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Abstract: The use of waste plant protein obtained from underutilized and non-food-producing plants
may be a promising strategy in the development of bioactive packaging. A series of blend films were
prepared by casting from cottonseed protein (CP) and poly(vinyl alcohol) (PVA) and modified with
different plasticizers. The morphology, structure, and crystallinity of each of the blend films were
characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray
diffraction. CP and PVA were found to be compatible in the appropriate ratios, and the CP/PVA
blend films were partially crystalline. We compared the effects that four plasticizers, i.e., glycerol,
triethanolamine (TEA), ethylene glycol, and polyethylene glycol, had on the performance of the
CP/PVA blend films. Plasticizers altered the degree of interaction between CP and PVA, which
changed the secondary structure of the CP but had little effect on the crystallinity of CP/PVA blend
films. Among the different plasticizers tested, TEA was the most efficient at improving the elongation
at the break, tensile strength, and oxygen barrier properties of the CP/PVA blend films. Such CP/PVA
blend films plasticized using TEA can, therefore, be considered emerging and promising plastics for
potential applications in food packaging and flower planting applications.
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1. Introduction

Synthetic polymer plastics have been widely used in industry and agriculture, thereby leading
to environmental pollution and resource shortages. The preparation of biodegradable plastics from
renewable biomass resources has, therefore, become a research hotspot, and is expected to aid in
the replacement of petroleum-based plastics. During the past decade, low-cost waste biomass, such
as feathers, soybeans, corn, and cottonseed meal, have emerged as promising raw materials for
biodegradable plastics [1–4]. Among them, cottonseed meal is considered an appropriate choice.

Cottonseed is an important plant protein resource [5] and is often processed into animal feed [6,7]
due to its rich amino acid content and high nutritional value [8,9]. However, cottonseed protein (CP)
has not been widely used outside of the food-producition field. This is because the heat treatment
process during cottonseed oil extraction causes protein denaturation, which affects the physical and
chemical properties and processability of CP. At present, the material application of CP is mainly
focused on processing it into an adhesive [10,11]. Throughout the past two decades, few of studies on
CP-based films have been published, with the exception of several studies on the compression-molding
of CP mixtures using a hot press.

Marquie et al. [12] prepared crosslinked CP films using cotton phenol, formaldehyde, and
glutaraldehyde as the cross-linking agents to improve the puncture mechanical properties and water
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resistance of the films. In further studies, Grevelec et al. [13] prepared glycerol-plasticized CP films
and tested their viscoelastic behavior and α-protein relaxation associated with glass transition to
determine the optimal process conditions and function of glycerol in enhancing film properties. Their
results showed that, when mixed with a higher proportion of glycerol as a plasticizer, the α-relaxation
temperature decreased, and the CPs became more stable with regard to thermal denaturation. Moreover,
Yue et al. [14–16] prepared a series of CP bioplastics (CPBs) starting from glandless CP that was subjected
to protein denaturation processes, plasticizing, crosslinking, and hot compression. They investigated
the synthetic processing conditions, mechanical strength, and water absorption of the CPBs, and it
was found that the use of a glycerol plasticizer increased the ductility of the CP plastic. When the
plasticizer content was increased from 10 to 20 wt.%, the elongation at break (EAB) increased from
4.8% to 5.3%. The addition of glycerol also accelerated protein inactivation, as shown by the reduction
in the CP inactivation temperature from 156.2 to 136.0 ◦C in the plasticized CP film.

The mechanical properties of pure CP films are poor, and it is difficult to make them conform to the
requirements of packaging plastics even with the addition of plasticizers and crosslinkers. The blending
of CP with other polymer materials has, therefore, been performed to improve its mechanical properties
and conform to the requirements of packaging materials [17]. For example, poly(vinyl alcohol) (PVA)
is a widely used, nontoxic, and biodegradable polymer material with good film formation properties,
such that new PVA composites and biomasses are often reported [18–24]. Chen et al. [25] prepared a
feather keratin (FK)/PVA blend film via a casting method, where the EAB and oxygen barrier properties
of the blend film increased with increasing the PVA content. In addition, He et al. [26] characterized
FK/PVA composite nanofibers fabricated using an electrospinning process. Their results showed
that PVA and FK experienced molecular chain entanglement after blending, which improved the
spinnability of FK and mechanical properties of the FK-based composite nanofibers. To our knowledge,
studies have not yet reported the blend modification of PVA and CP.

