. The outcomes were the final percent
lesion area, final lesion area, and changes in lesion area. The
study type was limited to animal-controlled studies.

Search Strategy
Two authors (AA and CH) searched the PubMed, Cochrane
Library, Web of Science, and EMBASE databases up to
June 6, 2020, for eligible studies using wide search terms
and included all publications that met the inclusion criteria
(Supplementary Table 2). We used the following terms:
“Lipoproteins, HDL” or “Apolipoprotein A-I” and “mimetic”
or “recombinant HDL” and “coronary artery disease” or
“Cardiovascular Diseases” for the literature search. The
reference lists from relevant articles were reviewed to identify
additional studies.

Inclusion Criteria and Study Selection
Studies meeting the following criteria were included: (1) studies
reporting the effect or safety of HDL/apoA-1 replacement
therapies on atherosclerosis in mouse models and patients
with atherosclerosis, (2) human studies designed as randomized
controlled trials (RCTs), and (3) studies written in English.
Studies with insufficient data or gray literature were excluded.
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Data Extraction
Two independent reviewers (AA and CH) screened the
titles and abstracts for relevance. Disagreements between
reviewers were discussed until a consensus was reached.
The manuscripts of selected titles/abstracts were assessed for
inclusion. Using the selection criteria listed above, the two
reviewers independently extracted baseline information using
predefined extraction flow sheets.We resolved any disagreements
between the authors via discussion. A third review author
(HL) arbitrated when differences in opinions emerged. If a
study compared different HDL/apoA-1 replacement therapies
with a replacement therapy-naïve cohort, the data of all
replacement therapies were separately compared with the
control group.

Data Analysis
Statistical analyses were performed using Stata (version
14.0). A random-effects model with I-V heterogeneity
(continuous data) or the Mantel–Haenszel (binary data)
method was used to calculate pooled standardized mean
differences (SMDs), or odds ratios (ORs) and 95% confidence
intervals (CIs). We assessed several outcomes in human
trials: PAV, TAV in the coronary artery, and other outcomes
representing safety. We assessed three outcomes in animal
trials: final percent lesion area, final lesion area, and changes
in lesion area in arteries. Heterogeneity between studies
was assessed using the Q-test and I2 statistic. Heterogeneity
was considered significant when the p-value was <0.05.
Publication bias was assessed using visual inspection of
funnel plots and Egger’s regression test. The influence of
individual studies was examined by the removal of one study at
a time.

RESULTS

Human Trials
Study Outlines and Characteristics
We identified 15 RCTs, of which 6 trials, including 754 ACS
patients (replacement therapies = 414, placebo = 340), were
used for efficacy analysis, and all 15 trials were used for safety
analysis (Table 1) (17–31). A flowchart of the selection of
eligible trails is shown in Figure 1. The duration of replacement
therapy administration in the included studies ranged from
a single administration to 10 weeks (weekly administration).
The risk of bias of the included studies is shown in the
Supplementary Figure 1.

Percent Atheroma Volume and Total Atheroma

Volume
Pooled analysis revealed that HDL/apoA-1 replacement
therapies did not significantly decrease PAV (SMD:0.03;
95% CI −0.17∼0.23, p = 0.766, I2 = 39.7%) or TAV (SMD:
−0.06; 95% CI −0.23∼0.11, p = 0.510, I2 = 20.0%) in
patients with atherosclerosis (Figure 2) (17–19, 25–27). The
results did not significantly change in the sensitivity analysis
(Supplementary Figures 2A,B).

Safety Assessment of High-Density

Lipoprotein/Apolipoprotein A1 Replacement

Therapies
Several studies separately reported the adverse effects of
HDL/apoA-1 replacement therapies, including headache (n= 8),
renal impairment (n = 6), hepatic impairment (n = 11), and
nausea, vomiting, and abdominal pain (n = 7). Pooled analysis
revealed that HDL/apoA-1 replacement therapies were safe, with
no significantly increased risk of adverse events (headache: OR
1.58, 95% CI 0.84–2.97, I2 = 0.0%; renal impairment: OR
0.76, 95% CI 0.29–1.99, I2 = 8.7%; hepatic impairment: OR
1.37, 95% CI 0.51–3.64, I2 = 34.9%; nausea, vomiting, or
abdominal pain: OR 0.81; 95% CI 0.47–1.38, I2 = 0.0%)
(Supplementary Figure 3). The results did not significantly
change in the sensitivity analysis (Supplementary Figure 4).

