
Citation: Feng, S.; Hu, W.; Pei, F.; Liu,

Z.; Du, B.; Mu, X.; Liu, B.; Hao, Q.;

Lei, W.; Tong, Z. A Highly Sensitive

Fluorescence and Screen-Printed

Electrodes—Electrochemiluminescence

Immunosensor for Ricin Detection

Based on CdSe/ZnS QDs with Dual

Signal. Toxins 2022, 14, 710. https://

doi.org/10.3390/toxins14100710

Received: 6 September 2022

Accepted: 10 October 2022

Published: 17 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

toxins

Article

A Highly Sensitive Fluorescence and Screen-Printed
Electrodes—Electrochemiluminescence Immunosensor for
Ricin Detection Based on CdSe/ZnS QDs with Dual Signal
Shasha Feng 1,2, Wei Hu 1, Fubin Pei 1,2, Zhiwei Liu 1, Bin Du 1, Xihui Mu 1, Bing Liu 1, Qingli Hao 2, Wu Lei 2,*
and Zhaoyang Tong 1,*

1 State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
2 School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology,

Nanjing 210094, China
* Correspondence: leiwuhao@njust.edu.cn (W.L.); billzytong@126.com (Z.T.)

Abstract: A sensitive dual-readout immunosensor for fluorescence and electrochemiluminescence
(ECL) detection of ricin was established, which was combined with a streptavidin–biotin signal
amplification system. CdSe/ZnS quantum dots with fine fluorescence and ECL properties were
used as the dual-signal function probes of the sandwich immunocomplex. Under the optimum
experimental conditions, the dual signal intensity increased significantly with the rise in ricin con-
centration. The fluorescence intensity of the senor exhibited a good liner relationship toward the
ricin concentrations with 0.1~100 ng/mL and the limit of detection (LOD) was 81.7 pg/mL; taking
ECL as the detection signal, the sensor showed a linear relationship with the ricin concentrations
ranging from 0.01 ng/mL to 100 ng/mL and the LOD was 5.5 pg/mL. The constructed sensor with
high sensitivity had been successfully applied to the detection of ricin in complex matrices with
satisfactory recoveries. The proposed immunosensor model can be extended to the analysis and
detection of others target proteins.

Keywords: immunosensor; ricin; fluorescence; electrochemiluminescence; dual readout; CdSe/ZnS
quantum dots

Key Contribution: A dual-readout (fluorescence and ECL) immunosensor for ricin detection was
established based on CdSe/ZnS quantum dots with dual signal, which was combined with a
streptavidin–biotin signal amplification system.

1. Introduction

Ricin is a highly toxic protein extracted from the seeds of the castor bean plant, and is
also the only protein toxin prohibited by the international chemical weapons convention as
well as the international biological and toxin weapons convention [1]. Because of its high
toxicity, easy availability, and simple preparation, ricin is considered a high risk to public
health and national security, making it a potential bioterrorist agent [2,3]. At present, there is
no vaccine or inhibitor to block the toxic effect of ricin, and passive immunization is the only
effective strategy to treat ricin poisoning [4]. Therefore, developing a rapid and sensitive
method to detect ricin is very important for food safety protection and antiterrorism.
At present, electrochemistry [5], fluorescence [6], electrochemiluminescence (ECL) [7],
polymerase chain reaction [8], enzyme-linked immunosorbent assay (ELISA) [9], and
surface plasmon resonance [10] have been used to detect ricin by immunoassay. However,
these analysis methods only detect a single signal, which is easily affected by different
sensing interfaces and environmental factors, resulting in false-negative or false-positive
results [11]. The results of dual-signal detection can be mutually verified to effectively
avoid false positives or false negatives, so as to provide more comprehensive and accurate
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results [12]. In traditional immunoassay methods, fluorescence and ECL strategies, are
ideal methods for the detection of proteins, because they have the advantages of simple
operation, rapid detection, and high sensitivity [13,14]. In addition, the ECL method also
has the advantage of a low background signal [15]. ECL is the light emission caused by
electrochemical reaction, which can avoid the interference of autofluorescence of biological
samples in fluorescence immunoassay [12,16]. Moreover, the development of screen-
printed electrodes has expanded the application range of ECL sensors and has broad
application prospects in the development of miniaturized, integrated, and intelligent
portable devices [17]. The sample volume required for screen printing electrodes is only
tens of microliter. Fluorescence immunoassay does not require the use of electrodes and
additional voltage, which can avoid the situation of unclean electrodes, unreasonable
electrode preparation, and unstable applied voltage in the process of ECL operation [18].
Using fluorescence and ECL dual signals to analyze the target is conducive to mutual
verification and improving the accuracy of the sensor. Among them, the label coupled
with antigens or antibodies is responsible for signal conversion and will directly affect
the sensitivity of the sensor. Thus, it is necessary to find photo/electric materials with
dual functions.