Plasticizers can increase the flexibility of polymeric materials. Their efficiency is predominantly
governed by their molecular weight, polarity, and compatibility with various materials [27]. However,
the effects that different plasticizers have on the properties of CP/PVA blend films have yet to be
systematically investigated. We wanted to select a suitable plasticizer to enhance the mechanical
and oxygen barrier properties of CP/PVA blend membranes, which are of particular importance to
yield promising biomass plastics. We, herein, report the preparation of a series of CP/PVA films via
a casting method and the subsequent determination of the optimal ratio of CP to PVA based on the
morphological, structural, and mechanical properties of the blend films. To evaluate the effects that
different plasticizers have on the mechanical properties, water sensitivity, and barrier properties of
the blend films, four plasticizers (including small molecular alcohols, polymeric alcohols, and alcohol
amines) were used to modify the CP/PVA blend films. Among these plasticizers, triethanolamine
(TEA) effectively improves the elongation at break, tensile strength, and oxygen barrier properties of
the CP/PVA blend films, and enhances the application prospects of the CP/PVA blend films as biomass
plastics in food packaging and flower planting.

2. Materials and Methods

2.1. Materials

Cottonseed was purchased from Wuhan Yuancheng Co., Ltd. (Wuhan, China). The plasticizers,
including glycerol (Gly), triethanolamine (TEA), ethylene glycol (EG), and polyethylene glycol (PEG,
molecular weight: 400), were purchased from Shanghai Macklin Biochemical Co., Ltd. (Shanghai,
China). PVA (degree of polymerization: 1700; degree of alcoholysis: 99) was obtained from Shanghai
Aladdin Biochemical Technology Co., Ltd. (Shanghai, China); sodium hydroxide and hydrochloric
acid were purchased from Tianjin Damao Chemical Reagent Co., Ltd. (Tianjin, China). All commercial
reagents were of analytical grade and used without further purification. Deionized water was used as
a solvent.
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2.2. Extraction of Cottonseed Protein (CP)

CP was extracted according to the procedure reported in Zhang et al. [28] with slight modifications.
The cottonseed was added to a 0.05 mol·L−1 solution of sodium hydroxide (1:12, w/w), and protein
extraction was performed at 60 ◦C for 60 min under stirring. The extraction solution was centrifugated
at 3000 rpm for 10 min, after which the centrifuged solution was passed through a 200-mesh nylon filter.
The filtrate obtained was subjected to dialysis (Oso-T8280 dialysis tubes, 8000–14,000, Union Carbide,
Houston, TX, USA) against distilled water at 25 ◦C over a period of one week. The CP solution was
collected after dialysis, and the pH was adjusted to between 4.7 and 4.9 with dilute hydrochloric acid
until there was significant protein precipitation. After precipitation, filtration, and separation, the CP
was freeze-dried.

2.3. Preparation of the CP/PVA Films

CP/PVA blend films were prepared using a casting method. A 6 wt.% CP solution was adjusted to
a pH of 10 with a 0.1 mol·L−1 sodium hydroxide solution and then heated at 40 ◦C for 10 min under
continuous stirring. CP/PVA film-forming solutions containing various weight ratios of the 6 wt.% PVA
aqueous solution were prepared in which the total CP and PVA solid content (1.8 g) did not change.
This was followed by slow stirring for 30 min at 40 ◦C. The film-forming solutions were poured into
polypropylene molds and placed horizontally in a constant temperature and humidity environment
(25 ◦C, 50% RH) to dry. We refer to the CP/PVA solutions and blend films as CxP10−x, where x is the
weight percentage/10 of CP relative to the total weight of CP and PVA in the film. For example, C3P7

refers to a CP:PVA weight ratio of 3:7.

