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Abstract
Background: We tested principles that could lead to a future cognitive aid that offers an interpretation of the newborn’s physiological state during

resuscitation after birth. Using concordance among experts’ interpretations of newborn vital sign patterns as an approximation for an algorithm that

could provide an interpretation of the newborn’s state, we explored the reliability and generalisability of experts’ interpretations.

Methods: Twelve neonatal experts viewed eight pairs of graphical trajectories showing newborns’ heart rate and oxygen saturation records sup-

plemented with differential diagnoses elicited previously from other experts. Each pair of trajectories included one trajectory on which the original

differential diagnoses had been based, and a similar but novel trajectory to which the original differential diagnoses were now generalised. For each

trajectory, experts ranked the differential diagnoses according to their likelihood. We calculated how similar the new experts’ ranking was to the orig-

inal experts’ ranking for both original and novel trajectories. We used descriptive categories to interpret the strength of the similarity.

Results: For the original and novel trajectories, the experts’ rank ordering of differential diagnoses was mostly moderately to substantially similar to

the original rank ordering by the original participants. There were mostly small differences in similarity scores between the paired original and novel

trajectories; fewer than 25% of the participants suggested an alternative differential diagnosis.

Conclusions: The concordance of experts’ interpretations could serve as an approximation of the newborn’s physiological state, and the interpre-

tations could be generalised. The results may justify pursuing an algorithm to underpin a cognitive aid.
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Introduction

The neonatal transition from intrauterine life to extrauterine life

depends on a series of interrelated physiological processes that

must take place to change how every organ system functions in

the body; see Zestic et al.1 for a description of some key early com-

ponents of this transition. Supporting the newborn transition is chal-

lenging for clinicians, largely because devices to measure many of

the critical physiological variables are not routinely available, either

because the relevant sensors do not exist or because they are

impractical for routine clinical use.1–3 Consequently, the clinician’s

grasp of a neonate’s physiological status may be imperfect. This

exacerbates the difficulties of clinical decision-making, particularly

where the infant presents with an uncommon underlying physiologi-
cal condition or an unexpectedly poor response to resuscitation inter-

vention(s).4,5

Tools to support clinical task performance and decision-making,

including neonatal resuscitation algorithms, use signs such as tone,

breathing effort, heart rate and oxygen saturation (SpO2) as indica-

tors of the newborn’s physiological progress and the effectiveness

of resuscitation intervention(s). However, current tools in clinical

use do not offer differential interpretations of the physiological state

of the patient or patient-specific guidance based on that interpreta-

tion.6–8 A more versatile and clinically useful tool could be a cognitive

aid capable of providing a plausible interpretation of the newborn’s

current state from available vital signs. However, this would require

the aid to be based on an artificial intelligence (AI) algorithm that

can recognise clinically significant patterns of vital signs as resusci-

tation unfolds and offer an interpretation of those patterns.
ns.
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The training and optimisation of an AI algorithm—particularly a

machine learning algorithm—that offers an interpretation of the

infant’s physiological state would require a large neonatal vital sign

database. The AI system could learn clinically meaningful patterns

on one section of the data, and then test its performance on the sec-

tion of the data not used for learning.9 However, the above approach

is resource-intensive and suitable databases do not currently exist.

We therefore conjectured that an approximation of the newborn’s

physiological state could be provided from neonatal experts’ diag-

nostic interpretations of patterns in newborn vital signs after birth.

The experts’ interpretations could substitute for an AI algorithm that

offers an interpretation of the newborn’s state.

We previously explored whether there is good concordance

(agreement) across neonatal experts in how they interpret patterns

in newborn vital signs after birth (Phase 1 and Phase 2 in

Fig. 1).10 If experts agree, then their interpretations could be taken

as an approximation to the newborn’s physiological state. In Phases

1 and 2, neonatal experts observed graphical trajectories showing

newborns’ heart rate and SpO2 records after birth. We elicited the

experts’ interpretations of the range of physiological explanations

that could apply to the vital sign patterns. Their interpretations were

strongly concordant, suggesting that the interpretations could under-

pin an algorithm for a future cognitive aid that displays experts’ inter-

pretations for other clinicians to consider during newborn

resuscitation, pending maturation of AI-based solutions or sensing
Fig. 1 – Overview of the research program. Phase 1 an

interpretations of vital sign patterns exhibited by newborns

neonatal trajectories were extracted from the Dawson et a

previous phases by (1) testing if other experts agree with t

the original eight trajectories, and (2) testing if the Phase 1

eight novel trajectories (also extracted from the Dawson

effectiveness of the differential diagnosis suggestions whe
technologies. However, it is important first to establish whether

experts agree on the clinical meaning of the vital sign patterns,

and whether their interpretations generalise to similar vital sign

patterns.

