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Comparative tissue transcriptomics reveal prompt
inter-organ communication in response to local
bacterial kidney infection
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Abstract

Background: Mucosal infections elicit inflammatory responses via regulated signaling pathways. Infection outcome
depends strongly on early events occurring immediately when bacteria start interacting with cells in the mucosal
membrane. Hitherto reported transcription profiles on host-pathogen interactions are strongly biased towards in
vitro studies. To detail the local in vivo genetic response to infection, we here profiled host gene expression in a
recent experimental model that assures high spatial and temporal control of uropathogenic Escherichia coli (UPEC)
infection within the kidney of a live rat.

Results: Transcriptional profiling of tissue biopsies from UPEC-infected kidney tissue revealed 59 differentially
expressed genes 8 h post-infection. Their relevance for the infection process was supported by a Gene Ontology
(GO) analysis. Early differential expression at 3 h and 5 h post-infection was of low statistical significance, which
correlated to the low degree of infection. Comparative transcriptomics analysis of the 8 h data set and online
available studies of early local infection and inflammation defined a core of 80 genes constituting a “General tissue
response to early local bacterial infections”. Among these, 25% were annotated as interferon-g (IFN-g) regulated.
Subsequent experimental analyses confirmed a systemic increase of IFN-g in rats with an ongoing local kidney
infection, correlating to splenic, rather than renal Ifng induction and suggested this inter-organ communication to
be mediated by interleukin (IL)-23. The use of comparative transcriptomics allowed expansion of the statistical data
handling, whereby relevant data could also be extracted from the 5 h data set. Out of the 31 differentially
expressed core genes, some represented specific 5 h responses, illustrating the value of comparative
transcriptomics when studying the dynamic nature of gene regulation in response to infections.

Conclusion: Our hypothesis-free approach identified components of infection-associated multi-cellular tissue
responses and demonstrated how a comparative analysis allows retrieval of relevant information from lower-quality
data sets. The data further define marked representation of IFN-g responsive genes and a prompt inter-organ
communication as a hallmark of an early local tissue response to infection.

Background
Host responses to bacterial infections are dynamic, well-
controlled processes of high complexity, and are utterly
important in protecting the body. Molecular under-
standing of signaling mechanisms orchestrating the
innate immune response is required to define new tar-
gets for future treatments of bacterial infections. In
mucosal infections, bacterial recognition and the earliest

immune signaling occur at the epithelium, which can
alert the surrounding tissue by producing cytokines
[1-3]. Resident immune cells are activated, as is the
endothelium of nearby vessels. As a consequence, addi-
tional immune cells, recruited from the blood stream,
extravasate to the site of infection to directly or indir-
ectly aid in the eradication of bacteria. Clearance of
infection is commonly accompanied by dramatic altera-
tions of tissue architecture and function, and involves
processes such as coagulation, hypoxia, ischemia, edema,
and scarring [4-6].
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Recent development of tools enabling intravital ima-
ging of the host’s organs is shedding new light on the
molecular understanding of processes underlying tissue
responses [7-9]. Real-time studies within the organ of a
live animal have contributed to our understanding of
bacterial infection in kidney tubules [6,10], spirochete
behavior in the vasculature [11], immune cell migration
in granulomas [12], and transcription factor activation in
bovine mastitis [13]. Alongside the visualization, quanti-
tative real-time (q-RT) PCR can be performed on dis-
sected tissues, enabling quantification of in vivo
expression of selected host genes [6], and specific bacter-
ial virulence factors, such as the toxin a-hemolysin [10].
Transcription profiling studies have conveyed consid-

erable advantages in delineating complex host responses
[14]. The power of transcriptomics lies in its hypothesis-
free nature, which makes it an ideal tool to discover
unknown processes. Also, the sheer number of measure-
ments contained in each transcriptomic experiment
enables data clustering to yield stronger results. Cell cul-
ture experiments have for long been the primary source
for transcriptomic information [15]. The well-defined
nature of such experiments allows detailed molecular
studies of specific events. On the contrary, transcrip-
tomes of in vivo infection models have been little
researched, possibly due to current technical limitations
and because the complexity of the model systems nega-
tively impacts analytical ease. A sparse number of infec-
tion models with live bacteria are reported, using
Shigella flexneri [16], Listeria monocytogenes [17] and
Escherichia coli [18,19] as infectious agents. Also, tran-
scriptomic analyses have been performed using LPS as
stimulus [20-22].
We have previously established a protocol for intravi-

tal, real-time imaging of uropathogenic E. coli (UPEC)
-induced pyelonephritis in the exposed kidney of a live
rat [10,23]. Slow infusion of bacteria directly into the
lumen of the proximal tubule allows the infection pro-
cess to be studied with high spatial and temporal resolu-
tion, in the presence of all of the live animal’s
physiological factors, such as the vascular, nervous,
immune and hormonal systems. We found bacterial
colonization to be a very rapid process, which brought
about major changes in tissue homeostasis. Tissue oxy-
gen tension dropped to 0 mm Hg within 3-4 h, followed
by clotting and cessation of vascular flow in peri-tubular
capillaries. Localized ischemia was identified as an
innate immune defense mechanism as it protected bac-
teria from gaining entry into the systemic circulation,
thus protecting the host from sepsis. While bacteria
were contained at the infection site, immune cell
recruitment occurred. Their active participation in host
cell signaling processes resulted in bacterial clearance
and localized tissue edema within 24 h.