2.4. Preparation of the Plasticized Films

The C3P7 solution was used to investigate the effect that the plasticizers have on CP/PVA film
properties. The 6 wt.% CP and PVA solutions were used to prepare a mixed solution with a CP to PVA
weight ratio of 3:7. The CP/PVA solution was magnetically stirred with 5%, 10%, or 20% plasticizer for
30 min at 40 ◦C to obtain a homogeneous solution. The plasticizers used in this study were Gly, TEA,
EG, and PEG. The plasticized CP/PVA film-forming solution was then poured into a polypropylene
mold and placed horizontally in a constant temperature and humidity environment (25 ◦C, 50% RH)
to dry. We refer to the plasticized films as n-M, where n is the weight percentage of the plasticizer
relative to the total weight of the CP and PVA in the film and M is the type of plasticizer. For example,
20%-TEA refers to a TEA content of 20% relative to the total weight of CP and PVA.

2.5. Characterization

The surface morphologies of the films were observed using scanning electron microscopy (SEM,
EVO18; Carl Zeiss, Jena, Germany) with a secondary electron detector at an accelerating voltage of
15 kV.

The Fourier-transform infrared (FTIR) spectra of the films were recorded using a Spectrum 100
infrared spectrometer (Perkin-Elmer, Fremont, CA, USA) in attenuated total reflectance (ATR) mode.
Scans were recorded from 4000 to 650 cm−1 and the combination of four scans was used for analysis.
The spectra were analyzed using the Origin 2017 software. The FTIR spectra in the region from
1700–1600 cm−1 were fitted using deconvolution and fit-Gaussian to divide the overlapping peaks.
The fitting operation was performed multiple times. Finally, the relative percentage of CP secondary
structures was calculated according to the integrated area of each fitted peak [29–32].

X-ray diffraction (XRD) patterns of the samples were analyzed using a D8 X-ray diffractometer
(Rigaku, Akishima, Japan) at a voltage of 40 kV and current of 30 mA using Cu-Kα radiation. The 2θ
scan range was from 10◦ to 50◦ at a scan rate of 2◦/min.

The mechanical properties of the films, such as the tensile strength (TS) and EAB, were measured
on a microcomputer-controlled electronic universal testing machine (CMT6503, Shenzhen MTS Test
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Machine Company Ltd., Shenzhen, China). A strain rate of 10 mm/min was used throughout the
experiment in accordance with the ASTM standard D638 [33]. We performed three replications of each
sample and calculated the average and standard deviation values of the measurements.

The moisture sensitivity of each blend film was evaluated using an automatic contact angle meter
(Theta, Biolin Scientific Ltd., Espoo, Finland) to determine the contact angle between the water droplets
and the films and the time of the sudden infiltration point. For this, the films were cut into samples
measuring 40 × 10 mm, and both ends of the film were fixed to glass slides. Droplets of deionized water
were extruded from a needle tube onto the surface of the intermediate suspended film. The contact
angle between the film sample and water droplets was continuously measured until the water droplets
completely penetrated the film.

The water vapor permeability (WVP) of each film was measured using a water vapor transmittance
tester (W3/030, Labthink Ltd., Jinan, China) at 38 ◦C with a gradient of 90%–0% relative humidity
across the film.

The oxygen permeability (OP) of each film was measured using an oxygen permeability tester
(VAC-VBS, Labthink Ltd., Jinan, China) at 25 ◦C, 50% RH with a test gas pressure of 1.01 × 105 Pa and
upper and lower degassing times of 4 h.

The thicknesses of each film were measured using a digital external micrometer (accurate to
0.001 mm). The measurements were conducted in triplicate, and average values were calculated.