Therefore, in this study, Phase 3 in Fig. 1, we performed a con-

ceptual test of the feasibility of a real-time decision-support algorithm

to help determine whether it is worthwhile pursuing the resource-

intensive AI methods that would be needed to develop a cognitive

aid that provides a plausible interpretation of the newborn’s current

state during resuscitation after birth. In this study, the experts’ inter-

pretations are a proxy for the AI algorithm, and the AI is a proxy for

the currently unavailable sensors. The first purpose of the study was

to test the concordance of a new group of experts’ physiological

explanations with those of the original experts. Specifically, we com-

pared how new participants rank order differential diagnoses for

specific heart rate and SpO2 patterns with how the original experts

in Phases 1 and 2 rank ordered their differential diagnoses. The sec-

ond purpose was to test the concordance of new experts’ physiolog-

ical explanations with those of the original experts, now on novel but

similar heart rate and SpO2 patterns. Specifically, we tested whether

the rank order of differential diagnoses for specific heart rate and

SpO2 patterns from Phases 1 and 2 would generalise to similar but

novel vital sign patterns. If participants’ rank ordering is concordant,

then experts’ interpretations could be reliable and generalisable,

opening the way to developing a cognitive aid.
d Phase 2 involved eliciting the experts’ diagnostic

in the first 10–15 minutes after birth—the eight original

l.11 database. The present study (Phase 3) builds on the

he Phase 1 and 2 experts’ diagnostic interpretations of

and 2 experts’ diagnostic interpretations generalise to

et al.11 database). In Phase 4 we plan to explore the

n they are presented via a prototype cognitive aid.
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Methods

Context and participants

Participants were recruited by personal approach from one of the

authors who is a senior neonatologist in a tertiary hospital in Queens-

land, Australia. Ethical approval was given by Mater Misericordiae

Ltd (approval 53861) and by the Human Research Ethics Committee

at The University of Queensland (approval 2019002697). Partici-

pants were required to have at least two years’ experience as a

senior fellow, consultant, or neonatal nurse practitioner in newborn

medicine, and to perform or supervise newborn resuscitation on a

regular basis. All participants provided written informed consent.

Trajectory development

The neonatal trajectories were drawn from the Dawson et al.11 data-

base, which documents the real-time heart rate and SpO2 values of

approximately 465 neonates in the first 15 minutes after birth. No

‘true’ diagnosis was available for each trajectory. However, additional

information was available for each trajectory—gestation, birth

weight, mode of delivery, and supplemental oxygen. The 25th and

75th percentile boundaries for SpO2 targeting were inferred by Daw-

son et al.11 in 2010 from the database of neonatal trajectories.

In the present study, Phase 3 in Fig. 1, participants were pre-

sented with 16 trajectories from the Dawson et al.11 database in

the form of timeline graphics (Fig. 2). Eight of the 16 trajectories were

the same (original) trajectories that had been presented to the orig-

inal participants in Phase 1 and 2. The other eight trajectories were
Fig. 2 – An example of a neonatal trajectory being gradua

application. The red lines represent the ‘freeze’ location

underneath the trajectory. The portion of the trajectory pr

continuing to be presented to the participant at 10 times

freeze.
novel; each was chosen because it resembled one of the original tra-

jectories but had not previously been presented to participants.

During the study, when each original trajectory was played and a

clinically meaningful vital sign pattern appeared, the timeline graphic

displayed the original participants’ rank ordered differential diag-

noses for that pattern (Fig. 2). For each novel trajectory, we applied

the rank ordered differential diagnoses to vital sign patterns that were

the closest match to patterns in the original trajectory. Thus, there

were eight pairs of trajectories presented (Supplementary Data 1).

Procedure

The ‘RAND’ Excel function was used to randomly allocate half of the

participants to first observing the original trajectories and the other

half to first observing the novel trajectories, with the order of presen-

tation of trajectories also randomised within each kind of trajectory.