Compared with traditional organic dyes, nanostructured materials have attracted
extensive attention, especially quantum dots (QDs). QDs are one of the ideal candidates
for optical labeled probes due to their remarkable features, including tunable fluorescence
emissions, large specific surface area, narrow emission bandwidth, and wide excitation
band [19,20]. In addition, QDs have become popular ECL emitters since the research on
the electrochemical luminescence property of silicon QDs was published in 2002 [21]. It is
reported that CdSe/ZnS QDs are the best fluorophores for biological applications, which
are made of CdSe cores covered with ZnS [22,23]. The ZnS layer passivates the core surface,
hinders its oxidation, prevents Cd or Se from entering the solution. It can also significantly
improve the fluorescence quantum yield and chemical stability, and can cause a slight red-
shift of the fluorescence emission [24–26]. In addition, CdSe/ZnS QDs possess a favorable
ECL property with high quantum yields [27]. Moreover, functional groups on the surface of
CdSe/ZnS QDs can be easily modified and be stably coupled with antibodies. As a result,
CdSe/ZnS QDs are ideal candidates as dual-signal functional labels of immunosensors.

The complexity and diversity of samples determine the necessity to improve the effi-
ciency of sample pretreatment procedures. Magnetic separation is one of the simplest and
most effective methods for sample separation and enrichment [28]. Magnetic nanoparticles
(MNPs) and magnetic microparticles (MMPs) have the advantages of uniform particle
sizes, large specific surface areas, high magnetic separation efficiencies, and fast separation
speeds, which are ideal carrier materials for sample separation and enrichment [29]. MNPs
and MMPs have been widely used in many fields, such as biosensors [30], wastewater
treatment [31], catalysis [32], and separation [33].

In order to further improve the sensitivity of the sensor, the streptavidin–biotin signal
amplification system was introduced. The binding affinity (10−14 mol/L) between strepta-
vidin and biotin exceeds that between antigens and antibodies [34,35]. One streptavidin has
four specific binding sites with biotin, which can amplify the response signal and improve
the sensitivity in immunoassay by labeling antigens, antibodies, or signal probes [35].
Therefore, many immunoassays utilize streptavidin-coated magnetic beads to immobilize
biotinylated capture molecules for separation of immunocomplexes [36].

Herein, combined with a streptavidin–biotin signal amplification system, a fluores-
cence and ECL dual-signal immunosensor was proposed for detecting ricin. CdSe/ZnS QDs
possessed good fluorescence and ECL properties and can be used as signal probes, laying
the foundation for dual-signal detection. Streptavidin-modified Fe3O4 magnetic beads were
used as carriers to load biotinylated capture antibodies for signal amplification and sim-
plify the separation process. The sandwich conjugates (SA-MBs/bio-Ab1/ricin/Ab2-QDs)
were formed when ricin appeared, which were tested on fluorescence and ECL platforms,
respectively. The fluorescence and ECL signal gradually increased as the ricin concentration
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increased. To the best of our knowledge, there has been no report on dual-signal detection
of ricin. The mechanism of the designed immunosensor is shown in Figure 1.
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Figure 1. Schematic illustration of CdSe/ZnS QDs-based immunosensor combined with a streptavidin–
biotin signal amplification system for ricin detection. The “+” and “−” represented the high and low
concentration of ricin, respectively.