In this study, we analyze the nature of the network-
like signal transduction pathways that orchestrate the
pronounced tissue reactions. A whole-genome based
transcriptomic and bioinformatic approach, using tissue
dissected at 3, 5, and 8 h post-infection, was applied to
study the molecular details governing the intra- and
inter-organ communication. Comparative transcrip-
tomics defined a general core of genes upregulated as
an early response to infection, which guided us towards
the identification of unexpected systemic responses.

Results
Dynamics of a single nephron-infection
The real-time dynamic events accompanying an early
kidney infection (3-8 h) within a living host were stu-
died using the GFP+-expressing derivative, LT004, of
UPEC strain CFT073 [10,24]. The same infection proto-
col was applied as previously described [10]. In short,
bacteria were slowly infused into the lumen of a superfi-
cial proximal tubule in the kidney of an anaesthetized
rat. Two-photon microscopy was then applied to image
the progression of infection within the organ. Starting
from a few bacteria adherent to the epithelial lining,
tubular colonization could be followed during the first
8 h of the infection process. Figure 1A-C shows a time-
dependent increase in luminal green fluorescence, indi-
cative of bacterial multiplication. As the infecting bac-
terial strain expresses gfp+ from a constitutive promoter,
a positive correlation between gfp+ transcript abundance
and bacterial numbers was assumed. To investigate this,
the injection site was excised from rats sacrificed 3 h,
5 h, or 8 h after the injection of either UPEC or PBS.
Following RNA extraction, gfp+ transcript was quanti-
fied using qRT-PCR. Although levels of the transcript
varied between rats, an increase in gfp+ expression dur-
ing the course of infection was apparent (Figure 1D). As
expected, no gfp+ transcript was detected in PBS-
injected control rats.
During this early time course of infection, the growing

number of bacteria was well contained within the lumen
of the proximal tubule (Figure 1A-C). Yet, the coloniza-
tion process is associated with rapid alterations of tissue
homeostasis in the surrounding renal parenchyma, i.e.
loss of peritubular capillary flow, and ischemia [6,10].
Further molecular knowledge is required to understand
how signals are relayed from the initial bacterium/
epithelium point-of-contact, to other cells in the organ
and onwards, to other tissues in the host.

Overview of transcriptome analyses
To study the cross-talk that orchestrates the hosts’ tissue
response to infection, we took an approach to define the
reprogramming the host transcriptome undergoes at the
very site of infection. To achieve this, RNA was purified
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from the infection site at 3 h, 5 h, and 8 h post-infection
and used for transcriptional profiling by a two-color micro-
array covering 22,012 rat genes. The source for RNA
extractions was standardized, such that 40-60 mm3 renal
cortex was dissected from each animal, containing either
the infected or the PBS sham-operated nephron. Prepro-
cessed data from microarrays was first subjected to multi-
ple testing [25], and differential expression was determined
by the use of adjusted P-value and fold-expression thresh-
olds. To evaluate the validity of the data, the annotated
functions of the identified genes were analyzed according
to their Gene Ontology (GO) biological process character-
istics. Possible overrepresentation of any particular protein
function was analyzed using the BINGO software [26,27].
The GO analysis allowed us to lower the threshold, yet
obtaining valid data from the analysis. We used the same

principle to perform comparative transcriptomic analyses,
in which generated data was aligned to other early (<12 h)
host-response data sets available online. This enabled us to
lower the differential expression thresholds while still
retaining stringency of the analysis. The procedure thus
allowed us to reliably detect genes that were commonly
expressed in multiple data sets. All different analyses, and
the data retrieved, are summarized in Table 1.

The transcriptome in response to early renal infection
and functional assessment of differentially expressed
genes
For probes whose IDs were present in the ENSEMBL
database, adjusted P-values were calculated. We found
that the lowest adjusted P-value for a differentially
expressed probe in the 3 h sample was 0.58 (Figure 1E),

Figure 1 Bacterial growth and tissue response within the first 8 h post-infection. Proximal tubule of rat kidney infected by UPEC. A-C.
Imaging by two-photon microscopy of infected kidney 3 h (A), 5 h (B), and 8 h (C) post-infection. Bacteria are shown in green, blood flow is
labelled with red dextran, injected tubules are visualized by endocytosed blue dextran. Scale bar 30 μm. D. Relative expression of gfp+ by
bacteria quantified by qRT-PCR. Measurements are normalized to the 3 h time point. ND - not detected. Error bars show SD, n = 3. E-G. Gene
expression 3 h (E), 5 h (F), and 8 h (G) post-infection quantified by microarray. Each point represents one array probe, n = 3. Probes marked in
red have adjusted P-values of <0.59 (E), <0.15 (F), and <0.05 (G).

Table 1 Amount of probes or genes differentially expressed at different thresholds

Data set pa < 0.05 p < 0.05 & |fold exp|>2 p < 0.5 Bb>-2.5

probes genes probes genes probes genes probes genes

3 h post-infection 0 0 0 0 - - - -

5 h post-infection 0 0 0 0 - - 368 -

8 h post-infection 113 -c 76 59 458 341 386 -

Study bd - - 81 61 11208 - 1480 -

Study c - - 86 71 569 - 722 -

Study d - - 363 265 11961 - 3660 -
aAdjusted P-value.
bBayes statistic.
cnot determined.
dFor reference see Table 2.

