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The prevention, evaluation, and treatment of hypertension have attracted increasing attention in recent years. As
photoplethysmography (PPG) technology has been widely applied to wearable sensors, the noninvasive estimation of blood
pressure (BP) using the PPG method has received considerable interest. In this paper, a method for estimating systolic and
diastolic BP based only on a PPG signal is developed. The multitaper method (MTM) is used for feature extraction, and an
artificial neural network (ANN) is used for estimation. Compared with previous approaches, the proposed method obtains
better accuracy; the mean absolute error is 4.02± 2.79mmHg for systolic BP and 2.27± 1.82mmHg for diastolic BP.

1. Introduction

Blood pressure (BP) is the driving force for the flow of blood
through the blood vessels and reflects the cardiovascular
health of the human body. At present, hypertension is the
most significant risk factor for cardiovascular and cerebro-
vascular diseases, identified by the World Health Organiza-
tion [1] as the main cause of death and disability among
the elderly. Poorly controlled hypertension increases the risk
of heart attacks, strokes, kidney failure, and heart failure.

Table 1 lists the classification criteria for hypertension in
adults (age> 18 years). A normal BP for an adult human is
120/80mmHg. A systolic blood pressure (SBP) of between
140 and 159mmHg or diastolic blood pressure (DBP) of
between 90 and 99mmHg is defined as the first stage of
hypertension, while the second stage is when SBP is higher
than 159mmHg, or DBP is higher than 99mmHg [2].

Invasive BP measurement has the highest accuracy of
several methods available for measuring BP, but it is not
widely applied because of its difficulty and high risk. Using
Korotkoff sounds to estimate SBP and DBP is another aus-
cultatory measurement, and this has been widely accepted
as the gold standard [3, 4]. Despite its high degree of accuracy
and reliability, the auscultatory method does not apply to

home blood pressure measurement (HBPM) [5], as it
requires a treained professional [6]. Furthermore, the mer-
cury sphygmomanometer is gradually being removed from
clinical use [6]. Oscillometric blood pressure measurement
has become increasingly popular in automated blood pres-
sure measurement devices [7]. This method uses an elec-
tronic pressure sensor to observe the pressure oscillation in
the cuff, during its gradual deflation from above SBP to below
DBP. The oscillation amplitude increases to its maximum
value when the cuff pressure reaches the mean arterial pres-
sure and then gradually decreases with subsequent deflation
of the cuff pressure [8]. However, it cannot provide continu-
ous beat-to-beat BP measurement with its periodic features,
and it is not appropriate for home healthcare or easing the
workload of clinicians at hospitals.

For cuffless BP measurement, the pulse transit time
(PTT) method and photoplethysmography (PPG) are widely
used techniques [9]. PTT is defined as the time taken for the
arterial pulse pressure wave to travel from the aortic valve to
the periphery [10], and some researchers have used it to esti-
mate BP indirectly [11]. However, there are two parameters
required to calculate PTT, electrocardiogram (ECG), and
PPG. As a result, calculation of PPT commonly requires
two devices to obtain these two parameters—the ECG is
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measured at the wrist or chest, and the PPG is measured from
the index finger [12].

Wearable pulse rate sensors based on PPG have become
increasingly popular, with more than ten companies produc-
ing these sensors commercially [13]. To take advantage of
this technology, some researchers have experimented with
using only a single PPG waveform for estimating BP. A con-
tinuous PPG waveform and one single PPG waveform
extracted from it are shown in Figure 1. Shin et al. [14] pre-
sented a pressure index (PI) extracted from a single PPG sig-
nal to estimate BP. Teng et al. [15] extracted four features of
PPG signals to find an optimal feature for BP estimation:
width of 2/3 pulse amplitude, width of 1/2 pulse amplitude,
systolic upstroke time, and diastolic time. This method
established a linear regression model and found that sys-
tolic upstroke time and diastolic upstroke time from the
PPG wave have higher correlations with BP. However, tests
show that such a correlation is not always linear. Gao et al.
[16] developed a method for BP estimation using the
regression support vector machine (RSVM) method, with
RBF kernel and discrete wavelet transform, and obtained
better performance.

