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Increasing evidence shows that genetic interaction across the entire genome may explain a non-trivial
fraction of genetic diseases. Digenic interaction is the simplest manifestation of genetic interaction
among genes. However, systematic exploration of digenic interactive effects on the whole genome is
often discouraged by the high dimension burden. Thus, numerous digenic interactions are yet to be iden-
tified for many diseases. Here, we propose a Digenic Interaction Effect Predictor (DIEP), an accurate
machine-learning approach to identify the genome-wide pathogenic coding gene pairs with digenic
interaction effects. This approach achieved high accuracy and sensitivity in independent testing datasets,
outperforming another gene-level digenic predictor (DiGePred). DIEP was also able to discriminate
digenic interaction effect from bi-locus effects dual molecular diagnosis (pseudo-digenic). Using DIEP,
we provided a valuable resource of genome-wide digenic interactions and demonstrated the enrichment
of the digenic interaction effect in Mendelian and Oligogenic diseases. Therefore, DIEP will play a useful
role in facilitating the genomic mapping of interactive causal genes for human diseases.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Digenic Interaction (DI) is the simplest manifestation of genetic
interaction among genes [1], which means one gene with one or
more pathogenic variants may alter (aggravate or relieve) the
impact of the other gene on a phenotype, including the true digenic
and the genetic modifier referred in [2]. DI is different from the
widely used monogenic (or Mendelian) inheritance pattern [3] or
polygenic model [4]. An in-depth study of the DI effect may enable
us to better understand the gene interaction networks and eluci-
date the potential relationship between genes and phenotypes,
thereby making up the missing heritability [5] to some extent.

There is recognition gradually that the inheritance model of
many diseases is more complex than originally thought. Research-
ers indicated that the genetic mechanism of monogenic traits
might not be simple as we thought [6], and the final phenotype
of a monogenic disorder can be an amalgamation of multiple fac-
tors to some extent [7]. So far, the pathogenesis remains unknown
even in many well-studied Mendelian disorders [8,9], and one of
the main reasons is that the genetic interaction of several genes
may cause a large portion of the phenotypic variation sometimes
[10,11]. Since the gene-gene interactions may play a larger role
in disease susceptibility than a single gene [12], more and more
research studies have jumped out of the scope of monogenic
pathogenicity. They have discovered relatively more pathogenic
gene pairs with DI effect by various methods such as conditional
hybrid experiments [13], family-based association studies [14],
genome-wide association studies [15] and multi-omics joint anal-
ysis [16] (Text S1). Nevertheless, only finite progress has been
made because such methods still have limitations on screening
the pathogenic gene pairs on a genome-wide scale (Text S2).

DIDA (DIgenic diseases DAtabase) is the first database providing
the mutated variants (small-scale mutations) and the correspond-
ing genes involved in digenic diseases [17], which is a valuable
resource for researchers to identify the pathogenic gene pairs with
the digenic interaction effect. So far, many studies have already
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been conducted based on this valuable database. For example,
Gazzo et al. used a machine learning algorithm to automatically
differentiate true digenic and composite classes based on the vari-
ant, gene and pathway-oriented features [2]. Besides, Papadim-
itriou et al. developed a variant combinations pathogenicity
predictor (VarCoPP [18]) mainly for predicting disease-causing
variant combinations in gene pairs. Mukherjee et al. constructed
the DiGePred [19] aimed to identify digenic disease-causing gene
pairs, which addressed the same problem as our DIEP, but with
limitations on the selection of negative training sets and gene-
level features for model training.

Although functionally related genes are more likely to have an
interactive effect, it is not always true because the factors such
as the dimensions and degree of similarity of two genes may also
influence the gene interaction. Studies have already indicated that
if two genes have similar functions or structures, or are on the
same pathogenic pathway, or have protein–protein interaction
effect [20], or form the same protein complex [7], they will be more
likely to have a digenic inheritance pattern. For example, Wong
et al. integrated gene localization, mRNA expression and other data
types to predict genetic interaction [21]. Another study indicated
that MYBPHmight regulate the disease phenotypes of cMYBPC car-
riers, because these two genes are similar not only in functions but
also in genome sequences and structures [14]. However, which
types of similarities are critical for the digenic potential remains
unclear. Here, taking the above characteristics of digenic pattern
into account, we assumed that it is more efficient to predict the
interaction potential between two genes at the gene level. There-
fore, an advanced machine learning model integrated comprehen-
sive features demonstrating the relationship or similarity of two
genes was adopted.

In this study, we hypothesize that the gene level features (e.g.,
the biological relatedness) may be important for DI potential and
can be used to build a more accurate model for predicting patho-
genic digenic interactions. Therefore, we collected five categories
of gene-level biological characteristics, including gene-based,
protein-based, structure-based, expression-based and phenotype-
based categories. The whole procedure of this study is shown in
Fig. 1. We then developed a Digenic Interaction Effect Predictor
(DIEP) to estimate gene pairs with pathogenic digenic interaction
effect, which may help the researchers further dissect the complex
mechanism of diverse diseases.
2. Materials and methods

2.1. Training dataset construction

The positive set was collected from the DIDA database [17]
directly, which contains 140 digenic gene pairs, and the detailed
information of the positive gene pairs (named ‘‘DIDA”) was avail-
able in Dataset S1. As for the negative set, we hypothesized that
the probability of being digenic of the randomly combined gene
pair is very low since the digenic interaction is a rare biological
phenomenon. Thus, the initial negative set was self-constructed
under the above null hypothesis containing two sections. First, a
series of gene pairs consisting of randomly selected protein-
coding genes (downloaded from HGNC [22] website, excluding
the genes already exist in DIDA) was regarded as negatives (Ran-
dom set, 50,000 pairs). Second, 13,390 pairs obtained by randomly
combining 165 unique genes in DIDA after excluding the positive
gene pairs in DIDA were also considered as negatives (DIDA_NDI
set). Moreover, to ensure the reliability of the training set and
obtain a more convincing predictive result, we removed duplica-
tions, conducted quality control and data filtering (see details
below) on the two datasets above. Finally, we obtained 16,156 neg-
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ative pairs in total (1947 in the DIDA_NDI set and 14,209 in the
Random set). For two negative sets, 1,400 and 7,000 gene pairs
were randomly extracted from the DIDA_NDI set and Random set
separately for training (8,400 in total), and the remaining was used
as one test set (7,756 in total, Test set). In general terms, the train-
ing set consisted of 140 positive gene pairs and 8,400 negative
pairs (Dataset S1, Fig. 1).

2.2. Feature determination and database selection

We initially selected 33 features in 5 categories for the predic-
tion model, including gene-level, protein-level, structure-level,
expression-level and phenotype-level (Table 1). The Pearson corre-
lation coefficient was calculated to show the correlation between
all 21 features (after deleting features with a high fraction of miss-
ing) based on the whole training set (Fig. S1). Detailed information
on features is described as follows.