Mouse Trials
Study Outlines and Characteristics
We identified 17 controlled trials that included 479
atherosclerotic mice (HDL/apoA-1 replacement therapies
= 285, placebo = 194) (Supplementary Table 3) (32–45). A
flowchart of the selection of eligible trails is shown in Figure 1.
The therapy administration duration ranged from 30 days
to 16 weeks. The scientific inquiry of the animal trials was
assessed using a stair list that included 12 “yes,” 95 “no,” and 5
“unclear” (Supplementary Table 5). Funnel plots were provided
in Supplementary Figures 6A,B.

Final Percent Lesion Area
Eleven studies reported the effects of HDL/apoA-1 replacement
therapies on the percent lesion area in mice (32–37, 40, 41,
46–48). A reduced final percent lesion area was observed in
the HDL/apoA-1 replacement therapy-treated groups (SMD,
−1.75; 95% CI: −2.21∼-1.29, I2 = 64.6%) (Figure 3A). The
results did not significantly change in the sensitivity analysis
(Supplementary Figure 6C).

Final Lesion Area
Eight studies reported the effect of HDL/apoA-1 replacement
therapies on the final lesion area in mice (33, 36, 38–40, 42, 43,
45). A reduced final lesion area was observed in the HDL/apoA-1
replacement therapy group (SMD, −0.78; 95% CI: −1.18∼-0.38,
I2 = 59%) (Figure 3B). The results did not significantly change
in the sensitivity analysis (Supplementary Figure 6D).

Changes in Lesion Area
Three studies reported the effects of HDL/apoA-1 replacement
therapies on changes in lesion area in mice (37, 43, 44).
More changes in lesion area (reduction) were observed in the
HDL/apoA-1 group than the control group (SMD: −2.06; 95%
CI,−3.92∼-0.2, I2 = 83.9%) (Supplementary Figure 5).

Subgroup Analysis
A reduced final percent lesion area was observed in HDL/apoA-
1 subgroups based on LDL−/− mice, apoE−/− mice, males,
and females. A reduced final lesion area was observed in
HDL/apoA-1 subgroups based on females and apoE−/− mice
(Supplementary Table 4).
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TABLE 1 | Characteristics of the studies included in the human meta-analysis.

References Country Sample

size

Intervention and dose Duration Participants Mean age

(years)

Mean

BMI

Diabetes

%

HDL-C

(mg/dL)

ApoA-1

(mg/dL)

LDL-C

(mg/dL)

Nicholls et al. (17) Multi-stage 301 Placebo vs. CER-001 (3 mg/kg) Weekly/10 weeks ACS 59.84 29.15 19.49 40 127.01 83.48

Tardif et al. (18) Multi-stage 507 Placebo vs. CER-0010 (3/6/12

mg/kg)

Weekly/6 weeks ACS 58.98 NA 24.89 NA 131.42 NA

Nicholls et al. (19) Multi-stage 126 Placebo vs. MDCO-216 (20

mg/kg)

Weekly/5 weeks ACS 61.78 28.48 20 43.4 123.15 88.67

Kallend et al. (20) Netherlands 48 Placebo vs. MDCO-216 (HV:

5/10/20/30/40 mg/kg) (CAD:

10/20/30/40 mg/kg)

Single infusion Stable CHD,

healthy volunteers

HV:25.6

CAD:62.2

HV:22.5

CAD:27

NA HV:55.3

CAD:46.79

HV:157.3

CAD:121.5

HV:84.3

CAD:85.85

Gibson et al. (31) Multi-stage 1,258 Placebo vs. CSL112 (2/6 g

apoA-I per dose)

Weekly/4 weeks AMI 58.33 28.85 22.26 40.87 126.14 92.97

Gibson et al. (21) Multi-stage 83 Placebo vs. CSL112(6 g) Weekly/4 weeks AMI 71.04 29.49 42.17 42.42 114.08 83.78

Tricoci et al. (22) United States 45 Placebo vs. CSL112

(1.7/3.4/6.8 g)

Single infusion Stable

atherosclerosis

disease

59 30 25 NA NA NA

Easton et al. (23) Australia 36 Placebo vs. CSL112 (3.4/6.8

g/3.4 g)

Weekly/weekly/twice

weekly (4 weeks)

Healthy subjects 25.25 25.05 NA NA 122.5 NA

Tortorici et al. (24)

(NRF, MRI)

Germany,

United Kingdom

32 Placebo vs. CSL112 (2/6 g) Single infusion Healthy subjects NRF:55.63

MRI:69.13

NA NA NA NA NA

Tardif et al. (25) Canada 183 Placebo vs. CSL111 (40/80

mg/kg)

Weekly/4 weeks ACS 57.7 NA NA NA NA NA

Nissen et al. (26) USA 57 Placebo vs. ETC-216 (15/45

mg/kg)

Weekly/5 weeks ACS 57.27 NA 20.22 42.1 NA 81.9

Waksman et al.