In this paper, a new approach for beat-to-beat BP estima-
tion based on artificial neural networks (ANNs) is presented.
Yi et al. [17] have proved that for BP estimation, ANNs have
better performance compared to regression analysis using
PTT. The presented method uses a multitaper method
(MTM) [18] to obtain the spectral components and com-
bines them with two morphological features of a PPG signal,
to constitute the input parameters. For wide representation
of possible PPG signal and correspondent beat-to-beat BP,
we extract the signal from the Multiparameter Intelligent
Monitoring in Intensive Care (MIMIC) database [19, 20]
for network training and testing. The results show that the
presented method achieves better performance using only
the PPG signal. Figure 2 shows the schematic illustration of
presented BP estimation frameworks.

The paper is organized as follows: Section 2 describes the
overview of the MIMIC database, Section 3 explains the fea-
tures extracted from a PPG signal and the presentation of the
architecture of the ANN, and Section 4 shows the results
using different methods. Finally, the conclusion summarizes
the paper proposal and briefly anticipates future work.

2. Data Description

The MIMIC database is a collection of multiparameter
recordings from over 90 ICU patients. The data in each
case includes signals and periodic measurements obtained
from a bedside monitor, as well as clinical data obtained
from the patient’s medical record. The recordings vary in
length; almost all of them are at least 20 hours, and many
are 40 hours or more. In total, the database contains nearly
200 patient-days of real-time signals and accompanying
data [21].

The database contains data of ECG (leads I, III, and V),
ABP, PAP, PPG, and respiratory signals recorded simulta-
neously with a 125Hz sampling rate. In this paper, only the

records with both ABP and PPG were extracted. Figure 3
shows an example record.

In total, there are 58,795 valid intervals of PPG signal
(subject number is 72) and corresponding BP values for dif-
ferent people and different time instances. In order to avoid
overfitting, we use 70% of them for network training, 15%
of them for validation, and 15% of them for testing. The
training dataset is presented to the network during training,
and the network is adjusted according to its error. The vali-
dation dataset is used to measure network generalization
and to halt training when generalization stops improving.
The test dataset has no effect on training and so provides
an independent measure of network performance during
and after training. The Levenberg-Marquardt algorithm
was chosen for training the ANN. In this algorithm, training
automatically stops when generalization stops improving, as
indicated by an increase in the mean square error of the val-
idation samples.

3. ANN-Based BP Estimation

3.1. Multitaper Method. The multitaper method (MTM) [22]
takes advantage of an extended version of the spectral repre-
sentation as follows:

xt =
1/2

−1/2
e−iωtdz t 1

In this case, the xt may contain a number of periodic
components in addition to the underlying stationary process
as follows:

xt =〠
j

Cjcos ωjt + ϕj + ξt =〠
j

μje
iωj t+μ ∗

j e
−iωj t+ξt , 2

where ξt is a zero-mean stationary process with S f not nec-
essarily constant [18]. The above types of processes, called
central stationary or conditional stationary processes, are
often referred to as having mixed spectra [23]. For these pro-
cesses, the expected value of the discrete orthogonal incre-
ment process dZ f is no longer zero and can be calculated
as follows:

E dZ f =〠
j

μjδ f − f j df , 3

where δ is the Dirac delta function. The second central
moment of dZ f can be obtained as follows:

E dZ f − E dZ f 2 = S f df 4

Table 1: Classification of hypertension in adults (age> 18 years).