2.2.1. Gene-level features
The basic biological features and the fundamental characters for

evaluating the gene relationship or similarity.
d Residual Variation Intolerance Score (RVIS): A measure of

gene intolerance of mutational burden. Genes known to carry
few common functional variants may be more likely to cause cer-
tain diseases than genes that have many such variants [23]. Thus,
the tolerance of a gene’s functional genetic variation may influence
the interactions and even the phenotypes. The feature value was
extracted from dbNSFP [24] based on EVS (ESP6500) and ExAC
[25] data, respectively.

d Gene Damage Index score (GDI): A genome-wide, gene-level
metric of the mutational damage [26], used to predict whether a
given human protein-coding gene is likely to harbor disease-
causing mutations.

d Gene Recessive score: Estimated probability of being a reces-
sive disease gene [27].

d The Essential State of genes: Whether the genes are necessary
for basic developmental functions [28,29].

d Gene indispensability score: A probability prediction of the
gene being essential, used to estimate the global perturbation
caused by deleterious mutations in each gene [30].

d Semantic similarity of gene GO annotations: GO [31] is
divided into the biological process (BP), molecular function (MF)
and cellular component (CC). We used the GO annotations within
each category to calculate the semantic similarity between two
genes by R package GOSemSim [32] as a feature because function-
ally similar genes tend to contribute to a similar phenotype [33].

d Gene Functional Correlation: GeneMANIA [34] helps find the
functional-associated genes. The gene-gene functional-related
weight of each gene pair provided in the network file was used
as the feature value.

d Common Interactions: The number of common interactive
genes of two different genes was calculated according to the data-
base ConsensusPathDB [35]. Besides, we also calculated the simi-
larity of two interactive gene sets by Jaccard similarity coefficient
as follows based on ConsensusPathDB as another feature, where
the N is the number of intersections or unions of two gene sets:

Jaccardsim GeneA; GeneBð Þ ¼ NðInteractionsGenesetA \ InteractionsGenesetBÞ
NðInteractionsGenesetA [ InteractionsGenesetBÞ ð1Þ

d Haploinsufficiency: Estimated probability of haploinsuffi-
ciency [36] of the gene.

d Biological Distance: The HGC (Human Gene Connectome)
[37] indicates biologically plausible routes, distances, and degrees
of separation between all pairs of human genes, among which the
biological distance was considered as a biological relatedness
between two genes.



Fig. 1. The diagram of the framework for digenic interaction effect prediction, I. Data Collection and Feature Selection. Positive samples of the training set were collected from
DIDA, which contains 140 positive gene pairs. Negative samples were obtained based on different theoretical assumptions, including two parts and 16,156 gene pairs in total,
from which 8400 pairs were extracted for training and the remaining were used for testing. II. Model Construction. Down-sampling and bagging-based strategies were
adopted to address the imbalanced issue for model construction. The weight of each classifier was assigned by the 10-fold cross-validation F1 score of each RF. III. Validation.
Seven independent test sets were collected for model validation. One was self-constructed set under the null hypothesis, and another one was extracted from 7 trios cases
with different rare diseases. Five were literature-based datasets, including one positive test set. The DD set was adopted for differentiating dual molecular diagnoses from the
digenic interaction effect. IV. Application. Enrichment analysis was conducted in 15 different diseases to investigate the enrichment of the digenic interaction effect between
disease-causing genes of the same disease.
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d LOF intolerant: The probability of being loss-of-function
intolerant [38].

d Functional Change Intolerance: A score for measuring the
gene intolerance to functional change [39].

2.2.2. Protein-level features
d Biomedical interaction: We first adopted data from the data-

base BioGRID (Biological General Repository for Interaction Data-
sets) [40] as one feature to see whether there is a biomedical
interaction between two genes, and this feature was served as a
binary variable.

d Protein-protein association: The STRING [41] was also con-
sidered as one type of feature. The ‘‘combined score” computed
by combining the probabilities from the different evidence chan-
nels [42] was adopted and downloaded from https://string-db.
org/ (9606.protein.links.v11.0.txt.gz). We considered that this
database contains both known and predicted protein–protein asso-
ciations. Here, the ‘‘association”, from a functional perspective, can
mean direct physical binding and indirect interaction, such as par-
ticipation in the same metabolic pathway or cellular process as
indicated in the publication [42].

d Functional interaction: The protein functional interaction
effects such as catalyzing, regulating, activating, or acting as the
protein complex supplied by REACTOME knowledgebase [43] were
also considered.

2.2.3. Structure-level features
d Common structural domains: Two databases were adopted,

including InterPro [44] and Pfam [45]. The information on struc-
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tural domains was provided by UniProtKB. The feature values were
also calculated using the Jaccard similarity coefficient.
2.2.4. Expression-level features
d Common highly expressed tissues: The gene expression data

in different tissues of different genes from GTEx (Genotype-Tissue
Expression) [46] were used. If the expression quantity of a gene in
one tissue is 2.5 times more than the average level in all the tis-
sues, this gene was considered highly expressed in this tissue.
The feature value was calculated by the Jaccard similarity coeffi-
cient using the sets of highly expressed tissue for either gene in a
pair.

d Protein abundance: The protein abundance data were
obtained from PaxDb [47], and the feature values were calculated
by adding and subtracting the abundance values of two genes
separately.

d Gene coexpression: The degree of coexpression of two genes
may reflect the inter-genes correlation. The gene coexpression data
was obtained from COXPRESdb [48].
2.2.5. Phenotype-level features
d Semantic similarity of gene DO annotations: We used the dis-

ease ontology annotations to evaluate the semantic similarity with
DOSE [49] between two genes, which was also adopted as an
essential feature.

https://string-db.org/
https://string-db.org/


Table 1
Summary of the selected features and databases.

Category Database/Method and
Reference

Feature name Fraction of
missing (%)1

Significance
(Wilcox/KS)2

Description3

Gene-level RVIS [23] RVIS_EVS.add / sub 59.14 . The addition / subtraction of the residual variation intolerance score based on EVS (ESP6500) data.
RVIS_ExAC.add / sub 58.25 . The addition / subtraction of the residual variation intolerance score based on ExAC data.

GDI [26] GDI.add / sub 56.68 . The addition / subtraction of the gene damage index score of two different genes.
Gene Recessive score
[27]

Recs.add / sub 35.04 <10E-3 The addition / subtraction of recessive scores of two different genes.

The Essential State of
genes [28,29]

EssgCom 11.58 . The count of essential genes.

Indispensability [30] Indispensability.add / sub 58.57 . The addition / subtraction of the gene indispensability score of two different genes.
GOSemSim [32] GOSemSim_MF 13.22 <10E-3 The Semantic similarity of Gene GO annotations for molecular function (MF), biological process (BP) and

cellular component (CC).GOSemSim_BP
GOSemSim_CC

GeneMANIA [34] GeneMANIAGG 4.9 <10E-3 The weight of the gene function relationship between two genes was calculated by integrating multiple
functional association networks.