2. Results and Discussion
2.1. Characterization of QDs

The transmission electron microscopic (TEM) images of CdSe QDs and CdSe/ZnS
QDs, as well as elemental mapping images of CdSe/ZnS QDs, were displaced in Figure 2.
It was obvious that CdSe QDs and CdSe/ZnS QDs were uniform spherical particles with
good dispersion, and the particle sizes were about 4 nm and 5 nm, respectively. It can be
seen from the high-resolution TEM (HRTEM) images that the QDs had clear lattice planes,
confirming the good crystallinity of the materials. Additionally, the lattice of CdSe/ZnS
QDs was directly extended without an interface, which was consistent with the coherent
epitaxial growth mechanism [37]. The existence of CdSe/ZnS QDs was demonstrated
by the elemental mapping pictures (Figure 2c) of Cd, Se, Zn, and S elements with clear
color contrast.
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The X-ray photoelectron spectroscopy (XPS) measurements were performed to analyze
the composition and chemical state of the QD surface (Figure 3). The peaks at 411.24 eV
and 404.49 eV were attributed to Cd 3d3/2 and Cd 3d5/2, respectively. The binding positions
of Se 3d were located at around 53.43 eV. The Zn 2p doublet were observed at binding
energies of 1044.92 eV and 1021.83 eV, corresponding to Zn 2p1/2 and Zn 2p3/2 orbitals of
Zn2+. The asymmetric S 2p spectrum was fitted to two peaks, at 161.94 eV and 160.83 eV,
which were assigned to S 2p3/2 and S 2p1/2, respectively [38]. The results confirmed that
CdSe/ZnS QDs were prepared successfully.
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2.2. Optical Properties of CdSe/ZnS QDs

Fourier transform infrared spectra (FT-IR) was used to confirm functional groups
on the surface of the QDs. As shown in Figure 4a, the characteristic peak observed at
3443 cm−1 was assigned to the -OH stretching vibration. The asymmetric and symmetric
stretching of -COO- were located at 1621 cm−1 and 1386 cm−1, respectively. The peak at
1085 cm−1 was related to the stretching vibration of C-O. No characteristic peak of -S-H
stretching was observed at 2550 cm−1, which indicated that 3-mercaptopropionic acid
(MPA) molecules were successfully capped onto the surface of the QDs through S-Cd
bonds. The above results indicated that a carboxyl group was introduced by coating MPA
on to the QD’s surface, which created the conditions for attaching antibodies on the surface
of the QDs. As illustrated in Figure 4b, the prepared QDs exhibited two characteristic
absorption peaks, at 232 nm and 546 nm.

The fluorescence and ECL performances of CdSe/ZnS QDs were investigated. As can
be seen from Figure 5a, the fluorescence signal intensity of CdSe/ZnS QDs was almost
twice that of CdSe QDs. This was attributed to the formation of ZnS passivation layer on
the surface of CdSe QDs, thus eliminating the trap state on the surface of the QDs [39]. The
emission wavelengths of CdSe QDs and CdSe/ZnS QDs were 562 nm and 564 nm, with the
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same full width at half maximum (FWHM) of 37 nm, respectively, due to the red-shift of
the emission wavelength of the QDs with increasing particle size. The three-dimensional
fluorescence spectra (Figure 5b,c) of the CdSe/ZnS QDs showed that the optimal excita-
tion wavelength was 251 nm, and had obvious excitation independence characteristics.
Moreover, the QDs were tested 38 times, continuously, and the relative standard deviation
(RSD) was 2.37% (Figure 5d), indicating that the QDs had good stability and resistance to
photobleaching. As displayed in Figure 5e, the ECL signal of individual QDs cannot be
observed. In addition, the 0.05 mol/L K2S2O8 solution produced a very weak peak. When
K2S2O8 and QDs existed simultaneously, a strong ECL signal appeared, indicating that the
ECL signal of the QDs belonged to the cooperative reaction type (coreactant luminescence
mechanism). The luminescence mechanism of QDs may be as follows [40]:

QDs + ne− → nQDs− (1)

S2O2−
8 + e− → SO2−

4 + SO−4 (2)

QDs− + SO−4 → QDs∗ + SO2−
4 (3)

QDs∗ → QDs + hv (4)
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2.3. Zeta Potential

Zeta potential of the QDs and QDs-Ab2 were recorded to verify the successful prepara-
tion of the QDs-Ab2 conjugates. As demonstrated in Figure 5f, the zeta potential of the QDs
was −31.2 mV, which was due to the large number of carboxyl groups on the surface of the
QDs. After the Ab2 was coupled with the QDs, the zeta potential changed from −31.2 mV
to −24.7 mV, indicating that the QDs-Ab2 conjugates were successfully prepared [41].