Blood pressure classification
BP (mmHg)

Systolic Diastolic

Normal <120 And <80
Prehypertension 120–139 Or 80–89

Stage 1 hypertension 140–159 Or 90–99

Stage 2 hypertension ≥160 Or ≥100
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For processes with mixed spectra, the first moment of
dZ f gives the deterministic component, while the second
central moment of dZ f gives the continuous nondeterm-
inistic component. The classical method has been centered
on the estimation of the second moment of dZ f , which
gives the continuous component of the spectrum. However,
the estimation of the first moment of dZ f was initially
also required. Major opposition to the classical method is

predicated on the fact that there is no separation between
the deterministic component and nondeterministic compo-
nent; spurious peaks in the spectrum can be identified as
the deterministic component without an objective criterion
for differentiating between real and spurious lines [24].

In the MTM spectral estimation, a useful, yet simple,
likelihood ratio test for the significance of periodic compo-
nents is offered by the multiwindow method. This method

Single PPG signal

Raw PPG signal

Figure 1: The continuous PPG waveform and one single PPG waveform extracted from it.
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Figure 2: Schematic illustration of presented BP estimation frameworks.
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Figure 3: An example record.
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makes use of multiple data windows, referred to as “Slepian
sequences” and “discrete prolate spheroidal sequences.” They
are defined as follows:

λkν
k
n N ,W = 〠

N−1

m=0

sin 2πW n −m
π n −m

ν k
m N ,W , 5

where N is the number of sampling points of a single PPG
wave (the sampling rate is 125Hz), W is the spectral band-
width, and λk are the eigenvalues associated with the Slepian

sequences ν k
n N ,W , which can be calculated numerically

[25]. After Fourier transformation, the Slepian functions
can be calculated as follows:

vk f = 〠
N−1

n=0
v k
n N ,W e−i2πf n 6

In the interval f −W, f +W , the energy concentration
of the above Slepian functions is maximum. Furthermore, the
bias from all frequencies is remote from the frequency of the
window width times the number of observations, and thus
the use of these sequences is very effective in eliminating
window leakage [26].

The MTM calculates the expansion or eigen coefficients
of input Xt as a first step as follows:

yk f = 〠
N−1

t=0
xtν

k
i N ,W e−i2πf t 7

Combining the above equations, the expected value of
yk f can be obtained as follows:

E yk f = μVk f − f0 + μ∗Vk f + f0 8

At f = f0,

E yk f0 = μVk 0 + μ∗Vk 2f0 ≈ μVk 0 , 9

assuming 2f0 >W and thus neglecting the second term in
(9), since Vk is highly concentrated in the interval f −W,
f +W .

By minimizing the residual local squared error, that is,
when f = f0, the μ can be estimated. The squared error can
be described as follows:

e2 μ, f = 〠
N−1

k=0
yk f − μ f Vk 0 2 10

The result is given as follows:

μ̂ f =
〠K−1

k=0 V
∗
k 0 yk f

〠K−1
k=0 Vk 0 2

11

An F test can be used to test for the significance of a line
component at f , and the location of its maximum value pro-
vides an estimation of the line frequency.

In this paper, the periods of interest are nearly as long as
the data. Thus, a line component at zero frequency is
included and the estimation of μ 0 from (11) is used as an
alternative estimation of the mean, which will result in the
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Figure 4: Frequency of single PPG signal.

Table 2: Performance results of different number of the input parameters.

Number of the input parameters
SBP DBP

e (mmHg) er (%) e (mmHg) er (%)

3 parameters (10Hz interval) 8.29± 6.60 6.00± 5.28 6.19± 6.63 9.14± 7.45
4 parameters (5Hz interval) 7.62± 6.08 5.49± 4.77 4.31± 3.83 3.84± 3.39
7 parameters (2Hz interval) 6.59± 5.25 4.72± 4.02 4.34± 5.23 4.72± 3.91
12 parameters (1Hz interval) 4.64± 3.63 3.42± 2.61 3.69± 2.74 3.12± 4.11
22 parameters (0.5Hz interval) 4.02± 2.79 2.84± 2.00 2.27± 1.82 4.39± 3.60
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preservation of the continuous part of the spectrum at zero
frequency [23]. The continuous part of the spectrum can be
calculated as follows:

Ŝ f = 1
K

〠
K−1

k=0
yk f 2 12
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Figure 5: Spectral features extracted from single PPG signal.
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Figure 7: Histograms of error: (a) SBP estimation error and (b) DBP estimation error.