(27)

USA 28 Placebo vs. LS PDS-2 Devise

Delipidation

Weekly/7 weeks ACS 55 NA 14.04 41.16 NA 119.05

Dunbar et al. (28) Pennsylvania 62 Placebo vs. D-4F

(100/300/500mg)

Daily/13 days Stable CHD or

equivalent risk

60.5 31.7 28.57 44.46 133.24 76.38

Watson et al. (29)

(IV)

Multi-stage 72 Placebo vs. L-4F

(3/10/30/100mg)

Daily/7 days Stable CHD or a

CHD equivalent

60.16 29.54 54.84 46.34 116.54 81.8

Watson et al. (29)

(SC)

Multi-stage 104 Placebo vs. L-4F (10/30mg) Daily/28 days Stable CHD or a

CHD equivalent

60.43 29.55 59.72 44.51 128.64 NA

Bloedon et al. (30) Pennsylvania 50 Placebo vs. D-4F

(30/100/300/500mg)

Single oral

administration

Stable CHD or a

CHD equivalent

59.9 31.3 75.93 42.86 122.76 NA

HV, healthy volunteer; CAD, coronary artery disease; CHD, coronary heart disease; ACS, acute coronary syndrome; AMI, acute myocardial infarction; ASD, stable atherosclerotic disease; NA, not available; HDL-C, high-density lipoprotein;

apoA-1, apolipoprotein A-1; LDL-C, low-density lipoprotein; CHDq, coronary heart disease equivalent.
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FIGURE 1 | Flowchart of the literature search and study selection process.

DISCUSSION

To our knowledge, this study is the first meta-analysis of the
effects of HDL/apoA-1 replacement therapies on atherosclerotic
lesions. The pooled estimate in animal studies showed that
HDL/apoA-1 replacement therapies were associated with a
significant reduction in the final percent lesion area and final
lesion area and a substantial decrease in the lesion area.
However, we failed to find a significant association between
HDL/apoA-1 replacement therapies and PAV or TAV in the
pooled human results.

HDL plays several crucial roles in atherosclerotic prevention,
including cholesterol efflux capacity, antioxidant activity, anti-
inflammatory activity, cytoprotective activity, and vasodilatory
activity (49). However, some abnormal conditions, including
inflammatory conditions and metabolic diseases, cause HDL
dysfunction by affecting its components, as described in the
Introduction section (50–52). This change in HDL may underlie
the failure to prevent atherosclerosis by increasing HDL
production without considering its dysfunction. For example,
increasing HDL by inhibiting cholesteryl ester transfer protein
(CETP) did not reduce the rate of cardiovascular events despite
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FIGURE 2 | Forest plots of the meta-analysis of the associations between percent atheroma volume (PAV) (A) and total atheroma volume (TAV) (B) in the coronary

artery and high-density lipoprotein/apolipoprotein A1 (HDL/apoA-1) replacement therapy administration in acute coronary syndrome patients using a random-effects

model. SMD, standardized mean difference; CI, confidence interval. This result shows that HDL/apoA-1 replacement therapies did not significantly decrease PAV or

TAV in patients with acute coronary syndrome.

FIGURE 3 | Forest plots of the meta-analysis of the associations between final percent lesion area (A), final lesion area (B) in arteries, and HDL/apoA-1 replacement

therapy administration in mice using a random-effects model. SMD, standardized mean difference; CI, confidence interval. This result shows that HDL/apoA-1

replacement therapies significantly decreased the final percent lesion area and final lesion area in mice with coronary atherosclerosis.

inducing a 133.2% increase in HDL-C levels (53). One case
reported a 52-year-old white female with an extremely high HDL
level of 218mg/dl who suffered from coronary artery disease (54).
Therefore, improving HDL dysfunction may be more beneficial
for atherosclerosis prevention than increasing its level.

Previously published animal studies suggest that HDL/apoA-1
replacement therapies (considered equal to normal-
functioning HDL/apoA-1) have a significant beneficial effect on
atherosclerosis prevention. Our pooled animal trials also revealed
that HDL/apoA-1 replacement therapies had a significant

preventive effect on the lesion area, which is consistent with
our hypothesis that providing normal-functioning HDL/apoA-1
would be effective for atherosclerosis prevention. This strategy
should also be effective in atherosclerosis prevention in humans.
However, the cause of the failure of HDL/apoA-1 replacement
therapies to provide beneficial effects on atherosclerosis
in humans is not known. We summarized the possible
reasons below.