2.4. Optimization of Experimental Conditions
2.4.1. Optimization of Reaction Time of ZnS

The performance of the sensor is critically dependent on the optical properties of
fluorophores. Figure 6a showed that the fluorescence signal increased as the reaction time
of ZnS lengthened. When the reaction time of ZnS exceeded 60 min, the fluorescence
intensity trended downward. Because the ZnS shell thickness increased with the increase in
reaction time, the defects on the surface of quantum dots can be effectively reduced, which
can enhance their fluorescence performance. However, new defects will appear on the
surface of the QDs with excessive growth of the shell thickness, resulting in the decrease in
their fluorescence performance [25]. Therefore, 60 min was selected as the reaction time
of ZnS.
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2.4.2. Optimization of Added Amount of bio-Ab1

As a capture antibody, the immobilized amount of bio-Ab1 on streptavidin-coated
magnetic beads (SA-MBs) will directly affect the number of captured antigens, thus affecting
the sensitivity of the sensor. The immobilized amount of Ab1 was calculated according to
the absorbance of the Ab1 solution before and after incubation with SA-MBs [42].

RBinding Ratio =
A280be f ore − A280a f ter

A280be f ore
× 100% (5)

Immobilized Amount (µg) = Added Amount (µg)× RBinding Ratio (6)

As illustrated in Figure 6b, with the increase in bio-Ab1 added amount (12, 36, 60,
84, and 108 µg), the amount of antibodies immobilized on the surface of the SA-MBs
gradually increased. When the amount of bio-Ab1 added reached 60 µg, the amount of
bio-Ab1 immobilized on the surface of SA-MBs reached saturation. Thus, the optimal
added amount of bio-Ab1 was 60 µg.

2.4.3. Optimization of Incubation Time between QDs-Ab2 Conjugates and Ricin

The incubation time between the QDs-Ab2 conjugates and ricin will affect the number
of the bound labeled probes on the ricin, thus affecting the performance of the sensor. The
immunosensors under different conditions were used to detect 100 ng/mL ricin. As shown
in Figure 6c, the fluorescence signal increased with the increase in incubation time (30,
45, 60, 75, and 90 min). After incubation for 60 min, the fluorescence signal was almost
unchanged, indicating that the binding between ricin and QDs-Ab2 conjugates had reached
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equilibrium. Therefore 60 min was selected as the optimal incubation time between the
QDs-Ab2 conjugates and ricin.

2.5. Analytical Performance of the Immunosensor

Under the optimized conditions, the performance of the fluorescence and ECL dual-
signal immunosensor was investigated for detecting various concentrations of ricin. As
represented in Figures 7 and 8, the detection signal increased as ricin concentration in-
creased. The prepared immunosensor had a good linear relationship between fluorescence
intensity and ricin concentration in the range of 0.1~100 ng/mL, and the linear regression
equation was F − F0 = 1316.59·lg[c(ng/mL)] + 1458.47 (R2 = 0.990). The limit of detection
(LOD) was 81.7 pg/mL, which was calculated based on the average response of the nega-
tive control (n = 11) plus three times the standard deviation [43]. The ECL intensity was
proportional to the logarithmic value of ricin concentration ranging from 0.01~100 ng/mL,
with the linear regression equation of I − I0 = 229.26·lg[c(ng/mL)] + 683.91 (R2 = 0.994).
The LOD was 5.5 pg/mL. Compared with the fluorescence method, the ECL method had
higher sensitivity, wider linear range, and required less solution volume and more portable
instruments, making it more suitable for outdoor analysis and detection.
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2.6. Selectivity, Stability, and Reproducibility of the Immunosensor

To investigate the specificity of the immunosensor, 10 ng/mL bovine serum albumin
(BSA), staphylococcal Enterotoxins B (SEB), T2-toxin (T2), and 1 ng/mL abrin were selected
as interferences. As shown in Figure 9, the signal of interferences was much smaller than
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that of ricin, and the influence can almost be ignored. At the same time, it can be seen that
the fluorescence signal of the mixture solution of above each substance with 1 ng/mL ricin
was basically consistent with the signal of 1 ng/mL ricin detected. The result indicated that
the immunosensor had good specificity.
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The reproducibility of the immunosensor was evaluated by five parallel electrodes
prepared in the same way for fluorescence analysis of 5 ng/mL ricin. The RSD of five results
was less than 5%, demonstrating that the immunosensor had good reproducibility.

2.7. Detection of Ricin in Simulated Samples

In order to study the practicability of the proposed immunosensor in complicated
samples, river water, soil, and tap water samples were used as simulated samples for
detection by the immunosensor. The recovery of samples was determined by the standard
addition recovery method. As shown in Table 1, the recovery was between 91.6% and
109.6%. These satisfactory experimental results indicated that the sensor was reliable in
practical application.