3. Results and Discussion

3.1. Film Morphology

Figure 1 shows the SEM images of the CP/PVA blend films containing different CP-to-PVA mass
ratios. The surfaces of the CP/PVA blend films appear smooth with a CP content <40% and no phase
separation. However, a large number of small particles agglomerated and precipitated on the surfaces
of C5P5 and C6P4, which roughened the film’s surface, demonstrating a limited compatibility between
CP and PVA. Upon blending the PVA with a small amount of CP, we formed a uniform and stable
CP/PVA solution. In this case, the film-forming process was relatively stable. However, upon increasing
the proportion of CP, the spaces between the molecules of the film-forming solution increased due to
the use of different CP/PVA blend compositions, which, in turn, led the surface molecules to experience
different levels of tension during film formation. This affected the flatness of the film surface, forming
an uneven and rough surface.Polymers 2020, 12, x FOR PEER REVIEW 5 of 15 
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A series of plasticized CP/PVA blend films were then prepared by fixing the CP:PVA mass ratio at
3:7 and adding either a 5% or 20% plasticizer (i.e., the highest and lowest levels). The SEM images of
the plasticized CP/PVA blend films are shown in Figure 2, where it is apparent that the surfaces of the
plasticized CP/PVA blend films were flat, and the cross-sections were smooth and continuous. This
was due to the addition of the plasticizers, which can also interact with the CP and PVA molecules
through hydrogen bonding to improve compatibility between the two materials.

Polymers 2020, 12, x FOR PEER REVIEW 5 of 15 

 

 

Figure 1. Surface morphologies of the cottonseed protein (CP)/PVA blend films: (a) C1P9, (b) C2P8, (c) 
C3P7, (d) C4P6, (e) C5P5, and (f) C6P4. 

 

Figure 2. SEM images of the CP/PVA blend films containing different plasticizers and plasticizer 
contents (5% or 20%): (a–d) surface morphology and (e–h) cross-sectional images. 

3.2. FTIR Spectroscopy 

The FTIR spectra of the CP powders, PVA, and CP/PVA blend films (C3P7) are shown in Figure 
3. In the case of the CP powder, a broad and weak band was observed at ≈3272 cm−1 corresponding 

Figure 2. SEM images of the CP/PVA blend films containing different plasticizers and plasticizer
contents (5% or 20%): (a–d) surface morphology and (e–h) cross-sectional images.

3.2. FTIR Spectroscopy

The FTIR spectra of the CP powders, PVA, and CP/PVA blend films (C3P7) are shown in Figure 3.
In the case of the CP powder, a broad and weak band was observed at ≈3272 cm−1 corresponding
to the O–H and N–H hydrogen-bonding association peaks. This may be due to the fact that the
number of amino groups in the CP molecular structure exceeded the number of hydroxyl groups,
thereby resulting in a smaller degree of association between N–H and O–H. Furthermore, multiple
characteristic absorption peaks of CP were detected in the 1800–1000 cm−1 range [33]. For example,
the peaks at 1637, 1544, 1399, and 1044 cm−1 corresponded to the characteristic absorption peaks of
the CP amide I band (i.e., the C=O stretching vibration), the CP amide II band (i.e., the N–H bending
and C–N stretching vibrations), the CP amide Шband (i.e., the C=O bending and C–N stretching
vibrations), and the C–O stretching vibration of CP, respectively [15]. Moreover, in the FTIR spectra of
PVA, peaks at 3281 (hydroxyl groups), 2939, and 2912 (the asymmetrical and symmetrical stretching of
C–H, respectively), 1717 (C=O stretching vibration), 1243 (C–H wagging vibrations), and 1086 cm−1

(C–O stretching vibration) were observed [34,35].
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blend films.