Table 3: Number of subjects in different methods.

Method Number of subjects

Linear regression [15] 15

RSVM based [16] 65

Proposed method 72
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However, according to (4), the spectrumnear a significant
line component with frequency f0 must be reconstructed,
by subtracting the contribution of the line component as
follows [27]:

Ŝr f = 1
K

〠
K−1

k=0
yk f − μ̂ f0 Vk f − f0

2 13

3.2. Feature Extraction. Several spectral and morphological
features are used to characterize the single PPG signal. The
systolic upstroke time (ST) and diastolic time (DT) presented
in [15] are used as the two morphological features. Then the
MTM is used to extract the spectral features.

As shown in Figure 4, the dominant frequency of single
PPG waveform is mostly focused in the interval of low
frequency (0.1~10Hz).

As a result, this method tries to extract the spectral
character in the interval of low frequency (0.1~10Hz). We
calculate the power of every 0.5, 1, 2, 5, and 10Hz interval.
Then, we use them as input separately to determine the opti-
mal number of input parameters, and the results are as listed
in Table 2 of Section 4. The best results are obtained when the
interval is 0.5Hz, as presented in Figure 5.

In total, the 22 parameters, including the times of systolic
and diastolic parts and spectral features, are used to train
the ANN.

3.3. Artificial Neural Network Architecture. There are various
ANN architectures for fitting the input data to target, such as
counter propagation, learning vector quantization, and radial
basis function. Despite good performance, these architec-
tures require large numbers of neurons and cannot be
applied in the case of a big training set, due to their substan-
tial memory requirements.

In this paper, PPG features are fed to a multilayer percep-
tron architecture, which has 22 input neurons (the number of
input parameters, as mentioned above) and 2 output neurons,
to simultaneously estimate SBP and DBP. This architecture
is shown in Figure 6.

4. Experimental Results and Discussion

Figure 7 shows the histograms of the errors, calculated as
the difference between real SBP/DBP and the output of the
ANN, for the proposed method. The mean difference and
standard deviation between the estimated BP and measured
BP are −0.0217 ± 4.8950mmHg for SBP and 0.0975±
2.9160mmHg for DBP.

To further evaluate the performance of the presented
method, other two BP [15, 16] estimation methods are cho-
sen for comparison in this paper. Table 3 lists the number
of subjects in the above studies.

As indicated earlier, performance is assessed on effective
records from the MIMIC database and is processed in a
MATLAB (MathWorks, Natick, MA, USA) environment.
Absolute error e and relative error er are used to evaluate
the performance, which are, respectively, defined as

e = BPestimated − BP,

er =
BPestimated − BP

BP
14

Table 2 lists the performance results of different num-
bers of input parameters, and Table 4 lists the results of per-
formance on the test database for the linear regression,
RSVM-based method, and ANN-based method with differ-
ent feature extraction techniques. The results are presented
as mean and standard deviation of absolute error e and rel-
ative error er, among reference SBP/DBP and estimated
values. For evaluation of the performance of this model in
a single individual, test data is divided into individual sub-
sets by index provided by PhysioNet [21] and is used to test
performance on each subset, respectively. The estimated per-
formance of the method applied to single individuals is listed
in Table 5.

Compared with the other methods, our method has
better performance and can be confidently said to provide
an effective detection technique for wearable devices and
mobile software in the field of hypertension.

5. Conclusion and Future Work

In this study, we propose a noninvasive and beat-to-beat
method of BP estimation determined only from PPG sig-
nal. The MTM is used to extract representative features
to improve precision and velocity. This is achieved using
a typical-structure feed forward ANN. With the wearable
PPG sensor becoming an increasingly popular technology,
this method has practical significance as part of a big
data solution.