Due to COVID-19 pandemic restrictions, the researcher conducted

the study with each individual participant online. The researcher

introduced the participant to the format of the trajectories, and then

demonstrated how to interact with the browser-based application that

gradually presented the trajectories to the participant at 10 times

real-time speed (Fig. 2).

When the trajectory was being presented, at certain points an

auditory cue would sound, and the trajectory would freeze (prevent-

ing the progression of the trajectory). How often and when the trajec-

tories froze varied between the eight pairs of trajectories. At each

freeze, a list of two or three differential diagnoses would appear

underneath the trajectory (Fig. 2). The participant rank ordered the
lly presented (10 times speed) via the browser-based

s where a list of differential diagnoses would appear

esented after the second freeze depicts the trajectory

speed, and the participant anticipating a possible third
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differential diagnoses from most likely to least likely. They could

move a differential diagnosis to a higher or lower position in the list

by using the browser’s drag-and-drop function. However, they could

not remove any differential diagnoses from the list. Participants could

also enter an alternative differential diagnosis in the ‘Other’ textbox

and use the drag-and-drop function to move the ‘Other’ option to a

higher or lower position in the list.

Participants submitted their rank ordered differential diagnoses

by clicking a ‘Submit’ button underneath the trajectory. They then

clicked the ‘Play’ button to continue revealing the trajectory. Their

rank ordered differential diagnoses remained visible but became

faded when the next freeze was encountered (Fig. 2). This process

was repeated at every freeze until the entire trajectory had been

revealed.

The researcher (who was not a clinician) did not suggest any rank

order or comment on the participant’s rank order. Participants were

unaware that other expert clinicians had provided the original rank

order of differential diagnoses.

Measures and data analysis method

The data collected were the rank order of the differential diagnoses

provided by each participant at each freeze. We analysed (1) the

similarity between each participant’s rank order of diagnoses in

Phase 3 and the original rank order from Phases 1 and 2 of the dif-

ferential diagnoses for each freeze in a trajectory, (2) the difference

in the averaged similarity score at each freeze between the paired

original and novel trajectories in Phase 3, and (3) the number of par-

ticipants who provided a response to the ‘Other’ option, including

what their response was, and where their ‘Other’ response was

ranked in the list of differential diagnoses for each freeze in a

trajectory.

The similarity between any two rank ordered lists (or ‘strings’) of

items such as differential diagnoses can be measured using string

similarity metrics that calculate the number of edit steps required

to transform one string into another.12 However, given that we pre-

ferred to measure whether each item in a participant’s string was
Fig. 3 – Count of the total number of freezes in each simila

novel trajectories in Phase 3. For both the original and nove

diagnoses was mostly moderately to substantially similar t
in the same position as the original string, we created our own string

similarity metric and interpreted the similarity score using categories

representing the closeness of match (see Supplementary Data 2 for

a description of the a priori and post hoc similarity score

calculations).

For strings with four items, we identified five categories of possi-

ble similarity scores.

1. Strong (identical) – 0–0.999

2. Substantial – 1–1.999

3. Moderate – 2–3.999

4. Weak – 4–5.999

5. Very Weak (completely dissimilar) – 6–8

For strings with three items, we identified three categories of pos-

sible similarity scores.

1. Strong (identical) – 0–0.999.

2. Moderate – 1–1.999.

3. Weak (completely dissimilar) – 2–4.

The difference in the averaged similarity score at each freeze

between the paired original and novel trajectories was interpreted

using the categories below.

1. Small difference – 0–0.999

2. Moderate difference – 1–1.999

3. Large difference – >2

Results

Twelve experienced neonatal care providers were recruited from six

tertiary institutions in Australia and New Zealand. The geographic

distribution and number of participants was as follows: Queensland

(2 hospitals, n = 7); New South Wales (n = 1); Victoria (2 hospitals,
rity score category for the original trajectories and the

l trajectories, participants’ rank ordering of differential

o the original rank ordering in Phase 1 and 2.



Table 1 – Summary of the count and the percentage of freezes categorised as having a small, moderate, or large
difference in the averaged similarity score between the paired original and novel trajectories in Phase 3.

Pair Number of Freezes Small Difference < 0.999 Moderate Difference 1–1.999 Large Difference > 2

1 3 3 0 0

2 3 1 2 0

3 2 2 0 0

4 3 2 1 0

5 1 0 1 0

6 2 1 1 0

7 4 3 1 0

8 3 2 1 0

Count Total 21 14 7 0

Percentage Total n/a 67% 33% 0%
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n = 3); and New Zealand (n = 1). In Phase 1 and 2 of the research

project, sample sizes of 12 participants were deemed sufficient to

characterise concordance.