Table 1. Recovery tests for ricin in simulated samples (n = 3).

Sample Original
(ng/mL)

Added
(ng/mL)

Found
(ng/mL)

Recovery
%

RSD
%

River water 0 1 0.916 91.6 3.58
Soil 0 1 1.096 109.6 4.37

Tap water 0 1 1.042 104.2 3.29

3. Conclusions

In summary, a new fluorescence and ECL dual-signal immunosensor for ricin detec-
tion was established, combined with a streptavidin–biotin signal amplification system.
CdSe/ZnS QDs were used as dual-signal probes to transmit fluorescence and ECL signals.
The proposed immunosensor demonstrated good selectivity, high sensitivity, and low LOD.
The dual-signal immunosensor can improve the reliability of the detection results. The
immunosensor had been successfully used to detect ricin in complicated samples, which
was expected to expand the application prospects.
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4. Materials and Methods
4.1. Materials and Apparatus

DynabeadsTM M-280 Streptavidin (10 mg/mL, SA-MBs) was obtained from Thermofisher
Scientific Co., Ltd. (Waltham, MA, USA). Cadmium chloride hydrate (CdCl2·2.5H2O), tri-
ethanolamine (TEA), MPA, zinc acetate (Zn(CH3COO)2), thiourea, potassium persulfate
(K2S2O8), and 2-morpholinoethanesulfonic acid (MES) were provided by Aladdin Regents
Co., Ltd. (Shanghai, China). Ricin, SEB, T2, and abrin were provided by Beijing Hapten and
Protein Biomedical Institute (Beijing, China). Anti-ricin polyclonal antibodies/bio (bio-Ab1)
were prepared in our lab. Anti-ricin monoclonal antibodies (2R1, detection antibodies, Ab2)
were purchased from HyTest Ltd. (Turku, Finland). Bovine serum albumin (BSA) and
phosphate buffer solution (PBS, 0.01 mol/L, pH = 7.2) were the products of Beijing Solar-
bio Science & Technology Co., Ltd. (Beijing, China). N-hydroxysulfosuccinimide (NHS),
1-ethyl-3-(3-dimethylaminopro-pyl) carbodiimide hydrochloride (EDC), and sodium se-
lenite (Na2SeO3) were obtained from Sigma-Aldrich Chem. Co. (Hamburg, Germany).
All reagents used in this experiment are of analytical purity and can be used directly
without further purification. Ultrapure water (18.2 MΩ/cm) was prepared using a arium
611 ultrapure water system (Sartorius, Goettingen, Germany).

Fluorescence spectra of QDs were recorded by FLS1000 spectrophotometer (Edin-
burgh, UK). The fluorescence spectra of the sensor were measured on a Spark Multi-Mode
Microplate Reader (Tecan, Austria). FT-IR were tested by a Nicolet iS50 (Thermo Sci-
entific, Waltham, MA, USA). UV–vis absorption spectrum was recorded by Biomate 3S
UV-Visible Spectrophotometer (Thermo Scientific, Waltham, MA, USA). TEM images were
obtained with a JEM-F200 (JEOL, Akishima, Japan). XPS survey spectra were performed
with Thermo Scientific K-Alpha (Waltham, MA, USA). HS-3 vertical mixer was obtained
by Ningbo Scientz Biotechnology Co., Ltd. (Ningbo, China). The TE100 screen-printed
carbon electrodes (SPCEs) were purchased from Zensor Research and Development Co.,
Ltd. (Taiwan, China). The 96-well, black, flat-bottom polystyrene high-bind microplates
were purchased from Corning Incorporated (Corning, NY, USA). The ECL measurement
was carried out with an MPI-ECL analyzer from Xi’an Remex Analysis Instruments Co.,
Ltd. (Xi’an, China).

4.2. Preparation of the Soil Sample

A soil sample was collected near the laboratory, after which it was air-dried, ground,
and then dispersed in water for ultrasonic for 30 min. The sample was centrifuged to
remove sand and impurities, and the supernatant was properly diluted before testing.