In terms of the blend films, a broad band was observed at ca. 3700–3100 cm−1—which corresponds
to the N–H and O–H hydrogen-bonding association peaks of C3P7—whose intensities were greater
than those of the O–H and N–H association peaks of the CP powder. This may be attributed to the fact
that the addition of PVA increased the hydroxyl (–OH) content of the blend films and thereby enhanced
the degree of association between N–H and O–H. In addition, the amide characteristic absorption
peaks of CP at 1637, 1544, and 1399 cm−1 were shifted to 1650, 1550, and 1407 cm−1 (corresponding
to the amides I, II, and Ш, respectively) in C3P7, respectively, and the peak intensity was lower than
that of the corresponding characteristic peak of CP. This suggests the presence of hydrogen bonding
between the CP and PVA molecules. Furthermore, the characteristic peak of the ester carbonyl group
of C3P7 originating from the PVA molecule (1717 cm−1) was reduced in intensity, likely due to its
partial acylation with the free primary amine group in the CP to form an amide group. This, in turn,
likely altered the CP secondary structure in the blend films.

When the small-molecule plasticizer and large-molecule polymer were dissolved, the interaction
between the polymer macromolecules (i.e., hydrogen bonding between CP and PVA) can be weakened
by establishing a new interaction with the polymer (i.e., hydrogen bonding between the plasticizer and
either CP or PVA). This change was beneficial to the macromolecular chain mutual rearrangement
(inner rotation) under the action of an external force field (i.e., mechanical force) to the blended film,
which improved the toughness and ductility of the polymer films [27]. Figure 3b shows the FTIR
spectra of the plasticized CP/PVA blend films at 1800–750 cm−1, where the characteristic absorption
peaks of amides I, II, and Шin the plasticized C3P7 film can be observed at approximately 1650, 1550,
and 1407 cm−1. The positions and intensities of these peaks differed compared with those of C3P7,
which indicates that no reaction occurred between the plasticizers and CP/PVA mixtures, with the
presence of only physical interactions.

The amide I band is known to be especially sensitive to any conformational changes in the
secondary structure of proteins [33]. Thus, the absorption bands of the amide I band are shown in
Figure 4, where the predominant absorption band at ≈1650 cm−1 is characteristic of the α-helical
structure, and the bands between 1610–1633 cm−1 and 1675–1695 cm−1 can be attributed to β-sheet and
β-turn structures, respectively [26,36,37]. The calculated peak areas of the corresponding structures
are summarized in Table 1. The results show that the secondary structure of CP in the blend films
consists mainly of α-helix and β-sheet structures, with a small number of β-turn structures also present.
The area associated with the β-sheet showed a decreasing trend in the amide I band of the blend
film after the addition of plasticizers, whereas there was an increase in the area associated with the
β-turn structure. This was attributed to the fact that the plasticizers could gradually be inserted into
the CP β-sheet structure to generate hydrogen bond interactions, increasing the free volume of the
peptide chain. Plasticizer insertion, therefore, gradually weakens or even breaks the hydrogen bond
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interactions between the β-sheet layers, resulting in a gradual shift in the β-sheet to a β-turn [38].
This increase in the number of β-turn structures was beneficial in terms of improving the flexibility
of the protein-based films. Moreover, there was also an increase in the α-helix content for 20%-TEA,
indicating that the addition of TEA can promote the partial conversion of the CP structure to yield a
spiral. This rendered the overall structures of the blend films more stable and ductile.
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Table 1. Secondary structure area percentages of CP in C3P7 and plasticized CP/PVA films.

Sample
Secondary Structure Area Percentage

β-Sheet (%) α-Helix (%) β-Turn (%)

C3P7 28.3 63.4 8.3
20%-Gly 27.2 61.8 11.0
20%-TEA 24.2 64.7 11.1
20%-EG 25.7 64.0 10.3