ConsensusPathDB [35] NumOfCommonInteraction 60.13 . The number of common interactive genes of two different genes.
commonInteractionJacSim The Jaccard similarity coefficient of two interactive gene sets.

Haploinsufficiency
[36]

HI.add / sub 23.83 <10E-3 The addition / subtraction of the probability of haploinsufficiency of two different genes.

HGC [37] BioDis 20.26 The biological distance between two genes.
LOF [38] LofIn.add / sub 13.48 add: 0.94 / 0.02

sub: 0.19 / 0.06
The addition / subtraction of the probability of being loss-of-function intolerant of two different genes.

LoFtool [39] FuncChangeInt.add / sub 66.02 . The addition / subtraction of the probability of being functional change intolerance of two different genes.
Protein-level BioGRID [40] BioGRIDPP 19.9 <10E-3 Whether there is protein interaction between the two genes. ‘‘000 indicates no protein interaction and ‘‘1”

represents there is protein interaction.
STRING [41] STRINGPP 4.83 <10E-3 Protein-protein associations, including direct physical binding and indirect interaction from a functional

perspective.
REACTOME [43] REAC_FI 33.9 <10E-3 Protein functional interaction effects

Structure-level UniProtKB [50,51] PS_2DbJacSim 5.4 . The Jaccard similarity coefficient of two sets of structure domains, the maximum value by different
databases for each gene pair was regarded as the feature value.

Expression-level GTEx [46] HighexpPer 6.68 <10E-3 The Jaccard similarity coefficient of two sets of high expressed tissues.
PaxDb [47] Abundance.add / sub 11.38 add:

0.001 / <10E-3
The addition / subtraction of abundance scores of two different genes.

COXPRESdb [48] COXPRESdbMRvalue 9.03 <10E-3 Gene co-expressed values.
Phenotype-level DOSE [49] DOSemSim 13.22 <10E-3 The Semantic similarity of disease ontology annotations.

Note: The value range of the features *.add / sub were [0,2], while the remaining were [0,1], except for the classification feature EssgCom and BioGRIDPP;
1 The fraction of missing values was calculated based on each database independently. If there were several databases, the minimum miss rate was shown.
2 The significance testing results of each feature (after feature selection) between positive set and negative set, p-values for deleted features were replaced by ‘‘.”. The significant test was conducted using two methods, including

the Wilcoxon test and the Kolmogorov-Smirnov test.
3 Features such as RVIS_EVS, GDI and Recessive score are specific to a single gene. Thus, we calculated the addition and the subtraction to indicate the correlation between two genes. The ‘‘.add” is the addition of two values, and

the ‘‘.sub” is the subtraction.

Y.Yuan,L.Zhang,Q
.Long

et
al.

Com
putational

and
Structural

Biotechnology
Journal

20
(2022)

3639–
3652

3642



Y. Yuan, L. Zhang, Q. Long et al. Computational and Structural Biotechnology Journal 20 (2022) 3639–3652
2.3. Data preprocessing, imputation, quality control and filtering

2.3.1. Data preprocessing
To make the feature values in the range of 0 to 1, we conducted

the normalization on all the retained features after feature selec-
tion as below.

Norm xi ¼ xi
max Xð Þ ð2Þ

where xi is the original feature value, X is the set of feature values in
the corresponding database.

2.3.2. Imputation
Imputation for the features with high missing rates will lead to

a great bias. Thus, before we conducted imputation, features with a
high fraction of missing were deleted firstly (>40%, Table 1, see
details in Feature selection section). The missing rates of the
remaining features ranged from 4.9% to 35.04% (Table 1), and the
imputation was then conducted on these features based on the
whole-exome gene pair information. In our study, we used the
multivariate feature imputation method with the IterativeImputer
class provided in the scikit-learn implementation [52] to impute
the missing values, and we used default arguments for all the
parameters.

2.3.3. Quality control and data filtering
The original DIDA_NDI gene pairs consisted of a random combi-

nation of 165 unique genes from the DIDA (excluding the positive
gene pairs in DIDA, 13,390 pairs). Thus, the label noise (false neg-
ative) will be generated and then harm the accuracy of the predic-
tion model because some diseases in DIDA have several causal
genes. Therefore, we used the 1000 Genomes Project Data [53] to
purify the negative gene pairs. Most subjects in the 1000 Genomes
Project were assumed to not suffer from severe diseases, and we
considered that the mutated gene pair showing up in unaffected
individuals was non-pathogenic. Thus, we searched each of the
negative gene pairs (13390þ 50000) in each sample from the
1000 Genomes Project and defined that gene pairs with at least
one rare (mutation frequency � 1%) non-synonymous variant in
both genes in 2 or more subjects as the true negative. The filtering
process was conducted by KGGSeq [54], and only 1,948 and 14,209
gene pairs were retained for two negative training sets separately
(Dataset S2). KGGSeq is a biological knowledge-based platform for
genetic studies, and we have already implemented the above
screening process in KGGSeq (by command ‘‘--digene-assoc”) for
other researchers (Details in Supplementary Information).

2.4. Feature selection and model construction

The random forest algorithm was used to construct the Digenic
Interaction Effect Predictor (DIEP) based on the 140 positive gene
pairs and 8,400 negative pairs. Then, given the unbalanced sample,
down-sampling and bagging-based strategies were adopted for the
random forest. Specifically, 150 pairs were obtained each time by
down-sampling each negative set separately, and we then merged
them with positive gene pairs to generate sub-samples. In this
study, we generated 200 sub-samples in total by down-sampling
for training.

The feature selection was conducted before model construction.
First, features with a high fraction of missing (>40%, Table 1) or
strongly correlated (r > 0.8, Fig. S1) were deleted. Then, we tried
to adopt Recursive Feature Elimination (RFE) for further feature
selection. A simple RF (Random Forest) classifier was built using
the collected feature set with default parameters for each sub-
sample. Next, the average Gini feature importance was calculated,
and the least important feature was eliminated. Then, new classi-
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fiers were constructed using the updated feature set for each
sub-sample, and the least important one was also deleted, and con-
tinued similarly until only one feature was retained. Finally, the
best feature set was simply obtained after deleting the features
with extremely low Gini feature importance (<0.01) (Fig. 2A)
because of the small number of features in this study.