Across all the 42 freezes tested, 36% of the participants’ rank

orderings of the differential diagnoses were categorised as strongly

or substantially similar to the original rank ordering of the differential

diagnoses in Phase 1 and 2 (Fig. 3). Moreover, 48% of the partici-

pants’ rank orderings of the differential diagnoses were categorised

as moderately similar to the original rank ordering of the differential

diagnoses in Phase 1 and 2. Importantly, only 17% of the freezes

were categorised as having weak similarity, and there were no

freezes in the very weak similarity category.

A similar pattern of results was found within the Phase 3 original

and novel trajectories, taken separately (Fig. 3). For the original tra-

jectories, the rank ordering of differential diagnoses showed strong

similarity to the original rank ordering for 5% of the freezes, substan-

tial similarity for 24% of the freezes and moderate similarity for 57%

of the freezes. For the novel trajectories, the rank ordering showed

strong similarity to the original rank ordering for 14% of the freezes,

substantial similarity for 29% of the freezes and moderate similarity

for 38% of the freezes.

Reflecting the above, 67% of the freezes were categorised as

having a small difference in the averaged similarity score between

the paired original and novel trajectories in Phase 3 (Table 1). The

remaining 33% of freezes produced a moderate difference between

the paired original and novel trajectories; there were no freezes that

produced a large difference.

The number of participants who provided an ‘Other’ response for

each freeze in a trajectory varied; however, the count of participants

doing so was similar between the two trajectories in each pair

(Table 2). For 67% of the freezes, 0–33% of the participants included

an ‘Other’ response. When participants did provide an ‘Other’

response, usually one to three further differential diagnoses were

given. Moreover, if an ‘Other’ response was provided for both the

original and novel trajectories in a pair, the ‘Other’ differential diag-

noses often overlapped (Table 2). We also found variability in the

rank that participants assigned to their ‘Other’ responses; ‘Other’

was not always ranked in first position (Table 2 and Table 3).

Discussion

The purpose of this study was to determine whether experienced

neonatal clinicians assigned differential diagnoses to specific vital
sign patterns that were similar to the differential diagnoses of other

experts, and to determine whether those differential diagnoses could

generalise to similar but novel vital sign patterns. Using similarity

scores, we found evidence of moderate to strong concordance

between the clinicians’ rank ordering of differential diagnoses and

the original rank order from Phases 1 and 2 of the research project

for both original and novel trajectories. We also found mostly small

differences in the averaged similarity score at each freeze between

the paired original and novel trajectories; one quarter of the partici-

pants (or fewer) provided an additional diagnosis.

Implications

The findings provide further evidence that expert clinicians’ interpre-

tations of vital sign patterns are sufficiently concordant that they are

likely to reflect the true physiological state of the newborn. Impor-

tantly, the original expert group in Phases 1 and 2 predominantly

included senior consultant clinicians who were recognised experts

in the physiological and anatomical processes of the neonatal transi-

tion, developing newborn resuscitation guidelines, or teaching new-

born resuscitation. In contrast, the recruitment of the expert group

in the current study, Phase 3, focused on clinicians who had both

recent and frequent hands-on involvement in leading teams and per-

forming newborn resuscitation. Thus, the concordance between the

two groups also suggests that the interpretations of those who are

expert and focused on the physiology of resuscitation resonate well

with those who are performing it frequently, and vice versa. The find-

ings also suggest that expert clinicians’ interpretations could gener-

alise to other similar vital sign patterns, opening the way to

developing a cognitive aid. An aid that supports clinicians’ under-

standing of the possible physiological status of the newborn during

the post-natal transition may guide the clinician to the most appropri-

ate intervention. This is especially critical if the newborn presents

with transition complications and/or congenital malformations that

resuscitation algorithms do not explicitly consider.

Much healthcare research demonstrates that machine learning

algorithms can be trained and optimised—with or without human

input—to detect and classify clinically significant relationships

between data from numerous physiological parameters.13–18 Thus,

algorithms may also have the potential to guide newborn resuscita-

tion practice in the not-to-distant future. However, until more sensors

become available in the delivery room to either (a) directly provide

the newborn’s physiological state or (b) provide a greater volume

and variety of physiological and anatomical data from which algo-

rithms can independently detect and interpret clinically significant



Table 2 – Tabulation of ‘Other’ options chosen in Phase 3, presenting the count of participants who provided a
response to the ‘Other’ option, what their response was, and where their ‘Other’ option was ranked in the list of
differential diagnoses for each freeze in each neonatal trajectory pair. Numbers in parentheses are total count of
participants providing an ‘Other’ response for the freeze noted.