4.3. Synthesis of CdSe/ZnS QDs

CdSe QDs were synthesized by using cadmium chloride and Na2SeO3 as precursors
and MPA as capping agent molecules (refluxing for 24 h) [44]. Then, 4.3 mL ZnS shell stock
solution containing 0.016 mol/L Zn(CH3COO)2 and 0.016 mol/L thiourea was added to
CdSe QDs and refluxed at 100 ◦C for 60 min to obtain CdSe/ZnS QDs. Then, CdSe/ZnS
QDs were centrifuged and concentrated in an ultrafiltration tube (10 kD) and then dissolved
to half of the original volume with water and stored at 4 ◦C for standby.

4.4. Preparation of SA-MBs/bio-Ab1

For the preparation of SA-MBs/bio-Ab1, 200 µL SA-MBs (10 mg/mL) were washed
and magnetically separated three times with 0.01 mol/L PBS before being dispersed in
500 µL 0.01 mol/L PBS (pH = 7.4) containing 0.12 mg/mL bio-Ab1. After rotating at
room temperature for 30 min, the mixture was washed three times with 0.01 mol/L PBS
(pH = 7.4) to remove the excess unbounded bio-Ab1 by magnetic separation. The prepared
SA-MBs/bio-Ab1 was redispersed in 2 mL 0.01 mol/L PBS (pH = 7.4) and stored at 4 ◦C
for further use.
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4.5. Preparation of QDs-Ab2 Bioconjugates

CdSe/ZnS QDs and Ab2 were coupled by EDC/NHS. Typically, 200 µL CdSe/ZnS
QDs were added to 1 mL 0.1 mol/L MES buffer solution containing 600 µL EDC (10 mg/mL)
and 400 µL NHS (10 mg/mL), and activated under ultrasonic treatment for 30 min. Then,
the mixed solution was centrifuged and washed twice with 0.01 mol/L PBS (pH = 7.4) to
remove unreacted EDC and NHS. The activated QDs were redispersed in 1.0 mL 100 µg/mL
Ab2, rotated at room temperature for 4 h, centrifuged, and washed twice with 0.01 mol/L
PBS (pH = 7.4) containing 0.05% BSA to remove the excess antibodies. The QDs-Ab2
bioconjugates were redispersed in 1.5 mL 0.01 mol/L PBS (pH = 7.4) containing 0.05% BSA
to block the nonspecific recognition sites, which were stored at 4 ◦C (avoiding light in the
whole process).

4.6. Detection of Ricin

The prepared SA-MBs/bio-Ab1 (100 µL) was mixed with 200 µL ricin of different
concentrations and rotated at 37 ◦C for 30 min. Then, the SA-MBs/bio-Ab1/ricin conjugates
were washed three times with 0.01 mol/L PBS (pH = 7.4) by magnetic separation. Then,
200 µL of CdSe/ZnS-Ab2 bioconjugate dispersion was added and rotated for 1 h at room
temperature, which were washed four times with 0.01 mol/L PBS (pH = 7.4) by magnetic
separation. The SA-MBs/bio-Ab1/ricin/Ab2-QDs conjugate dispersion was redispersed in
120 µL 0.01 mol/L PBS (pH = 7.4) for fluorescence test. The above process was repeated,
and the SA-MBs/bio-Ab1/ricin/Ab2-QDs conjugate dispersion was redispersed in 50 µL
0.01 mol/L PBS (pH = 7.4) containing 0.05 mol/L K2S2O8 for ECL measurement.

4.7. Fluorescence and ECL Measurements

The sensitivity of the sensor was determined by the enzyme-labeled instrument and
the ECL analyzer (in addition to the sensitivity test of the sensor, other performances only
recorded the fluorescence signal). Parameter setting of enzyme-labeled instrument: using
the fluorescence intensity scanning mode, the type of enzyme-labeled plate was costar
96 black, the emission wavelength range was 480~650 nm, the step was 5 nm, and the gain
value was 100. Then, 100 µL SA-MBs/bio-Ab1/ricin/Ab2-QDs conjugate dispersion was
added to the enzyme-labeled plate. The fluorescence spectra were recorded in 0.01 mol/L
PBS (pH = 7.4) with an excitation wavelength of 360 nm. For ECL, 20 µL SA-MBs/bio-
Ab1/ricin/Ab2-QDs conjugate dispersion was evenly coated on the working surface of the
SPCE. The ECL measurements were carried out by cyclic voltammetry (CV) from 0 V to
–1.8 V with a scan rate of 100 mV/s in 0.01 mol/L PBS (pH = 7.4) containing 0.05 mol/L
K2S2O8, and the photomultiplier tube was fixed at 700 V.
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