After the features were determined, we used the scikit-learn
implementation [52] of the Random Forest (RF) algorithm (Ran-
domForestClassifier) to train 200 single classifiers for each sub-
sample. For each classifier, parameters including ‘‘n_estimators”,
‘‘max_features”, ‘‘max_depth”, ‘‘min_samples_split” and ‘‘min_sam
ples_leaf” were adjusted by GridSearchCV, using the ‘‘f1” as the
evaluation criteria by 10-fold cross-validation (mean of the ten
scores). F1 is the weighted harmonic average of Precision and
Recall, which is widely used as an indicator to measure the accu-
racy of a binary model. Besides, feature importance for each feature
in each classifier was calculated using Gini impurity. The top n
classifiers with high mean 10-fold cross-validation F1 scores were
then retained for the final prediction (n was determined according
to the top numbers of 10x-CV-F1s), and the weight of each classi-
fier was assigned using the corresponding 10x-CV-F1 score.

2.5. Validation of model effectiveness

To verify the performance of DIEP, we collected six independent
negative sets and one positive test set. For negative sets, one was
extracted from the original collected negative gene pairs (Test
set) under the null hypothesis (see details above, Fig. 1). Then,
we used our local samples to create a case-based test set to obtain
more control datasets for validation. Seven trios (at least one
healthy parent and affected child) with different rare genetic dis-
eases were adopted (including an Asymmetric bone disease case,
two Congenital microcephaly cases, an Epileptic encephalopathy
case, a Hypertrophic cardiomyopathy case, a Pulmonary embolism
case and a Charcot-Marie-Tooth atrophy case). We considered
those variants only existing in unaffected of the same family to
be neutral (non-pathogenic). Thus, such variants overlapping in
at least three trios were extracted and mapped into genes sepa-
rately. Then, we randomly combined every two genes and created
this test set. Three literature-based sets provided by Papadimitriou
[18] were 100, 1,000, and 10,000 neutral bi-locus unique combina-
tions from the 1000 Genomes Project (1KGP) after we mapped the
locus into genes using KGGSeq [54], and there were no overlapping
gene pairs after checking all three sets. The last negative set was
DD (Multiple (or dual) molecular diagnoses) set provided in [55].
Significantly, 64 probably digenic gene pairs (different from the
positive gene pairs in DIDA) were manually collected from litera-
ture as a positive test set (Table S1) by searching with keywords
such as ‘‘digenic disease”, ‘‘digenic inheritance”, ‘‘modifier gene”,
‘‘genetic modifier”.

2.6. Visualization of random forest and results interpretation

Many interpretation methods for trees in machine learning only
summarize the impact of the input features as a whole (like Gini
importance), which may not help explain the result of the single
sample [56]. In order to explain the classification mechanism, dis-
sect the results of our DIEP and make it readily understandable to
readers, the visualization of the random forest classification results
was conducted using the TreeExplainer [56] feature contribution
proposed in SHAP (SHapley Additive exPlanations, https://github.-
com/slundberg/shap) [57]. In brief, the feature contribution of each
input feature for each input gene pair was calculated by TreeEx-
plainer, and then the most contributive features for a specific clas-
sification result were found. Finally, the plots were generated by
ggplot2 [58] package in R [59].

https://github.com/slundberg/shap
https://github.com/slundberg/shap


Fig. 2. Parameter determination and model performance on the whole training set. (A) The change of the average feature importance of 200 RF classifiers when conducting
the feature selection using the Recursive Feature Elimination (RFE) method. The initial number of features for REF was 20, and the average feature importance was calculated
each time the least important feature was deleted. The value means the Gini feature importance (FI), the red cross indicates the features with FI < 0.01 (should be deleted), the
yellow exclamation mark indicates the FI is in the range of [0.01, 0.1], and the green tick indicates the FI > 0.1. (B) The order of the 10-fold cross-validation F1 scores for the
200 single classifiers trained using sub-samples generated by the down-sampling method. The top 26 RF classifiers had 10x-CV-F1s � 95%. (C) The ROC (blue) and PR (yellow)
curves of the final predictor. The peak means the best classification threshold for each curve. The embedded plot showed the change of Recall and Specificity rate in the
positive and negative training set with the increased threshold. The recall rate stabilized at 100% when the threshold was �0.5. (D) The probability distribution of the final
predicted scores. The dark and light triangles represented the misclassified samples in the negative and positive gene pairs separately. The scatter plot showed the
distribution of the predicted probability of digenic interaction for the whole training set (16156 pairs). One point represented one gene pair, and the height meant the
probability of the digenic interaction effect, those gene pairs with the same probability would stay at the same height. Most of the gene pairs were at the upper and lower
ends of the plot, which indicated a clear result by the classification model.
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2.7. Comparison with DiGePred

Since the DIEP and DiGePred [19] are relatively similar, we com-
pared them systematically and comprehensively from three
aspects. First, the PR AUCs (Area Under Precision-Recall Curve)
were compared between DIEP and DiGePred based on two differ-
ent test sets (unaffected-no-gene-overlap_non_digenic_pairs_hel
d_out_test.csv and random-no-gene-overlap_non_digenic_pairs_h
eld_out_test.csv) collected from DiGePred publication (https://
github.com/CapraLab/DiGePred). To be consistent with the
DiGePred paper, the predicted scores of DiGePred on these two sets
were calculated using the best model (DiGePred_unaffected-no-g
ene-overlap_model.sav) provided in GitHub. Second, we compared
the sensitivity between DIEP and DiGePred on our manually col-
lected digenic gene pairs (Table S1), and the predicted scores of
DiGePred were calculated using DiGePred Server (https://www.
meilerlab.org/index.php/servers/show?s_id=28). Finally, we used
our Manual test set (64 pairs) and Test set (7756 pairs) to generate
100 sub-test sets in a 1:1 ratio (128 gene pairs for each sub-test
set), and we then conducted the McNemar’s test on these 100
sub-test sets to show the difference in the performance of DIEP
and DiGePred. The scores of DiGePred were also calculated using
DiGePred Server.
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2.8. Enrichment analysis

Enrichment analysis was conducted with 15 randomly selected
diseases, including six Mendelian (Retinoblastoma, Neurofibro-
matosis, Hemophilia, Huntington, Phenylketonuria, Dilated car-
diomyopathy), five oligogenic (Alport syndrome, Long QT
syndrome, Megacolon, Amyotrophic lateral sclerosis, Bardet-Biedl
syndrome) and four polygenic (Dementia, Diabetes, Heart disease,
Hypertension) diseases. Digenic interaction effect of gene pairs in
which both genes were from the same disease and two genes were
from two different diseases were predicted respectively. The Fisher
test and Chi-square test in R were used to evaluate the statistical
significance of the enrichment [60]. Meanwhile, the multiple test
correction was conducted by Benjamini and Hochberg FDR (BH)
[61].