Boekel et al. BMC Genomics 2011, 12:123
http://www.biomedcentral.com/1471-2164/12/123

Page 3 of 13



whereas 6 probes were identified 5 h post-infection with
adjusted P-values ranging between 0.12 and 0.15 (Figure
1F). The 8 h sample yielded 113 unique probes that
showed differential expression with adjusted P-values <
0.05 (Figure 1G, Table 1). Adding the criterion that the
expression ratio should be ≥ 2 yielded 76 unique probes
whose ENSEMBL IDs could be mapped to 59 bona fide
Entrez genes (Table 1, Additional file 1 Table S1). To
decipher which tissue responses were associated with
early, local bacterial infections, we analyzed the anno-
tated functions of the 59 identified genes according to
their GO characteristics. This showed that most identi-
fied gene products clustered in several categories, all
relating to “immune response” (Figure 2A, Additional
file 2 Table S2).
Inherent to the infection model used in this study is that
biopsies from which RNA was prepared contain 1000 -
2000 uninfected nephrons in addition to the infected
one. It can thus be assumed that the resulting signal-to-
noise ratio may introduce a risk of overlooking genes
whose induction falls below the thresholds “adjusted P-
values < 0.05” and “expression ratio ≥ 2”. To increase
the amount of relevant information from the 8 h micro-
array data set, the GO analysis was repeated, but this
time using an adjusted P-value < 0.5. As expected, this
procedure expanded the list of differentially expressed
probes from 113 to 458. The 458 probes mapped to 341
Entrez genes (Table 1, Additional file 3 Table S3).

While this list is likely to contain numerous false posi-
tive entries due to low threshold, we argued that these
entries would be randomly dispersed in the cluster ana-
lysis, rather than enriched in specific GO categories.
Hence, we compared the color code of the cluster cir-
cles representing the extended list of 341 genes (Figure
2B, Additional file 4 Table S4) to those originating from
the 59 genes in the previous analysis (Figure 2A, Addi-
tional file 2 Table S2). The observed shift from yellow
to red in a subset of cluster circles indicated a statistical
strengthening of those GO categories. Moreover, an
expansion of categories was observed, including those
related to the “immune response”, as well as the appear-
ance of a new group, representing processes related to
“biological regulation”.
A closer inspection of results presented in Figure 2

identified many categories with gene products expected
to participate in the defense against bacterial infections.
This included clusters of proteins involved in inflamma-
tory responses, such as response to bacteria, chemotaxis,
and leukocyte migration, thus confirming several of the
tissue responses previously implicated in early, local bac-
terial infections [10]. Moreover, Figure 2 revealed that
numerous genes coding for functions associated with
cell death, apoptosis, proliferation, response to hypoxia,
and wound healing had become activated, reflecting the
apparent versatility of the host response to a local
infection.
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A common core of genes expressed during early local
inflammation
To evaluate the biological relevance of the transcriptomic
data, we compared our results to those reported for other
models that used Gram-negative stimuli. To match the
experimental conditions as close as possible to our infec-
tion model, the following criteria were applied: the tran-
scriptome had to be analyzed at early time points (within
12 h) after local delivery of the stimuli into an otherwise
sterile organ. A database search identified three studies
that fulfilled these criteria, all based on administration of
LPS (Table 2, studies b-d). To allow the comparison of
data originating from our rat model to those performed in
mice, the rat gene nomenclature was converted to the cor-
responding homologous mouse genes. The comparative
analysis of the four data sets, illustrated by the heat-map
presented in Figure 3A, indicated that 8 genes are upregu-
lated in all four studies (adjusted P-value < 0.05, expres-
sion level ≥ 2). Hence, the genes Ccl2, Ch25 h, Ifit3, Il1rn,
Il6, Parp14, Ptx3, and Socs3 can be defined as a common
core of genes expressed early in response to local infection
and inflammation caused by Gram-negative stimuli.
The GO analysis demonstrated that its scientific valid-

ity was retained when one threshold was lowered, pro-
vided other statistical criteria were maintained. This
encouraged us to lower the adjusted P-value threshold
for gene expression, while retaining the criterion for
genes to be present in all data sets, to see if the com-
mon core could be expanded. When the adjusted P-
value threshold was altered from 0.05 to 0.5 and ‘expres-
sion level ≥ 2’ criterion was removed, we found a mod-
erate increase of genes (~500 probes) in studies a and c,
whereas a dramatic increase of approximately 12,000
probes was observed in studies b and d (Figure 3B,
Table 1). This uneven distribution of probes posed a
risk of introducing false positive entries into the core.
To circumvent this, an analysis was performed using the
Bayes statistics of genes [28], since we found that this
method generated a more even distribution of probes
among the 4 studies (Figure 3C, Table 1). To decide the
appropriate Bayes statistic threshold to be used, a ran-
dom comparative analysis was modeled. Figure 3D
shows that as few as 0.05 false positive probes would be
detected when applying a Bayes statistic threshold ≥
-2.5, while lower cutoffs considerably increased the risk
of false positive entries. When applying a Bayes statistic

threshold ≥ -2.5 in the comparative analysis, 386 differ-
entially expressed probes were generated from data set
a (Figure 3C, Table 1, Additional file 3 Table S3),
whereas the corresponding numbers for data sets b, c,
and d, were 722, 1480, and 3660 probes, respectively
(Figure 3C, Table 1). When comparing the lists, 80
genes were found to be present in all 4 data sets, and
almost all of these were relevant for infection and
inflammation (Table 3). It thus appears that lowering of
the threshold is valid provided other criteria are applied.