20%-PEG 26.0 63.4 10.6

3.3. XRD Analysis

The XRD patterns of the pure CP powder, pure PVA powder, and CP/PVA blend films between 10◦

and 50◦ are shown in Figure 5a. More specifically, the pure PVA powder exhibited two characteristic
crystalline peaks at 19.6◦ and 22.5◦, which were attributed to the 101 and 002 crystal planes,
respectively [34,39]. Furthermore, a diffraction peak was also observed at 40.7◦, indicating that
PVA is a semi-crystalline polymer, whose crystallinity is due to strong intermolecular interactions
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between the PVA polymer networks [25]. In addition, the pure CP powder exhibited a broad diffraction
peak at 20.5◦. However, for the CP/PVA blend film (C3P7), two diffraction peaks originated from the
PVA component at 22.5◦, and 40.7◦ disappeared, resulting in the broadening of the diffraction peak at
19.6◦. These observations confirmed that a strong hydrogen bond formed between the CP and PVA
molecules, which destroyed the regularity of the original molecules and affected the crystal structures
of both CP and PVA. This is in good agreement with the results of the FTIR analysis.
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The XRD patterns of the plasticized CP/PVA blend films are shown in Figure 5b. The diffraction
peak of the plasticized CP/PVA blend films appeared at 19.6◦ and did not shift or broaden compared
with the C3P7 case. Furthermore, no new signals formed between 10◦ and 50◦, which confirmed that
the plasticizers did not affect the regularity of the CP/PVA blend films’ crystal structures.

3.4. Mechanical Properties

The main purposes of blending CP with a synthetic polymer are to address issues associated with
pure CP, such as poor film formation and brittleness, and to improve the mechanical properties of the
films to expand their application prospects. We, therefore, investigated the effects that different CP
and PVA mass ratios have on the TS and EAB values of the blend films, whose results are presented
in Figure 6. The EAB and TS values of the prepared blend films increased from 2% and 3.5 MPa
to 137% and 20.7 MPa, respectively, when the CP:PVA mass ratio was changed from 9:1 (C9P1) to
3:7 (C3P7). Although the mechanical properties of pure protein films were generally poor due to
their complex elemental compositions, hydrophilic groups, impurities, and sensitivities to heat and
moisture, the good compatibility for an appropriate ratio between CP and PVA resulted in their blend
films exhibiting improved mechanical properties. Based on this analysis of the microstructural and
mechanical properties of the CP/PVA blend films, we determined that the optimal mass ratio for the
CP/PVA blend film was 3:7.

The EAB values of the plasticized CP/PVA blend films are shown in Figure 7a, where EAB increased
with an increase in the plasticizer content. More specifically, a plasticizer content of 5% promoted the
EAB of the CP/PVA blend film by three to five times, whereas a 20% plasticizer addition yielded a
seven to nine-fold enhancement. In addition, by comparing the effects that different plasticizers have
on the EAB of the CP/PVA blend films, PEG had a better plasticizing effect on the CP/PVA blend films
than the other plasticizers (i.e., Gly, TEA, and EG) when the amount of plasticizer added was lower
(i.e., 5%). This was attributed to PEG’s larger molecular weight and molecular chain length compared
with the other three plasticizers, which allowed it to increase, to a greater extent, the space between
macromolecular chains. This, in turn, promoted a greater relative slidability on macromolecular
segments when the PEG molecules were inserted between the CP/PVA macromolecular chains than
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when using other plasticizers. However, the degree to which the type of plasticizer influenced the EAB
of the CP/PVA blend films was smaller than the influence of the amount of plasticizer added.
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The tensile strengths of the plasticized CP/PVA blend films are shown in Figure 7b. As indicated,
only TEA increased the TS of the CP/PVA blend film, while Gly, EG, and PEG had no effect. More
specifically, 10%-TEA gave a TS of 85.60 MPa, which was four times that of C3P7. This increased TS
may be due to the presence of a more electronegative tertiary amine group in the TEA molecule, which
can form an intermolecular hydrogen bond between the H atoms on the N and O atoms in the CP/PVA
macromolecular chain. However, this tertiary amine group can also partially enhance the intensity of
hydrogen bonding in the H atom on α-C [40–42]. In this case, a new network structure formed among
the TEA, CP, and PVA molecules, which inhibited movement between molecules while increasing the
tensile strength of the CP/PVA blend film.Polymers 2020, 12, x FOR PEER REVIEW 10 of 15 
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3.5. Moisture Sensitivity of the Blend Films