2.9. Compression of whole-genome predicted results

The whole-genome predicted results were stored in an upper
triangular matrix (Fig. S2D), and we transformed it into a triple
table (GeneA, GeneB, Digene_Score) (Fig. S2C) for the convenience
of readers. There are 19,616 unique coding genes extracted from
HGNC (HUGO Gene Nomenclature Committee) [22] in total, which

https://github.com/CapraLab/DiGePred
https://github.com/CapraLab/DiGePred
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made up 192,383,920 gene pairs. We extracted the first two col-
umns of the triple table and stored the gene names in a dictionary
file (Fig. S2A). The predicted digenic scores (Digene_Score) were
stored in bytes to save space. We also provided a high-efficiency
java package for searching the digenic scores for specific gene pairs
(https://github.com/pmglab/DIEP). A detailed method was pro-
vided in Supplementary Information.
2.10. Data and software availability

All detailed supplementary information is shown in Supple-
mentary Information (including the description of main abbrevia-
tions), and other supplementary data are available in our GitHub
(https://github.com/pmglab/DIEP), including Supplementary Data-
sets S1-S8, Supplementary Tables S4–S8, training sets and test sets
for machine learning, the single classifiers that made up the final
DIEP, public codes and the high-efficiency java package for quick
searching. The whole GitHub repository can be downloaded by
‘‘git clone https://github.com/pmglab/DIEP”. However, due to the
limited storage of Git LFS Data, Datasets S4, S5 and S7 with large
file sizes were moved to our OneDrive and Google Driver (more
stable for downloading), and see details in the corresponding
README.md file in GitHub. The whole-genome predicted result
(DIEP final database) was also hosted on our web server, and users
can download it by ‘‘wget” according to the User manual on
GitHub. Besides, the website of KGGSeq is https://pmglab.top/kg-
gseq/.
3. Results

3.1. Performance of the proposed digenic interaction effect predictor

We proposed a framework to predict pathogenic gene pairs
with digenic interaction effect based on the biological relatedness
or similarity of the genes, named Digenic Interaction Effect Predic-
tor (DIEP). The conventional Principal Component Analysis (PCA)
result indicated that simple feature dimension reduction had lim-
ited classification power on the digenic effects of genes (Fig. S3).
Hence, DIEP consisted of several Random Forest (RF) classifiers
with different weights according to the bagging strategy. The RF
algorithm (RandomForestClassifier) implemented by the Python
package, scikit-learn, was trained and evaluated by 10-fold cross-
validation. The gene pairs in the training set of DIEP were collected
from DIDA and other resources. In total, 17 features from four cat-
egories were retained for the prediction after feature selection
from 33 features (Fig. 2A and Table 1). Moreover, we also validated
the trained model in 7 different datasets. Finally, the established
prediction model was applied to investigate pathogenic gene pairs
with digenic interaction effects for various diseases (Fig. 1).

To reduce the influence of the imbalanced sample (140 posi-
tives vs. 8,400 negatives) on the prediction performance, we
adopted a down-sampling strategy to train the RF model. We ran-
domly sampled 50 and 100 samples from each negative training
set (DIDA_NDI and Random set) separately (150 pairs in total)
and merged them with 140 positive gene pairs to generate sub-
samples (290 pairs) for training. We trained 200 RF classifiers using
200 different down-sampling sets. Finally, the top 26 RF classifiers
with higher 10-fold cross-validation F1 scores (�95%) were singled
out for ensembling (Fig. 2B), and the weight of each RF classifier
was drawn on its 10-fold cross-validation F1 score.

The 26 RF ensemble model achieved an Area Under Curve (AUC)
of Receiver Operating Characteristic Curve (ROC curve) as high as
0.996 (Fig. 2C). The ROC peak indicated a true positive (TP) rate
of 96.43% and a false positive (FP) rate of 1.89% with the classifica-
tion threshold of 0.783 on the whole training set. As for the
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Precision-Recall curve, the peak of the PR (Fig. 2C) showed a rela-
tively low TP(Recall) rate (88.57%) and the precision (74.25%) at
the threshold of 0.906. The figure embedded in Fig. 2C showed
the change of Recall and Specificity rate in the positive and nega-
tive training set with the increased threshold. We found that the
Recall rate stabilized at nearly 100% when the threshold was
< 0.5. The threshold in our study was assigned as the default clas-
sification threshold (0.5) by RF. According to a predicted probabil-
ity distribution of the training set in the scatter plot in Fig. 2D, we
could easily find that most of the gene pairs were at the upper and
lower ends of this plot, which indicated a clear classification result
by the trained model.

3.2. Investigation of feature importance to the prediction

We then investigated the importance of each feature to the pre-
diction. Fig. 3A showed the importance score of each feature from
RF calculated by Gini impurity. The ‘‘STRINGPP” was the most cru-
cial feature for distinguishing the digenic gene pairs in our predic-
tor. Together with the ‘‘REAC_FI” and ‘‘BioDis”, were the top 3
important features with relatively high feature importance scores.
Besides, features including the ‘‘DOSemSim”, ‘‘GOSemSim_BP” and
‘‘GeneMANIAGG” also played a role in prediction because a further
reduction in the number of features will result in a less efficient
predictor (Fig. 3B). Besides, the statistical test showed that most
of the individual features were significantly different between
the gene pairs with and without digenic effects (Table 1).

Moreover, to clarify the necessity and illustrate the significance
of the selected features in our DIEP, we trained some other predic-
tors with different subsets of input features (Fig. 3B). The Manual
set and the Test set referred to in Table S2 were combined as one
integrated test set. The results showed that those predictors only
using subsets of all features did not perform well according to
the five different indicators (Dataset S8). Specifically, for 10-fold
cross-validation F1 scores, predictors including ‘‘Only_STRINGPP”
(10x-CV-F1 = 0.938) and ‘‘Top3_Features” (0.943) performed worse
than the Final predictor (0.954) in the training set. Moreover, the
deletion of feature ‘‘STRINGPP” brought the 10x-CV-F1 down to
0.858 (‘‘Without_STRINGPP”). Besides, DIEP had higher recall and
specificity on the integrated test set with a competitive AUC score
(0.95). The results showed that although the performance of
‘‘Only_STRINGPP” looked good, other features helped increase the
recall on actual cases from 0.875 to 0.891 (spider plot in Fig. 3B
and Dataset S8), and improved PR AUC by 6.6 percent (bar plot
in Fig. 3B). Generally speaking, the Final-DIEP had a better perfor-
mance based on five metrics for performance evaluation of
predictors.