A comparative core analysis extracts relevant information
from the 5 h data set
Lowering the threshold in comparative studies provides a
possibility to retrieve information from data sets origin-
ally believed to be of too low significance. This prompted
us to apply this method to the transcriptome data from
the 5 h post-infection sample, first by comparing it to the
8 h data set. When a Bayes statistic threshold ≥ -2.5 was
applied, 361 differentially expressed probes were identi-
fied in the 5 h data set (Table 1, Additional file 5 Table
S5), as compared to 386 probes found in the 8 h data set
(Table 1, Additional file 3 Table S3). By comparing the
two data sets (Figure 3E), 61 probes were identified as
differentially expressed at both time points. The majority
of these are likely to be true positive entries, as the prob-
ability of finding the same probes in two random data
sets of these sizes is limited to 5. Our analysis thus
demonstrates that approximately 56 probes are differen-
tially expressed at both time points.
To analyze whether a common core host response can

be identified as early as 5 h, the 5 h data set was com-
pared to the 3 studies listed in Table 2 (studies b-d). By
applying a similar strategy as previously described, this
analysis generated a core of 31 differentially expressed
genes (Table 4). Studying their annotated protein func-
tion revealed that these core genes primarily are
involved in processes linked to the inflammatory
response. In addition, a subset of genes was found at 5
h but not at 8 h. This illustrates that the dynamic nature
of gene regulation in response to bacterial infections can
be addressed using comparative transcriptomics.

Experimental verification of core gene expression
Since core genes were partly derived from statistically
insecure data, they needed to be experimentally verified.

Table 2 Microarray data sets analyzed in this study

Study Animal Organ Agent Delivery Challenge time (h) Reference

a Rat Kidney E. coli CFT073 Tubular injection 8 E-MEXP-2136 This work

b Mouse Brain LPS Intraparenchymal 12 E-GEOD-6509 [20]

c Mouse Brain LPS Intracerebroventricular 6 E-MEXP-420 [21]

d Mouse Lung LPS Aerosol inhalation 4 E-GEOD-2411 [22]
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To test the reliability of differentially expressed genes
defined as members of the common core host response
at 8 h post-infection (Table 3), 10 genes were randomly
selected and their induction tested using qRT-PCR. Pri-
mers specific for their corresponding rat sequences
(Additional file 6 Table S6) were used to analyze the
same mRNA preparations that had acted as sources for
the microarrays. Figure 3F shows that Cxcl2, Icam1,
Ifi47, Ifit3, Ccl4, and Cd274 could be verified as upregu-
lated at a significance level of P <0.05 in the infected tis-
sue, whereas expression of Il6 and Socs3 was
upregulated at significance levels of P = 0.059 and P =
0.075, respectively. A statistically verified upregulation of
Ifi204 and Steap4 could not be confirmed by qRT-PCR,
although a trend towards upregulation was observed.

IFN-g responses during early host responses
It is interesting to notice that as many as 21 of the 80
core genes in the 8 h data set are annotated as IFN-g
inducible (Table 3). Compared to an estimated presence

of 2% IFN-g inducible genes in the human genome
[29,30], the large proportion (>25%) in our data set
demonstrates a significant overrepresentation (Fisher’s
exact test, P = 1.24 × 10-15).
One site in the body that acts as a source of IFN-g

production is the spleen. If this major secondary lym-
phoid organ produces IFN-g during early kidney infec-
tions, increased serum levels can be assumed. This was
tested by ELISA assays, which revealed a 5- to 6-fold
increase of IFN-g in the blood from animals 8 h post-
infection as compared to blood samples taken just prior
to infection. In contrast, no change in IFN-g serum
levels was observed in PBS sham-injected animals dur-
ing the same time period (Figure 4A). When the relative
amount of Ifng transcript in the spleen from animals
with an ongoing renal UPEC infection was measured 8
h post-infection, Ifng transcript was indeed upregulated
(Figure 4B). This was in contrast to spleen from PBS
sham-injected animals. The role of cytokines IL-12 and
IL-23 for induction of IFN-g has previously been
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described [31,32]. Since IL-12 and IL-23 are heterodi-
mers of IL-12a/IL-12b and IL-12b/IL-23a, respectively,
we quantified the relative expression of the correspond-
ing genes in spleen tissue in an attempt to identify the
signals responsible for splenic IFN-g production. qRT-
PCR revealed that none of Il12a, Il12b, or Il23a were
upregulated (Figure 4B), suggesting that neither IL-12
nor IL-23 are produced in the spleen. Yet, it appeared
that the spleen was affected by inflammatory signaling,
since IL-23’s downstream target Il17a [33] was upregu-
lated in the spleen of infected animals.
The expression levels of the four cytokines were also

quantified at the renal infection site. Both IL-23 subunits

Table 3 Core of commonly expressed genes 8 h post-
infection

Gene Function

Serpine1 serine (or cysteine) peptidase inhibitor, clade E, member 1

Nfkbia nuclear factor of kappa light polypeptide gene enhancer in
B-cells inhibitor, alpha

Oasl1 2’-5’ oligoadenylate synthetase-like 1

Ifi44 interferon-induced protein 44

Cxcl2 chemokine (C-X-C motif) ligand 2

Tifa TRAF-interacting protein with forkhead-associated domain

Ccl3 chemokine (C-C motif) ligand 3

Selp selectin, platelet

Zfp36 * zinc finger protein 36

Irf7 interferon regulatory factor 7

Ifi205 * interferon activated gene 205

Birc3 baculoviral IAP repeat-containing 3

Myd88 myeloid differentiation primary response gene 88

Ccl19 chemokine (C-C motif) ligand 19

Socs3 * suppressor of cytokine signaling 3

Nfkbie nuclear factor of kappa light polypeptide gene enhancer in
B-cells inhibitor, epsilon