Original Trajectory Count of

participants

‘Other’ Rank

Position

Novel Trajectory Count of

participants

‘Other’ Rank

Position

PAIR 1

Freeze 1 (3) Freeze 1 (3)

Poor Trace 1 1 Suboptimal intervention 1 4

Suboptimal intervention 1 3 Delayed Transition 1 1

Acute event 1 1 Persistent Pulmonary

Hypertension

1 3

Freeze 2 (8) Freeze 2 (9)

Suboptimal intervention 3 2, 3 Suboptimal intervention 4 1, 2, 3

Asphyxia 2 1, 3 Delayed Transition 2 1, 4

Apnoea 1 1 Asphyxia 1 1

Meconium Aspiration

Syndrome

1 3 Meconium Aspiration

Syndrome

1 1

Cardiac related 1 1 Airway 1 3

Freeze 3 (3) Freeze 3 (4)

Acute event 3 1, 2 Transient Tachypnoea of the

Newborn

2 1

Asphyxia 1 3

Meconium Aspiration

Syndrome

1 1

PAIR 2

Freeze 1 (8) Freeze 1 (3)

Apnoea 4 1, 2 Suboptimal intervention 2 2

Suboptimal intervention 3 2, 3 Acute event 1 2

Acute event 1 1

Freeze 2 (6) Freeze 2 (4)

Suboptimal intervention 6 1, 3 Suboptimal intervention 4 1, 2

Freeze 3 (4) Freeze 3 (5)

Suboptimal intervention 3 2, 4 Suboptimal intervention 5 1, 2, 3

Delayed Transition 1 3

PAIR 3

Freeze 1 (4) Freeze 1 (3)

Suboptimal intervention 2 2, 4 Suboptimal intervention 3 3

Asphyxia 1 1

Poor trace 1 1

Freeze 2 (11) Freeze 2 (9)

Suboptimal intervention 7 1, 2, 3 Suboptimal intervention 6 1, 2, 3

Apnoea 2 1, 3 Apnoea 3 1

General anaesthetic 1 2 Delayed Transition 1 3

Poor trace 1 3

PAIR 4

Freeze 1 (2) Freeze 1 (2)

Delayed Transition 1 1 Delayed Transition 2 2, 3

Persistent Pulmonary

Hypertension

1 3

Freeze 2 (3) Freeze 2 (1)

Acute event 3 1, 2 Poor trace 1 2

Freeze 3 (1) Freeze 3 (3)

Delayed Transition 1 1 Delayed Transition 1 2

Persistent Pulmonary

Hypertension

1 4

Apnoea 1 2

PAIR 5

Freeze 1 (5) Freeze 1 (1)

Poor trace 3 1, 4 Delayed Transition 1 1

Delayed Transition 1 2

Transient Tachypnoea of the

Newborn

1 3
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Table 2 (continued)

Original Trajectory Count of

participants

‘Other’ Rank

Position

Novel Trajectory Count of

participants

‘Other’ Rank

Position

PAIR 6

Freeze 1 (4) Freeze 1 (7)

Poor trace 2 1, 3 Apnoea 3 1, 2, 3

Acute event 1 1 Poor trace 3 1

Delayed Transition 1 3 Acute event 1 1

Asphyxia 1 3

Freeze 2 (3) Freeze 2 (1)

Apnoea 1 1 Acute event 1 2

Delayed Transition 1 4

Poor trace 1 3

PAIR 7

Freeze 1 (5) Freeze 1 (4)

Early cord clamping 1 1 Poor trace 2 1

Delayed Transition 1 1 Delayed Transition 1 1

Secondary Apnoea 1 1 Infection 1 3

Suboptimal intervention 1 4

General anaesthetic 1 1

Freeze 2 (6) Freeze 2 (5)

Suboptimal intervention 3 1, 2 Suboptimal intervention 4 1, 2, 3

Asphyxia 1 3 Asphyxia 1 2

Infection 1 4

Suboptimal intervention 1 2

Freeze 3 (3) Freeze 3 (4)