3.3. Detailed distribution of the feature values in DIEP

The Gini importance only summarized the impact of input fea-
tures on the model as a whole, which paid no attention to local
explanations for the classification of single gene pair. Thus, we
used TreeExplainer [56] to calculate the contribution of input fea-
tures on individual predictions (single gene pair), and reveal the
impact of each feature sequentially to better understand the clas-
sification mechanism. We then looked into the detailed distribu-
tions of feature contributions in five datasets by DIEP. In the true
positive sets, almost all gene pairs had positive contribution values
(Fig. 4A and 4C, Table S3), and nearly all gene pairs in the true neg-
ative set had contribution values numerically less than or close to 0
at the features (Fig. 4D). Meanwhile, we found that the ‘‘STRINGPP‘‘
was the most contributive feature, with other features including
‘‘REAC_FI”, ‘‘BioDis”, ‘‘DOSemSim” and ‘‘GOSemSim_BP” following.
This phenomenon suggested that if there is a strong protein–pro-
tein association between two genes in the STRING database [41],

https://github.com/pmglab/DIEP
https://github.com/pmglab/DIEP
https://github.com/pmglab/DIEP%26rdquo%3b
http://README.md
https://pmglab.top/kggseq/
https://pmglab.top/kggseq/


Fig. 3. The feature importance of DIEP and multiple predictors comparison. (A) The bar plot of the feature importance of DIEP. (B) Five metrics for the comparison of four
predictors trained with different subsets of input features. The mean 10-fold cross-validation F1 scores were calculated based on the training set. Other indicators, including
the PR AUCs, AUCs, recall and specificity were calculated based on the Manual set and the Test set (Table S2). ‘‘Only_STRINGPP” means that the predictor was trained with
only one feature. And ‘‘Top3_Features” indicates that the predictor was trained with the top three features. ‘‘Without_STRINGPP” suggests that only the feature ‘‘STRINGPP”
was deleted. The ‘‘Final” represents our DIEP.

Fig. 4. The boxplot of feature contribution in the Positive and Negative set. In each dataset, the boxplot of predicted digenic gene pairs and non-digenic gene pairs were
plotted separately in (A), (B), (C), (D) and (E). The red box indicates that the mean feature contribution of all the gene pairs is positive (�0), and the blue is negative (<0). (F)
The feature contribution pattern of an exceptional gene pair in the different datasets. The red color indicates the positive contribution (+) while blue is the negative (�). The
order of the features is the same as (A)-(E).

Y. Yuan, L. Zhang, Q. Long et al. Computational and Structural Biotechnology Journal 20 (2022) 3639–3652
the feature ‘‘STRINGPP” will drive the classification towards the
digenic class with a positive contribution value. Besides, two genes
will have a higher chance of belonging to the digenic class if they
cause the diseases with high semantic similarity, have functional
interaction, participate in the same biological process or have a
close connection based on biological distance. However, for the
gene pairs in the false positive or false negative sets, the votes of
the features for the classification were contradictory. Some fea-
tures drove the prediction to the digenic class, while others drove
to the opposite in either the positive set (Fig. 4E) or the negative set
(Fig. 4B).
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To more insightfully understand feature contribution to the
prediction, we further investigated the detailed prediction results
of each gene pair (Tables S4–S6). Although the ‘‘STRINGPP” was
the primary driving factor for classification (Fig. 4), the combined
effects of other features cannot be overlooked. For instance,
‘‘STRINGPP” had negative contributions on 6 of the 140 positive
gene pairs, among which gene pair TEK/CYP1B1 (0.672) (115th,
labeled as Positive115) was classified correctly but with a high
negative contribution of ‘‘STRINGPP” (Fig. 4F). Similar in the nega-
tive set, Negative877 (SNPHS1:CDH23 = 0.503) was misclassified as
digenic, but the top two features had negative contributions, which
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may be caused by the high contribution of ‘‘BioDis”. Besides, Nega-
tive4415 (SZFAND6:XIRP1 = 0.39) and Negative4645 (SHAUS3:
TMEM150 = 0.277) were assigned as non-digenic, but the ‘‘STRINGPP”
had a high positive contribution while most of the remaining fea-
tures had relatively low negative contributions.

3.4. Further evaluation of DIEP in 7 independent datasets

We further assessed the DIEP in 7 additional independent test
sets (Table S2). One was self-constructed and separated from the
original collected negative gene pairs generated under the null
hypothesis (Test set, Fig. 1, Dataset S3-Sheet3). One was extracted
from 7 trios with different rare diseases (Case-based test set, Data-
set S3-Sheet6). Four literature-based test sets were also adopted,
from which three sets were also under the null hypothesis (includ-
ing ref_100random set, ref_1000random set and ref_10000random
set, S3 Dataset-Sheet9-11), and DD set was described in the section
below (Dataset S3-Sheet5). The remaining set was the only positive
test set manually curated from disease research articles (Manual
test set, Dataset S3-Sheet4).

d DIEP had low false-positive rates in the hypothesis-based
and the case-based dataset. The FP rate was only 2.95% in the
self-constructed null hypothesis dataset (Test set), and only 24
(0.3%) false positives had relatively high probabilities (>0.9, also
see the distribution of the predicted scores in Fig. 5A (Dataset
S3)). In the Test set, the digenic interaction probability of the gene
pair (MKKS/CEP290) was 0.967. The study indicated that the associ-
ation of CEP290 and MKKS would affect the integrity of multipro-
tein complexes at the cilia transition zone and basal body in mice
and zebrafish [62]. Besides, in the case-based test set, we got the FP
rate of 1.54%, and only five false-positive gene pairs had predicted
probabilities > 0.9 (Fig. 5B).

d DIEP performed well in literature-based datasets. In terms
of the three literature-based test sets under the null hypothesis
from another research group which contained 100, 1,000 and
10,000 random gene pairs, the FP rates were only 1%, 1.3% and
2.62% respectively by DIEP (Fig. 5C-5E). That is, our predictor
achieved a specificity of close to 98% in these 3 test sets, and
68%, 65.4%, 62.7% of the samples had low predicted
probabilities � 0.1 (Dataset S3).
Fig. 5. The distribution of the predicted probability of digenic interaction effect in 6 addit
effect in the hypothesis-based set extracted from the original negative set (Fig. 1). (B) Th
(C)-(E) The predicted probability of digenic interaction effect in 3 literature-based sets u
were manually curated from the disease research studies. Samples in (G) were also serv

3647
d DIEP made more accurate predictions on the digenic
effects of genetic diseases. Significantly, we had manually curated
64 probably digenic gene pairs from various research studies, in
which 14 pairs also served as the positive test set by another pre-
dictor for identifying digenic disease genes (DiGePred) [19]. As a
result, our DIEP correctly predicted all 14 digenic pairs (100%)
with relatively high probabilities (0.54–0.97), while DiGePred
only had the TP rate of 57.14% at a suggested threshold of
0.496, and the predicted score only ranged from 0.528 to 0.804.
For the remaining 50 gene pairs, DIEP had a TP rate of 86%
(43/50), whereas DiGePred only predicted 19 of them correctly
(38%). In general, DIEP had correctly predicted 89.06% of the
digenic pairs in the Manual test set curated from literature (Fig. 5-
F-5G), which outperformed DiGePred (42.19%) (Dataset S3, see
the detailed comparison below).