Ier3 immediate early response 3

Pfkfb3 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3

Ccl4 chemokine (C-C motif) ligand 4

Ptx3 pentraxin related gene

Il1b interleukin 1 beta

Glipr2 GLI pathogenesis-related 2

Arid5a AT rich interactive domain 5A (Mrf1 like)

Cxcl10 * chemokine (C-X-C motif) ligand 10

Ifit3 * interferon-induced protein with tetratricopeptide repeats 3

Cxcl1 chemokine (C-X-C motif) ligand 1

Irg1 * immunoresponsive gene 1

Gadd45b growth arrest and DNA-damage-inducible 45 beta

Parp14 poly (ADP-ribose) polymerase family, member 14

Serpina3n serine (or cysteine) peptidase inhibitor, clade A, member 3N

Ifi47 * interferon gamma inducible protein 47

Il1rn interleukin 1 receptor antagonist

Rgs16 regulator of G-protein signaling 16

Il6 interleukin 6

Akap12 A kinase (PRKA) anchor protein (gravin) 12

Upp1 uridine phosphorylase 1

Icam1 intercellular adhesion molecule 1

Slc15a3 solute carrier family 15, member 3

Tmem2 transmembrane protein 2

Oas1 g 2’-5’ oligoadenylate synthetase 1G

Sod2 * superoxide dismutase 2, mitochondrial

Ifih1 interferon induced with helicase C domain 1

BC006779 cDNA sequence BC006779

Steap4 STEAP family member 4

Parp9 poly (ADP-ribose) polymerase family, member 9

Slfn4 schlafen 4

Timp1 tissue inhibitor of metalloproteinase 1

Plek pleckstrin

Table 3 Core of commonly expressed genes 8 h post-
infection (Continued)

Nfkb2 nuclear factor of kappa light polypeptide gene enhancer in
B-cells 2, p49/p100

Ptges prostaglandin E synthase

Ripk2 receptor (TNFRSF)-interacting serine-threonine kinase 2

Cflar * CASP8 and FADD-like apoptosis regulator

Cebpb CCAAT/enhancer binding protein (C/EBP), beta

Cxcl11 * chemokine (C-X-C motif) ligand 11

Rcan1 regulator of calcineurin 1

Hk2 hexokinase 2

Ccl2 chemokine (C-C motif) ligand 2

Pvr poliovirus receptor

Cd274 * CD274 antigen

Tubb6 tubulin, beta 6

Ch25h cholesterol 25-hydroxylase

Irf1 * interferon regulatory factor 1

Slc7a2 solute carrier family 7 (cationic amino acid transporter, y+
system), member 2

Trib1 tribbles homolog 1 (Drosophila)

Vcam1 vascular cell adhesion molecule 1

Pde4b phosphodiesterase 4B, cAMP specific

S100a9 S100 calcium binding protein A9 (calgranulin B)

Psme2 * proteasome (prosome, macropain) 28 subunit, beta

Psmb9 * proteasome (prosome, macropain) subunit, beta type 9 (large
multifunctional peptidase 2)

Lcn2 * lipocalin 2

Lcp1 lymphocyte cytosolic protein 1

Cdkn1a cyclin-dependent kinase inhibitor 1A (P21)

Cp * ceruloplasmin

Ptgs2 * prostaglandin-endoperoxide synthase 2

Psmb8 * proteasome (prosome, macropain) subunit, beta type 8 (large
multifunctional peptidase 7)

Hck * hemopoietic cell kinase

Lif leukemia inhibitory factor

Nfkb1 nuclear factor of kappa light polypeptide gene enhancer in
B-cells 1, p105

Cxcl9 * chemokine (C-X-C motif) ligand 9

Stat1 * signal transducer and activator of transcription 1

*Genes induced by IFN-g.
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Il12b and Il23a as well as down-stream target genes Ifng
and Il17a were found to be upregulated in UPEC-infected
kidney tissue, while no apparent upregulation of Il12a was
observed (Figure 4C). To investigate whether this expres-
sion pattern represents a general renal response, naïve kid-
ney tissue, located ~1 cm distant from either the UPEC or
the PBS injection sites, was also analyzed. We observed
that Il12b and IL23a were downregulated while no effect
on other tested genes was seen (Figure 4D). Collectively,
these data suggest that IL-23 is formed at the infection
site, which in turn may induce local renal as well as splenic
expression of IFN-g and IL-17.

Discussion
Clearance of bacterial infections poses great challenges
for the vertebrate host. While there is an obvious need

to rapidly eradicate bacteria from the infection site,
unnecessary collateral tissue damage associated with
inflammation must be avoided. This requires a balanced
response, which is likely to change its character during
different phases of the infection process. Results from
the transcriptomics analysis corroborated this reasoning.
The significance of transcriptional responses at different

Table 4 Core of commonly expressed genes 5 h post-
infection

Gene Function

Oasl1 2’-5’ oligoadenylate synthetase-like 1

Cxcl2 chemokine (C-X-C motif) ligand 2

Ccl3 chemokine (C-C motif) ligand 3

Mx1 myxovirus (influenza virus) resistance 1

Irf7 interferon regulatory factor 7

Maff v-maf musculoaponeurotic fibrosarcoma oncogene family,
protein F (avian)