The water contact angles (θ) of the plasticized CP/PVA blend films were then measured to
determine the effect that the four plasticizers have on the moisture sensitivity of each blend film. The
photographic images in Figure 8 show the contact angles of the plasticized films were reduced to
20◦–40◦ in a shorter time than that required for C3P7, which indicates that the addition of plasticizers
increased the water sensitivities of the blend films. More specifically, the contact angle of C3P7 was
reduced by just over 50% in 80 s, while the contact angles of the plasticized blend films decreased by
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similar amounts or slightly more in 50 s. In addition, the plasticized CP/PVA blend films exhibited
varying degrees of relaxation and lifting during contact with deionized water. This phenomenon was
attributed to the gradual infiltration of water droplets into the film.
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The variations observed in the contact angles of the blend film and plasticized blend films at
different times are presented in Figure 9. For C3P7, deionized water slowly penetrated the film,
gradually lowering the contact angle within 80 s. For the plasticized blend films, the water droplets
collapsed when the films had been in contact with the deionized water droplets for 25–35 s. In the
subsequent 5–10 s, the contact angles decreased by more than 50%. This difference in behavior between
the blend film and plasticized blend films indicates that the moisture sensitivity increased in the
presence of a plasticizer. A previous study has reported a similar result for Tris-plasticized FK/PVA
blend films [25].
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In addition, the collapse point of the 20%-TEA and 20%-PEG water droplets occurred after
approximately 30 s, which was 7 s later than for 20%-Gly and 20%-EG. In the later stages of water
droplet collapse (after 50 s of contact), the contact angle for 20%-TEA was still nearly 40◦, whereas the
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contact angles for the other three plasticized films were <30◦. This indicates that TEA increased the
water sensitivity of the CP/PVA blend films to a lesser extent than the other plasticizers.

3.6. Barrier Properties of the Films Prepared

The barrier properties of a film are of particular importance when considering their potential
for application in packaging materials. For example, packaging materials that exhibit a good barrier
performance can effectively prevent small molecules (e.g., gas and water vapor) and microorganisms
from entering the package, which ensures the stability of the internal packaging environment and
prolongs the shelf life of the product. The suitability of each CP/PVA blend film for applications in
packaging was, therefore, considered in terms of barrier properties, through selecting the WVP and OP
of the blend films for examination.

3.6.1. Water Vapor Permeability (WVP)

The process of water vapor transfer in films depends on the hydrophilic–hydrophobic balance
within the matrix, and on the final film microstructure [43]. Table 2 lists the average values of water
vapor permeabilities of the plasticized blend films, where it is apparent that the addition of plasticizers
to the CP/PVA blend films increased the WVP, and that an increased plasticizer content further enhanced
the WVP. This trend can be expected from the increase in hydrophilicity and a strengthening in the
matrix continuity for mass transfer [44]. More specifically, the addition of plasticizers introduces a
large number of hydrophilic groups that can improve, overall, the moisture sensitivity of the blend
films. Furthermore, the continuity and number of water vapor mass transfer pathways in the blend
films increased, to a certain extent, due to the formation of intermolecular interactions between the
plasticizers and CP/PVA films, which expanded the free volumes of the molecular chains. Although
the addition of a plasticizer can reduce the water vapor barrier, the plasticized blend film samples
exhibited low WVP values that conformed to the general requirements of packaging materials [45].

Table 2. Water vapor permeability (WVP), oxygen permeability (OP), and thickness values for the
plasticized blend films.