d Discriminate dual molecular diagnoses from digenic inter-
action effect.Multiple (or dual) molecular diagnoses (DD) refers to
the conjunction of two independent diseases caused by different
mutated genes that show simultaneously on one patient [63]. DD
is a type of bi-locus effect but not the digenic interaction effect,
which is often confounded with digenic interaction in practice.
We used gene pairs with pathogenic variants for 97 patients with
Dual Molecular Diagnoses in [55]. Papadimitriou et al. [18] pre-
dicted 67 gene pairs (88%) out of 76 gene pairs in the dataset to
have pathogenic variant combinations by VarCoPP, a tool for pre-
dicting the potential pathogenicity of variant combinations in gene
pairs. On the contrary, DIEP only predicted 24 digenic interaction
pairs (26.09%) out of 92 gene pairs in the 97 patients with DD
(Fig. S4). Of the 24 pairs, only seven pairs had relatively high prob-
abilities (>0.75, such as SKCNQ2:SCN8A = 0.914, SKCNQ2:PRRT2 = 0.777).
Although there is no direct evidence showing the digenic interac-
tion between these genes, mutations in KCNQ2, PRRT2 and SCN8A
were already identified in different types of epilepsy [64,65].
Besides, 27.17% of the gene pairs had a digenic score lower than
0.1, which indicated a non-digenic pattern or very low digenic
interaction effect (Dataset S3). Meanwhile, we also used DiGePred
to predict the above 92 gene pairs, and the result showed that only
four pairs had the digenic effect (Dataset S3). In other words, DIEP
and DiGePred will help differentiate DD from the digenic interac-
tion effect efficiently.
ional test sets. (A) The distribution of the predicted probability of digenic interaction
e test set was generated from healthy people of 7 trios with different rare diseases.
sed in VarCoPP. (F)-(G) The only positive test set from which the digenic gene pairs
ed as positive test set by DiGePred.
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3.5. A systematic comparison of the DIEP and DiGePred

We made a systematic comparison between DIEP and DiGePred
in multiple aspects. First, we compared the PR AUCs of DIEP and
DiGePred on two different test sets from DiGePred (unaffected-
and random-no-gene-overlap_held_out_test). The results showed
that DIEP performed much better than DiGePred on both test sets
with higher PR AUCs (unaffected: 0.895 vs. 0.73; random: 0.683 vs.
0.555, Fig. 6A and Fig. 6B, Dataset S3). DiGePred performed even
worse on our Manual test set with very low sensitivity (42.19%),
and most of the probably digenic gene pairs were predicted as
non-digenic with extremely low scores (Fig. 6C). Fig. 6E indicated
that DIEP has correctly predicted nearly 89.06% of the digenic pairs
from various research studies, while DiGePred gave wrong predic-
tions on 57.81% of those gene pairs. Finally, McNemar’s test was
adopted to show the differences in model performance on 100
down-sampling sub-test sets. Fig. 6D showed that DIEP performed
significantly better than DiGePred on all the sub-test sets (McNe-
mar’s p-value < 2.76E-04) with high prediction accuracy (Table S7).

3.6. Enrichment of digenic interaction effect in known disease genes

We then used DIEP to test the hypothesis that the pathogenic
genes of the same disease are more likely to have the digenic inter-
action effect. We chose responsible genes of 15 different diseases
randomly drawn from DisGeNET [66] for the hypothesis test. Dis-
eases included six Mendelian, five oligogenic and four polygenic
diseases (Table S10). First, 15 same disease gene pair sets were
Fig. 6. The detailed comparison between DIEP and DiGePred. (A and B) The PR curves for
random-no-gene-overlap). The values near the curves indicate the PR AUCs of different cu
comparison between DIEP and DiGePred on 100 down-sampling sub-test sets. Each su
negatives down-sampled from the Test set). The scatter plot (red dots) indicates the Mc
predicted accuracy of two methods in each set. (E) The distribution of predicted scores of
pair, and the length of each line indicates the value size. The gray area shows the perce
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generated by randomly combining genes from the same disease,
and 35 different diseases gene pair sets were created by randomly
combining two genes from different diseases (Table S8). The
digenic interaction effect was predicted respectively for each gene
pair set. Then, gene pairs in the training set were excluded to avoid
overfitting. Fig. 7A showed the statistical results of the digenic
interaction effect between 15 same disease gene pair sets and 15
different representative diseases gene pair sets. Plenty of gene
pairs from the same disease gene pair sets were predicted with
the digenic interaction effect (Dataset S4). The percentage of
digenic gene pairs ranged from 11.99% to 36.22%. Compared to
gene pairs from different diseases gene pair sets, the enrichment
of digenic interaction among gene pairs from the same disease
was statistically significant for most diseases. The statistical analy-
sis also confirmed the strong association between the same disease
gene pairs and the digenic interaction effect (Fig. 7A, Table S8,
Datasets S4-5).

The enrichment ratios (Odds ratios) of digenic interaction in
Mendelian and oligogenic diseases were higher than those in poly-
genic diseases (Fig. 7B). In Mendelian diseases, for example, the
probability of being digenic was 2.89 times higher in gene pairs
from Retinoblastoma Disease (Retb, same disease gene pairs) com-
pared with those from Alport syndrome (Alps) and Bardet-Biedl
syndrome (Babi) (different diseases gene pairs) (Fig. 7C). All the
enrichment ratios and the 95% confidence intervals for gene pairs
from the same disease exposure were >1 (Table S8), showing a pos-
itive association between the same disease gene pairs and digenic
interaction. In oligogenic diseases, gene pairs from Bardet-Biedl
DIEP and DiGePred on two held-out test sets from DiGePred paper (unaffected- and
rves. (C) The predicted results of DIEP and DiGePred on the Manual test set. (D) The
b-test set contains 128 gene pairs (64 positives from the Manual test set and 64
Nemar’s p-values of 100 sub-test sets, and the line chart shows the corresponding
64 probably digenic gene pairs by DIEP and DiGePred. Each bar represents one gene
ntage of the wrong predictions of two methods under the best thresholds.