Suboptimal intervention 3 1, 2 Suboptimal intervention 2 1, 4

Infection 1 1

Asphyxia 1 4

Freeze 4 (4) Freeze 4 (4)

Delayed Transition 2 2 Suboptimal intervention 2 1, 3

Transient Tachypnoea of the

Newborn

1 2 Delayed Transition 1 3

Meconium Aspiration

Syndrome

1 1 Infection 1 2

PAIR 8

Freeze 1 (5) Freeze 1 (5)

Poor trace 3 1 Respiratory Distress

Syndrome

5 1, 2, 3

Respiratory Distress

Syndrome

2 2, 3

Freeze 2 (2) Freeze 2 (1)

Apnoea 2 2, 3 Persistent Pulmonary

Hypertension

1 3

Freeze 3 (3) Freeze 3 (3)

Suboptimal intervention 3 2, 3 Intervention adjustment 3 1, 2, 3

Table 3 – Summary of the count and the percentage of ‘Other’ differential diagnoses ranked in the 1st, 2nd, 3rd,
and 4th position for the freezes in each neonatal trajectory pair. Counts are summed across participants.

Trajectory Pairs ‘Other’ Rank Position Total ‘Other’ Responses

1st 2nd 3rd 4th

Pair 1 15 5 7 2 29

Pair 2 12 10 6 2 30

Pair 3 11 8 9 1 29

Pair 4 6 4 2 1 13

Pair 5 3 1 1 1 6

Pair 6 8 2 4 1 15

Pair 7 16 10 5 4 35

Pair 8 6 6 7 0 19

Total Freezes 77 46 41 12 176

Percentage Total 44% 26% 23% 7% n/a

R E S U S C I T A T I O N P L U S 1 1 ( 2 0 2 2 ) 1 0 0 2 6 3 7
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relationships between data, human expertise will probably be

needed to assist in training and optimising algorithms for newborn

resuscitation. Therefore, for the domain of newborn resuscitation,

further research is needed (a) to explore the feasibility of different

AI methods for training and optimising an algorithm using the typi-

cally available physiological data, and (b) to determine if it is possible

for the algorithm to consider contextual information that could signif-

icantly change the interpretation of the newborn’s vital signs.

Beyond the performance of an AI algorithm itself, it is also crucial

to consider how, when, and where the processes and outputs of such

an algorithm would be presented to the clinician. There is evidence

from contexts such as emergency department resuscitation that

when the physical form of a cognitive aid is designed to anticipate

user needs and workflow, the speed of clinicians’ comprehension

of the patient’s physiological state and their selection of actions

can be improved.19–23 In the next phase of the research program

(Phase 4 in Fig. 1), we will explore if (and how) a cognitive aid that

provides an interpretation of the newborn’s state affects manage-

ment of the infant during resuscitation after birth. More research is

also needed to determine the ideal physical form of a newborn resus-

citation cognitive aid, and to determine if (and how) a cognitive aid

could interact with pre-existing resuscitation algorithms.

Limitations

Despite the encouraging findings, this study has several limitations.

First, given constraints on participants’ time, we could present only

eight neonatal trajectory pairs. Second, the trajectories in the database

were collected in 2005 and displayed limited information. Without

detailed maternal and fetal history and knowledge of the appearance

of the newborn, clinicians lacked some information that they might

use in clinical practice for ranking differential diagnoses, potentially

increasing the concordance across clinicians. Moreover, the newborns’

clinical course may not have been typical of a clinical course in the con-

text of contemporary guidelines and devices. Third, the participants

could not remove any differential diagnoses from the original rank

ordered list, and they could provide only one response to the ‘Other’

option. These restrictions could have inflated the degree of similarity

that we found. However, across the freezes only 33% of participants

on average provided an ‘Other’ response, which were often iatrogenic.

Conclusions

The findings provide additional support for the feasibility of using

concordance of neonatal experts’ interpretation of newborn vital sign

patterns as an approximation of the newborn’s true physiological

state. The findings are a further important step towards determining

whether experts’ interpretations can generalise to other similar

neonatal vital signs patterns. Until clinically practical technology

emerges that conveys direct information about the neonate’s anat-

omy and physiology during the post-natal transition, the present

results may justify the development and training of a algorithm that

could underpin a cognitive aid to support clinicians’ management

of the newborn during resuscitation after birth.
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