Birc3 baculoviral IAP repeat-containing 3

Cmpk2 cytidine monophosphate (UMP-CMP) kinase 2, mitochondrial

Cxcl10 chemokine (C-X-C motif) ligand 10

Ifit3 interferon-induced protein with tetratricopeptide repeats 3

Cxcl1 chemokine (C-X-C motif) ligand 1

Parp14 poly (ADP-ribose) polymerase family, member 14

Serpina3n serine (or cysteine) peptidase inhibitor, clade A, member 3N

Il1rn interleukin 1 receptor antagonist

Icam1 intercellular adhesion molecule 1

Slc15a3 solute carrier family 15, member 3

Oas1g 2’-5’ oligoadenylate synthetase 1G

Tnfrsf12a tumor necrosis factor receptor superfamily, member 12a

Parp9 poly (ADP-ribose) polymerase family, member 9

Slfn4 schlafen 4

Timp1 tissue inhibitor of metalloproteinase 1

Nfkb2 nuclear factor of kappa light polypeptide gene enhancer in
B-cells 2, p49/p100

Ripk2 receptor (TNFRSF)-interacting serine-threonine kinase 2

Cxcl11 chemokine (C-X-C motif) ligand 11

Pml promyelocytic leukemia

Irf1 interferon regulatory factor 1

Trib1 tribbles homolog 1 (Drosophila)

S100a9 S100 calcium binding protein A9 (calgranulin B)

Ccl7 chemokine (C-C motif) ligand 7

Ptgs2 prostaglandin-endoperoxide synthase 2

Lif leukemia inhibitory factor
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Figure 4 IFN-g responses to early infection. UPEC or PBS were
injected into rat kidney proximal tubules. A. Ratio of IFN-g
concentration at 8 h relative to 0 h, measured by ELISA, in serum
from PBS or UPEC injected animals. * P-value <0.05 defined by a
Student’s t-test between PBS and UPEC injected animals log-
transformed ratios of IFN-g concentrations at 8 h to 0 h.B-D. Relative
expression of different genes in spleen and kidney measured by
qRT-PCR 8 h post-infection. Expression levels in UPEC (white bars)
and PBS samples were normalized to that of PBS samples. * P-value
<0.05 defined by Student’s t-test between samples from PBS- and
UPEC-injected animals. Gene expression in spleen tissue (B), kidney
tissue that has been injected with UPEC or PBS (C), and naïve
kidney tissue located ~1 cm from the injected site (D).In all panels,
error bars show SD, n = 3.
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time points, measured as adjusted P-values, correlated to
the progression of infection. Low significance was
obtained 3 h post-infection when few bacteria were pre-
sent in the proximal tubule and no apparent tissue
damage was observed. In contrast, statistically significant
data were generated 8 h post-infection when bacteria
had efficiently colonized the tubule and immune cells
had infiltrated the site. Our previous findings, based on
intravital imaging and physiological recordings, demon-
strate however that pronounced local tissue activities
already occur within the first 3-4 h of infection [6,10].
This discrepancy may reflect the difficulty to apply a
transcriptomics approach to complex tissues, and
explains why it has preferentially been used in in vitro
cell culture systems.
The infection protocol used in this paper was based

on administration of washed overnight UPEC cultures.
Clearly, such a culture includes a fraction of dead bac-
teria and LPS in addition to the live UPEC. Initially, LPS
and dead bacteria may interact/bind to the epithelium,
thereby inducing an inflammatory response. However,
with the rapid growth of live bacteria these effects must
be considered transient in the perspective of our
analysis.
Appropriate biopsies for the study of dynamic tissue

responses demand a strict control of the infection in
space and time. In the current rat model, only one out
of ca. 30,000 nephrons is infected. The infected nephron
must be analyzed together with some immediately sur-
rounding tissue to allow inclusion of peritubular capil-
laries and cells extravasated from the blood stream.
Dissected biopsies contained ~1,500 uninfected
nephrons in addition to the infected one. Yet, the
microarray analysis identified 59 genes to be differen-
tially expressed 8 h post-infection. In light of the vast
number of uninfected nephrons, sheer detection of dif-
ferential expression implies that cells in and around the
bacteria-exposed nephron elicit a strong response to
infection. Most of the differentially expressed genes
were found to be upregulated. This may be attributed to
the steady state gene expression in the uninfected
nephrons, which may efficiently mask any downregula-
tion. Also, mRNA from recruited immune cells contri-
butes specifically to the pool of upregulated genes.
Thus, the few downregulated genes identified in this
study may result from a general downregulation in cells
throughout the renal cortex.
Functional classification revealed an overrepresenta-

tion of differentially expressed genes in GO categories
related to the “immune response”. Although not a sur-
prising result, it illustrates the validity of our approach.
A previous finding, showing that ischemia is induced as
a host response during renal colonization [6], was corro-
borated by the present analysis, as genes coding for

proteins involved in wound healing and hypoxia were
identified. This, and the fact that numerous genes
involved in “biological regulation” were identified,
underscores the complexity of the tissue response to
infection.
Comparative transcriptomics can be used to retrieve

information from microarray data sets that are of too
low significance when treated individually. The power of
comparative transcriptomics was shown by Jenner and
Young when they, based on 32 studies involving 77 dif-
ferent types of host-pathogen interactions, defined 511
genes as a ‘Generic alarm signal’ to infection [15]. The
present analysis applied more stringent parameters
when selecting data sets. This may explain why the
common core of “General tissue response to early local
bacterial infections” was limited to 80 genes. While 39
of these genes also were present in the core of ‘Generic
alarm signal’, 41 were not. The latter group may repre-
sent a response specifically obtained in the live animal
model of infection, in the presence of all influencing
physiological factors.
Using comparative transcriptomics, significant data