According to the Association for the Advancement of
Medical Instrumentation (AAMI), the mean and deviation
absolute error between the device and the mercury standard
sphygmomanometer can be larger than 5 ± 8mmHg as well
as the number of simultaneous readings agrees within
10mmHg for 95% or more of the recordings and within

Table 4: Performance results of the linear regression, SVRM-based method, and ANN-based method with different feature extraction
technique on the test database.

Method Number of input parameters
SBP DBP

e (mmHg) er (%) e (mmHg) er (%)

Linear regression [15] 2 9.80± 8.09 8.94± 7.57 5.88± 5.11 10.26± 8.83

RSVM based [16]
13 for SBP
22 for DBP

5.07± 4.84 4.32± 3.59 4.31± 3.83 3.84± 3.39

ANN based (this method) 22 4.02± 2.79 2.84± 2.00 2.27± 1.82 4.39± 3.60
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Table 5: The performance results based on individual measurements.

Record
SBP DBP

e (mmHg) er (%) e (mmHg) er (%)

Subject number 211 (F, 67) 4.68± 4.05 4.64± 4.62 2.60± 1.59 4.49± 2.70
Subject number 212 (M, 84) 5.10± 4.32 3.65± 3.25 2.95± 1.98 5.44± 3.88
Subject number 213 (F, 82) 3.03± 2.71 3.00± 2.56 3.12± 1.98 5.50± 3.43
Subject number 214 (F, 72) 4.10± 2.72 2.91± 1.92 2.50± 1.64 5.48± 3.65
Subject number 216 (M, 67) 3.35± 2.32 3.28± 2.29 1.91± 1.58 4.52± 3.33
Subject number 224 (M, 21) 2.89± 2.15 2.37± 1.82 2.16± 1.59 4.12± 3.04
Subject number 225 (M, 73) 4.51± 2.79 3.79± 2.39 2.08± 1.52 4.92± 3.64
Subject number 226 (M, 68) 4.44± 2.81 3.49± 2.20 2.32± 1.70 4.18± 3.50
Subject number 230 (F, 75) 5.18± 3.63 3.24± 2.28 1.82± 1.42 4.66± 3.51
Subject number 235 (F, 67) 3.55± 2.59 2.47± 1.80 2.09± 1.39 3.81± 2.98
Subject number 237 (F, 63) 6.14± 4.29 4.10± 2.68 2.92± 2.06 4.14± 2.69
Subject number 240 (M, 68) 4.55± 3.26 3.65± 2.56 1.84± 1.76 3.87± 3.09
Subject number 241 (F, 76) 3.95± 2.59 3.23± 2.20 3.45± 2.19 5.71± 3.97
Subject number 243 (M, 90) 5.21± 3.28 4.41± 2.78 2.92± 1.88 4.99± 3.15
Subject number 245 (F, 63) 4.03± 2.84 3.01± 2.12 3.40± 2.12 5.77± 3.65
Subject number 252 (M, 52) 6.08± 2.96 5.30± 2.68 2.70± 2.07 5.58± 3.42
Subject number 259 (F, 76) 4.57± 3.07 3.45± 2.33 3.26± 2.10 4.51± 3.34
Subject number 262 (F, 65) 5.15± 3.60 4.36± 3.15 2.77± 1.93 5.36± 3.43
Subject number 264 (M, 65) 4.11± 2.66 3.14± 2.04 2.79± 1.91 4.64± 3.21
Subject number 267 (M, 67) 3.72± 2.56 2.84± 1.94 2.56± 1.82 4.66± 3.06
Subject number 269 (F, 82) 4.34± 2.95 3.26± 2.22 3.39± 2.20 4.28± 2.91
Subject number 276 (F, 66) 3.76± 2.53 3.11± 2.13 2.78± 1.95 4.01± 3.07
Subject number 277 (F, 71) 4.33± 2.85 3.51± 2.31 2.85± 2.00 3.94± 2.74