Sample WVP
(× 10−12 g·cm−1·s−1·Pa−1)

OP
(× 10−5 cm3

·m−2·d−1·Pa−1)
Thickness (mm)

C3P7 1.03 ± 0.05 1661 ± 8 0.06 ± 0.005

5%-Gly 1.39 ± 0.13 1072 ± 3 0.072 ± 0.007
10%-Gly 1.36 ± 0.15 381.5 ± 1.4 0.076 ± 0.004
20%-Gly 2.53 ± 0.23 75.72 ± 1.12 0.068 ± 0.005

5%-TEA 1.16 ± 0.08 1057 ± 4 0.057 ± 0.004
10%-TEA 1.5 ± 0.16 345.5 ± 1.8 0.060 ± 0.01
20%-TEA 2.04 ± 0.18 26.18 ± 0.43 0.063 ± 0.03

5%-EG 1.16 ± 0.11 1062 ± 3.2 0.073 ± 0.05
10%-EG 1.35 ± 0.12 346.3 ± 1.3 0.072 ± 0.06
20%-EG 2.63 ± 0.11 53.14 ± 0.81 0.080 ± 0.01

5%-PEG 1.22 ± 0.05 1634 ± 5 0.060 ± 0
10%-PEG 1.55 ± 0.09 98.41 ± 3.2 0.070 ± 0
20%-PEG 1.93 ± 0.17 64.01 ± 1.50 0.067 ± 0.003

3.6.2. Oxygen Permeability (OP)

The OP of plasticized blend films was measured at 25 ◦C, 50% RH. The effects of different
plasticizers and their contents on the OP of the CP/PVA blend film are also shown in Table 2. More
specifically, the OP values ranged from 23.17 × 10−5 to 1661 × 10−5 cm3

·m−2
·d−1
·Pa−1. Compared with

the values obtained for the C3P7 film, the OP values significantly decreased with the addition of a
plasticizer, where a greater reduction corresponded with an increased plasticizer content. In other
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words, the addition of a plasticizer can improve the oxygen barrier properties of the blend films, which
is a trend opposite to that observed for the WVP. This is because air permeation through a film generally
involves three stages; i.e., adsorption, diffusion, and desorption. Thus, the plasticizers increased the
hydrophilicity of the blend film, which inhibited the adsorption of non-polar O2 on film surfaces [25].
Furthermore, in the presence of the plasticizer, the protein phase, characterized by a lower OP with
respect to PVA, is homogeneously distributed in the PVA matrix; thus, significantly improving the
barrier property in regard to oxygen. Moreover, TEA caused the largest increase in the oxygen barrier
performance of the C3P7 films compared with the other plasticizers. This may be because TEA has a
greater polarity compared to the other three plasticizers, which can reduce, to a greater extent, the
adsorption of non-polar O2 on the surface of the blend membrane.

4. Conclusions

We, herein, reported the preparation of blend films of cottonseed protein (CP) and poly(vinyl
alcohol) (PVA) using a casting method; and the mechanical properties, moisture sensitivities, and barrier
properties of the plasticized blend films prepared using four different plasticizers were determined.
It was found that CP/PVA mixtures, with a mass ratio of 3:7, exhibited good compatibility and no phase
separation during film solidification, which we confirmed via SEM observations. In addition, Fourier
transform infrared spectroscopy measurements showed that the addition of different plasticizers
altered the interactions between the CP and PVA to varying degrees, and had different effects on
the secondary structure of the CP. Furthermore, the addition of plasticizers to the blend enhanced
the elongation at break, moisture sensitivity, and oxygen barrier properties of the films while there
was a reduction in the water vapor barrier properties. Triethanolamine (TEA) was the most efficient
plasticizer, which indicates that the mechanical and oxygen barrier properties of the CP/PVA blend
films can be improved by the addition of TEA. This CP/PVA-TEA combination allowed a feasible
method for the preparation of functional CP/PVA blend films from cheap, biodegradable, and waste
CP. Moreover, this system reported herein allows the potential application of plasticized CP/PVA blend
films to packaging, mulching, and other industrial processes, providing novel applications for CP. In
future studies, we will exclude the possible migration and segregation of the plasticizer to eliminate
the hugely detrimental effect on the properties of the material during physical aging [46] and develop
new functions (such as antimicrobial and intelligent control properties of gas permeation) for CP-based
blend membranes through nano- or graft-modification, which should further expand the applicability
of the cottonseed protein-based composite film as a packaging material.
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