could also be retrieved from the 5 h data set, both by
comparing to the 8 h data set, and by building a core
out of the 5 h data set and data sets b-d. Approximately
60 genes were differentially expressed at both 5 h and
8 h post-infection. The 5 h post-infection core of “Gen-
eral tissue response to early local bacterial infections”
included 31 genes. This indicates that a significant
induction occurs already at 5 h post-infection that is
maintained over the following hours. In contrast, a sub-
set of genes in the 5 h core were not induced at 8 h,
which suggests a short-lived, time-dependent activation.
Collectively, this demonstrates the feasibility of the pre-
sent approach to study the dynamics of tissue responses
during infection.
Closer inspection of the common core of “General tis-

sue response to early local bacterial infections” revealed
that ca 25% of the genes was associated to IFN-g
responses. IFN-g is a key mediator of inflammation and
immunity, controlling the balance between bacterial
clearance on the one hand, and limitation of tissue
damage as a consequence of inflammation on the other
[34]. As the common core predicted, we could detect
significant amounts of IFN-g in the systemic circulation
of rats with an ongoing local kidney infection. Several
roles for systemic IFN-g have been reported. Immune
cells, such as neutrophils and monocytes, become
primed already in the bloodstream, and may therefore
act more efficiently once they reach the site of infection
[35]. For example, IFN-g activates neutrophil defense
systems, such as phagocytosis and production of reactive
oxygen species [35,36], as well as induction of mono-
cyte- and T cell-attracting chemokine production [37].

Boekel et al. BMC Genomics 2011, 12:123
http://www.biomedcentral.com/1471-2164/12/123

Page 9 of 13



Conversely, systemic IFN-g is also known to downregu-
late IL-8 and matrix metalloproteinase production,
thereby downregulating recruitment of neutrophils
[34,35]. Thus, systemic IFN-g may have dual roles in the
UPEC infection, balancing the appropriate inflammatory
response while restricting tissue damage.
At present, we can only speculate about the inter-

organ communication leading to splenic IFN-g produc-
tion. The infection kinetics of the local infection may
limit the recruitment of IFN-g producing cells into the
renal tissue. It is thus unlikely that the infected kidney
acts as the source for serum IFN-g. Yet, the attracted
immune cells will participate in the production of other
cytokines, which may act as triggers for IFN-g produc-
tion. We excluded the classical IFN-g inducing cytokine
IL-12, since Il12a transcripts were not upregulated in
either kidney or spleen. Instead, our results suggest a
possible signaling cascade where a local renal IL-23 pro-
duction induces IFN-g in the spleen. IL-23 dependent
IFN-g production has previously been demonstrated by
others [32]. Alternatively, IL-23 may act indirectly via
IL-17, which we found upregulated in both renal and
spleen tissue. This hypothesis is supported by the find-
ing that IL-23 induces IL-17 expression in gδ T cells in
the spleen [33], as well as a recent report, showing IL-
17 dependent IFN-g production in a renal ischemia-
reperfusion model [38]. IL-17 has previously been
shown to be involved in the host defense to urinary
tract infections [39]. Further research is however neces-
sary to resolve a possible causality between these
cytokines.
The host thus mobilizes the entire circulation even for

a small infection, a process analogous to the acute phase
response that affects the entire animal upon infection
[40]. We speculate that in renal infections, inter-organ
communication leading to elevated systemic signals may
be advantageous in preventing future infections at other
sites. Numerous examples exist demonstrating the abil-
ity of the kidney to cross-talk with other organs [41].
Acute kidney injury, i.e. ischemia, can induce inflamma-
tory cascades in other organs leading to organ failure
and mortality, sometimes within hours ([41] and refer-
ences therein). The series of molecular events we report
are also remarkably fast: between initiation of bacterial
colonization and systemic presence of IFN-g lie less
than 8 h. Collectively, data presented herein highlight
that gaining a full understanding of the infection process
requires innate immune responses to preferentially be
studied in live animal models.

Conclusions
In this report we have investigated the transcriptome of a
local kidney infection at three early time points. The dif-
ferential expression signal increased over time, and an

array of different host responses could be identified 8 h
post-infection. These responses not only included up-
regulated immune response genes but in addition genes
for regulatory pathways defining the complexity of the
response in intact tissue. A comparative transcriptomics
approach identified 80 genes common for different in vivo
models of acute infections and inflammations, suggesting
a core response independent of infected tissue. Some of
these common genes have no apparent function coupled
to infection/inflammation, making them candidates for
future research. Yet, a quarter of the activated genes
pointed to a systemic IFN-g response where the cytokine
would be produced in the spleen where Ifng transcription
was found strongly induced. The host thus mobilizes the
entire circulation even for a local infection, a process ana-
logous to the acute phase response that affects the entire
animal upon infection. It thereby follows, that the series of
molecular events we report are remarkably fast; the
amount of time between bacterial colonization, systemic
presence of IFN-g as well as subsequent IFN-g-mediated
gene inductions lies within 8 h. The elevated IFN-g serum
levels observed may imply important dual roles for this
cytokine in balancing the inflammatory response to clear
the infection, while at the same time restricting tissue
damage. Thus, we speculate that inter-organ communica-
tion leading to elevated systemic signals may be advanta-
geous in preventing future infections at other sites. Results
presented here thus show that the integrated system that
live animal models offer is essential for the study of early
host responses.