1. HDL/apoA-1 replacement therapies may be more effective
in preventing early-stage atherosclerotic lesions than altering
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mature lesions, which was demonstrated in animal trials (38,
44) because atherosclerosis is a chronic inflammatory process.
Mohanta et al. proposed a new concept that the disruption
of the balance between pro- and antiatherogenic immune cell
subsets due to the exhaustion of anti-inflammatory and immune-
suppressing cells during sustained inflammatory processes
may trigger clinically overt atherosclerosis (55). Reconstituted
discoidal HDL and apoA-1 inhibit inflammation in endothelial
cells (56, 57). Lipid-free apoA-1 also inhibits macrophage
activation via threemain pathways (58–60). These studies suggest
that earlier administration of HDL/apoA-1 replacement therapy
would prevent the sustained inflammatory process that triggers a
clinically overt atherosclerosis process, which is consistent with
the discovery of Li et al. that D4F decreased the intraplaque
lipid and macrophage content in evolving atherosclerosis (38).
However, the balance between pro- and antiatherogenic immune
cell subsets is already damaged in mature atherosclerotic
lesions, which weakens the atheroprotective role of HDL/apoA-1
replacement therapy.

2. Does the administered HDL/apoA-1 replacement therapy
maintain normal functioning in participants with a dysfunctional
internal environment or after conversion into pro-inflammatory
and pro-oxidant environments? The apoA-1 mimetic peptide
D4F caused pre-β HDL formation, improved HDL-mediated
cholesterol efflux, and reversed cholesterol transportation from
macrophages in mice and rendered HDL less inflammatory in
high-risk coronary heart disease patients (28, 61). However, two
distinct clinical studies that included patients with coronary heart
disease tested the impact of the apoA-1 mimetic peptide L-4F
and failed to demonstrate its role in the HDL-inflammatory index
and paraoxonase activity improvement, but it increased the high-
sensitivity C-reactive protein levels, which was paradoxical to
an ex vivo study (29). Therefore, the functional transformation
of HDL/apoA-1 replacement therapy after administration to the
body should be further analyzed to guide the prevention of
atherosclerosis by increasing the “good” HDL.

3. Differences in lipid metabolism-relevant gene expression
between humans and mice, including cholesteryl ester transfer
protein, which is absent from the mouse genome but provides
an avenue for the delivery of cholesterol from HDL to LDL
in humans, may also be responsible for the different outcomes
both in vivo and in vitro (mentioned above) after HDL/apoA-
1 replacement therapy administration (62). Therefore, further
human-specific analyses must be performed.

4. The duration and frequency of HDL/apoA-1 replacement
therapy administration may also explain the different results in
human and mouse trials (Table 1 and Supplementary Table 3).
The human lifespan is much longer than that of mice, and
the process of lesion development in humans is likely much
more complicated. However, the duration and frequency of
replacement therapy administration in some human studies were
shorter than those inmouse studies. Therefore, the frequency and
doses at the beginning of the replacement therapy administration
period should be further investigated.

Further RCTs should investigate the preventive role of
HDL/apoA-1 replacement therapies on atherosclerosis
development. The participants would be healthy volunteers

with atherosclerotic lesions in the early stage, and the duration
and dose of the replacement therapy would be long and adequate.

However, before comparing the role of HDL/apoA-1
replacement therapy on atherosclerotic plaques between mice
and humans, we must consider atherosclerosis progression
in apoE−/− and LDLR−/− mice accompanied by expansive
remodeling, which causes the absence of luminal narrowing
that is different from humans, especially in ACS patients (63).
However, mouse models have shown that apo A-I overexpression
consistently reduces atherosclerosis progression independent of
the genetic and metabolic context by increasing HDL cholesterol,
which suggests their partial comparability (64). Therefore,
animal trials may be a “lighthouse” for clinical trials, but we
should not overestimate their guiding function.

LIMITATION

Our pooled analysis has several limitations. The methods
used to evaluate vascular atherosclerosis were different in
humans and mice (human: atheroma volume, mice: lesion area)
because expansive remodeling of the vasculature accompanying
atherosclerosis progression in mice caused the absence of
luminal narrowing (63). The small number of studies in
the human pooled analyses of efficacy is a limitation, and
further investigations with earlier and longer administration
times and increased doses should be performed. Comparisons
of functional tests, including anti-inflammatory, paraoxonase
activity, and RCTs, between humans and mice are absent because
of data restrictions.

CONCLUSION

Evidence from a pooled analysis suggests that HDL/apoA-1
replacement therapies reduce the atherosclerotic lesion area
in mice but do not show a beneficial effect on human
atheroma volume despite being considered safe. Additional
studies are needed to further investigate and explain the
different effects of HDL/apoA1 replacement therapies in
humans and mice.
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