Subject number 279 (F, 85) 4.15± 2.65 3.40± 2.21 3.03± 2.06 4.13± 2.90
Subject number 280 (M, 60) 4.50±2.84 3.93± 2.54 3.57± 2.52 4.06± 2.78
Subject number 281 (M, 61) 5.02±3.58 4.35± 3.19 2.70± 1.83 5.16± 3.53
Subject number 284 (F, 59) 4.73± 3.19 3.37± 2.37 3.15± 2.16 4.96± 3.45
Subject number 285 (M, 55) 5.70± 4.73 4.11± 4.04 2.66± 1.97 5.12± 3.42
Subject number 286 (F, 34) 4.30± 3.01 3.59± 2.52 2.86± 1.82 4.40± 2.77
Subject number 288 (F, 59) 4.84± 3.00 3.70± 2.33 3.27± 2.01 5.40± 4.28
Subject number 289 (F, 61) 5.10± 3.77 4.67± 3.49 2.85± 1.83 6.12± 4.38
Subject number 293 (F, 71) 4.44± 3.82 3.86± 2.51 2.92± 2.12 4.20± 2.98
Subject number 401 (F, 64) 7.11± 5.64 5.54± 4.58 3.97± 2.91 4.32± 3.27
Subject number 404 (F, 87) 4.01±3.78 2.73± 1.91 2.07± 2.73 5.03± 3.38
Subject number 408 (M, 45) 4.10± 2.70 2.88± 1.89 3.01± 2.01 6.08± 4.20
Subject number 410 (M, 57) 3.53± 3.48 3.10± 3.15 3.18± 2.13 5.69± 3.56
Subject number 411 (F, 82) 3.40± 3.33 3.42± 2.38 3.45± 2.36 5.07± 3.41
Subject number 415 (F, 54) 3.06± 2.03 2.99± 2.00 2.66± 1.97 4.71± 3.39
Subject number 417 (M, 86) 3.13± 2.14 2.95± 2.03 3.74± 2.08 7.10± 3.97
Subject number 418 (M, 52) 3.59±3.41 3.54± 2.39 2.65± 1.86 5.74± 3.77
Subject number 422 (F, 84) 3.97± 3.29 4.03± 4.40 3.18± 2.13 4.30± 3.09
Subject number 430 (M, 91) 2.68± 2.06 2.61± 2.00 3.62± 2.35 5.52± 4.04
Subject number 434 (F, 52) 6.54± 6.35 4.30± 4.38 3.29± 2.00 4.32± 4.11
Subject number 436 (F, 87) 7.59± 6.80 4.92± 4.61 2.97± 1.91 5.19± 4.75
Subject number 437 (M, 75) 8.36± 7.79 5.57± 5.37 2.89± 2.04 4.41± 3.18
Subject number 438 (M, 78) 3.73± 2.67 3.48± 2.50 2.31± 1.64 3.89± 2.86
Subject number 439 (F, 75) 4.44± 3.87 3.60± 2.30 2.14± 1.51 5.85± 3.58
Subject number 443 (M, 75) 4.52± 3.75 3.82± 3.36 2.34± 1.66 4.82± 3.48
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5mmHg for 85% or more of simultaneous observations
[13, 28]. Our future research will investigate how to improve
the efficiency of the estimation algorithm, especially in a
single individual. We will combine the method with data
such as patient age, sex, and previous medical disorders.
Hybrid and adaptable methods will also be considered.
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Subject number 455 (M, 49) 4.19± 3.69 3.48± ± 2.18 2.16± 2.96 5.47± 3.41
Subject number 456 (M, 84) 3.69± 3.52 2.77± 1.89 3.67±2.13 5.38± 3.89
Subject number 457 (F, 80) 4.28± 3.91 3.36± 2.39 2.52± 1.81 4.47± 3.41
Subject number 458 (F, 73) 3.87± 2.85 3.32± 2.48 2.40± 1.72 5.83± 3.96
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