Methods
Bacteria and animals
The clinical isolate UPEC strain LT004 (CFT073, cobS::
F(PLtetO-1-gfp+), Cm

R; O6:K2:H1) [10] was grown in
Luria-Bertani (LB) [42] medium supplemented with
chloramphenicol (20 μg/ml) at 37°C. Male Sprague-
Dawley (259 ± 20 g) (Scanbur BK, Sweden) rats with
free access to chow and water were used. Studies have
been approved by Uppsala djurförsöksetiska nämnd
(Sweden) and the Institutional Animal Care and Use
Committee (Indianapolis, IN, USA).

Microperfusion and two-photon microscopy
Microperfusion was done as described by Melican et al.
[6] with some modifications. Rats were anaesthetized by
intraperitoneal injection of thiobutabarbital (Inactin®;
120 mg/kg) (Sigma-Aldrich, Sweden). Animals had a
tracheostomy and cannulation of the femoral artery for
measurement of arterial blood pressure and blood sam-
pling, the femoral vein for infusion of Ringer’s solution
(5 ml/kg/h), and left ureter to divert renal output and
bacteria away from the bladder. Dyes were injected via a
jugular vein cannulation. Core body temperature was
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monitored rectally and maintained using heating pads.
Strain LT004 was grown overnight, washed with PBS,
and concentrated to 109 cfu/ml in PBS with 1 mM
CaCl2, 2 mM MgCl2, and 1 mg/ml Fast Green FCF
(Eastman Kodak, Rochester, NY, USA). For two-photon
experiments, 0.2 mg/ml cascade blue-conjugated 10 kDa
dextran (Molecular Probes, Eugene, OR, USA) was
added. Bacterial suspensions or PBS were infused at a
rate of 40 nl/min over 10 min into the lumen of superfi-
cial proximal tubules using a micromanipulator and a
microinfusion pump. Two-photon microscopy was per-
formed as in Melican et al. [6].

Microarray
Tissue was isolated from whole kidney using a 5 mm
biopsy punch with medullar tissue removed from the
sample. Total RNA extraction was done on ~30 mg tis-
sue using Trizol reagent (Invitrogen, Sweden), and puri-
fied with RNEasy Mini kit (QIAGEN, Sweden),
including an on-column DNA digestion step. cDNA was
synthesized from 10 μg RNA, using random primers
and Superscript III RT enzyme (Invitrogen, Sweden).
The cDNA was labeled with either Cy3 or Cy5 dyes (GE
Healthcare, Sweden) by amino-allyl dye coupling, and
hybridized to KTH Microarray Center’s KTH Rat 27 k
Oligo Microarray (ArrayExpress accession number A-
MEXP-554 at http://www.ebi.ac.uk/microarray-as/ae/).
Hybridization was done in Pronto Long oligo/Universal
Hybridization solution (Corning, Corning, NY, USA) at
42°C for 20 h. Slides were scanned using a Genepix
4000B scanner (Axon Instruments, MDS Analytical
Technologies, Sunnyvale, CA, USA) and data processed
with Genepix Pro software (Axon Instruments). All data
analysis was done in the R environment for statistical
computing, using Bioconductor software [43] and the
kth package [44] in R. For data preprocessing, raw two-
color array data were filtered on saturation, size, and
median-to-mean ratios. Bad spots were removed, and
data were print-tip lowess normalized. Array results
have been submitted to the ArrayExpress database
under accession number E-MEXP-2136.

Cluster analysis
Entrez genes identified in the microarray were analyzed
using the Cytoscape [26] plugin BINGO [27] which
relies on GO annotation of genes [45]. Overrepresenta-
tion of GO terms was tested using a hypergeometric
test that was corrected for multiple testing, using a
Benjamini and Hochberg correction [25].

Processing of data from other microarray analyses
To extract differentially expressed genes, downloaded
data sets were subjected to a limma analysis [28] similar

to that applied to our own data. Extracted genes were
clustered using a binary distance measure.

Quantitative real time PCR
RNA was extracted from a small volume of dissected
spleen or from kidney as described above. cDNA was
transcribed from 1 μg RNA using SuperScript III First
Strand Synthesis Supermix kit (Invitrogen). PCR was
done using a 7500 Real Time PCR System (Applied Bio-
systems, Sweden) and Power SYBR Green PCR Master-
mix (Applied Biosystems). In all experiments, Gapdh
was used as reference gene. Primer sequences are listed
in additional file 6 Table S6.

ELISA assay
Blood was sampled at indicated time points from rats,
and serum was isolated by centrifugation after coagula-
tion, samples were diluted 1:20. The assay was done
using 96-well Nunc Maxisorp plates (Nunc, Denmark)
and a sandwich ELISA kit for rat IFN-g (Mabtech,
Sweden) according to the manufacturer’s instructions.

Additional material

Additional file 1: Table of differentially expressed genes (thresholds
adjusted P-value 0.05, fold expression >2) in rat kidney 8 h post-
infection

Additional file 2: Output of BINGO analysis of Entrez gene ID’s of
bona fide annotated genes found in additional file 1

Additional file 3: Table of differentially expressed genes (threshold
adjusted P-value 0.5) in rat kidney 8 h post-infection

Additional file 4: Output of BINGO analysis of Entrez gene ID’s
found in additional file 3

Additional file 5: Table of differentially expressed genes (threshold
Bayes > -2.5) in rat kidney 5 h post-infection

Additional file 6: Table of primer sequences used in qRT-PCR
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GO: Gene Ontology; IFN: interferon; IL: interleukin; qRT-PCR: quantitative real
time PCR; UPEC: uropathogenic E. coli
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