Fig. 7. The statistical result and the enrichment ratio plot for 15 same disease gene pair sets and 35 different diseases gene pair sets. (A) The statistic result between 15 same
disease gene pair sets and 15 representative different diseases gene pair sets. The red circle indicates the proportion of digenic gene pairs in which both genes are from the
same disease, and the blue one is the proportion of digenic gene pairs in which both genes are from different diseases. The size of the circle depended on the proportion. The
red line indicates a significant result with P-value � 1E-05, the black line indicates the P-value > 0.05, and the blue line indicates the P-value falls in the middle of two P
values. (B) The scatter plot of odds ratios for comparisons between 15 same disease gene pair sets and 35 different diseases gene pair sets. The red dotted line shows the OR
threshold of 1. (C) The detailed enrichment values of comparisons between monogenic disease Retinoblastoma Disease and 35 different diseases gene pair sets. Each line
indicates one comparison, the length of the line means the 95% confidence interval and the red line link 35 enrichment values. The dotted line shows the Odds ratio = 1. (D)
The detailed enrichment values of comparisons between oligogenic disease Bardet-Biedl syndrome and 35 different diseases gene pair sets. (E) The detailed enrichment
values of comparisons between polygenic disease Diabetes and 35 different diseases gene pair sets.
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syndrome (same disease gene pairs) were 6.84 times more likely to
have the digenic interaction effect than those from Alps and Babi
(different diseases gene pair) (OR = 6.84, 95%CI = 5.73–8.2)
(Fig. 7D). However, the enrichment ratios in Amyotrophic lateral
sclerosis and Alport syndrome were not always significantly > 1
(P.adjust-BH < 0.05), in which the underlying reason is unknown.
In polygenic diseases, the largest enrichment ratio was only 2.23
(ORHyte:Alps-Babi = 2.23) with the 95% CI within [1.91–2.61]. Gene
pairs from Diabetes (same disease gene pair), for example, were
only 1.82 times more likely with a digenic interaction effect than
gene pairs from the Alps and Babi (different diseases gene pair)
(OR = 1.82, 95%CI = 1.57–2.13) (Fig. 7E). 8.38% of the enrichment
ratios in polygenic diseases were not significantly > 1 (P.adjust-B
H < 0.05, Table S8).
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4. Discussion

In this study, we demonstrated that the gene level features (e.g.,
the biological relatedness or similarity) of different genes are
highly effective for predicting the digenic interaction effect poten-
tial on disease phenotypes. Our DIEP, an accurate knowledge-based
prediction model for the digenic interaction effect, achieved excel-
lent performance with a 4.43% FP rate and 99.29% TP rate (Recall)
on the whole training set. In addition, DIEP also had low FP rates in
6 independent negative testing datasets and high sensitivity
(89.06%) in the manually curated gene pairs with digenic interac-
tion effect in human diseases. The high performance of DIEP was
attributed to three factors at least. First, we constructed a reliable
and comprehensive benchmark dataset. Except for the acknowl-
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edged positive samples in DIDA, the negative datasets were gener-
ated by different theoretical assumptions. Among them, the
DIDA_NDI set was directly generated by permuting gene pairs in
the positive training set. The well-matched positive and negative
datasets may reduce many confounding factors, including study-
bias and literature-bias factors, and ensure high discrimination at
key predictors. Besides, we adopted rare mutation profiles from
the 1000 Genomes Project to purify the negative training set fur-
ther. Second, the down-sampling and bagging-based methods
were applied to solve imbalanced samples effectively [67,68] and
help alleviate the overfitting problem because the predictor used
the whole training set performed poorly, which only had a
42.19% accuracy in the Manual test set. In comparison, our final
predictor DIEP ensembled multiple RFs worked better with an
89.06% sensitivity in the Manual test set and relatively high PR in
the imbalanced training set (Fig. 3B). Third, we also collected a
comprehensive set of predictors to enhance the performance,
although some features individually had relatively low importance
scores.

It should be noted that the digenic interaction estimated by
DIEP is based on the gene-level functional relation per se. A pos-
itive prediction by DIEP depicts that the two genes in a pair may
be functionally alternative, and distortions at both genes are
needed to distort a biological function and subsequently cause
a disease. Two genes with a digenic interaction effect may not
necessarily be pathogenic in a person unless both genes had
deleterious mutations. On the other hand, deleterious mutations
will not manifest interactive pathogenic effects unless they occur
in genes with digenic effects. Recently, a method named VarCoPP
[18] has been proposed to estimate combined pathogenicity in
two or more genes based on deleteriousness scores (e.g., CADD
[69]) of mutations. It showed that different variant combinations
in a gene pair could have various scores. We also quickly checked
the prediction results by VarCoPP and DIEP (Dataset S3 - ‘‘ref-
23bi”). In the original test set of VarCoPP, DIEP accurately pre-
dicted all the 23 positive gene pairs while VarCoPP gave wrong
predictions at three variant pairs. Although it is hard to judge
which level of information is more deterministic, this investiga-
tion suggested it is important to consider the gene level functions
to predict digenic interaction. And we believe that effective inte-
gration of variant-level pathogenicity and gene-level interaction
information will contribute to a more convincing prediction,
and facilitate the genetic mapping of causal variants for real
cases.

DIEP outperformed another alternative software, DiGePred,
regarding predictive performance and usage efficiency, which
addressed the same problem at the gene level. DIEP consistently
outperformed DiGePred on both DiGePred’s and DIEP’s test sets.
In the comparison based on the positive set (Manual test set),
our DIEP showed much higher sensitivity than DiGePred (89.06%
vs. 42.19%). Here are the possible reasons why DIEP is better than
DiGePred. First, DIEP had a broader range of input features. The
protein–protein association, the functional interaction, and the
semantic similarity of gene DO and GO annotations played an
important role in the prediction (Fig. 3A). Second, we curated a
comprehensive and probably more representative training set
and effective data filtering strategies to train the prediction model.
However, DiGePred only used the unaffected non-digenic set cre-
ated from relatives of UDN (UNDIAGNOSED DISEASES NETWORK)
[19,70]. Third, we selected feature selection for more reliable input
features; besides, down-sampling and bagging-based strategies
were adopted for a more robust predictor in the random forest.
In addition, we have designed an efficient compression algorithm
for the predictive result of whole-exome gene pairs, and provided
a high-efficiency java package for searching digenic potential for
input genes.
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DIEP also had the advantage of being robust to the confusion of
gene pairs with bi-locus effects dual molecular diagnosis (DD). The
pathogenic digenic interaction effect means that two genes may
lead to the same disease phenotype by interaction effect. However,
DD is a completely different concept, which means the coincidental
independent segregation of two separate disease entities, and each
one is caused by variants in separate linked or unlinked genes/loci
[7]. Namely, DD refers to the conjunction of two independent
monogenic diseases that show simultaneously in one patient
[63], indicating that two distinct genes lead to different disease
phenotypes. So genetic loci involved in DD segregate indepen-
dently in most instances [55]. In other research, Versbraegen
et al. aimed to classify three different types of bi-locus effects (in-
cluding true digenic, modifier and dual molecular diagnosis) [63],
but they could not distinguish between bi-locus effects and non-
bi-locus effects. In contrast, DIEP helped differentiate DD (Fig. S4)
from digenic interaction effects, mainly because the predicted
model was constructed based on comprehensive gene-based simi-
larity levels in multiple databases. As shown in Table S9, DIEP dis-
tinguished DD mainly because the ‘‘STRINGPP” votes for the
classification of gene pairs in the DD set as a non-digenic class,
which means that there is no very strong association between
two genes with the DD effect. This is also consistent with the fact
that DD indicates two independent genes, as discussed above.
However, other features also play a role because some gene pairs
with a positive contribution of ‘‘STRINGPP” were classified as
non-digenic (e.g., DD69 in Table S9).

The feature ‘‘STRINGPP” in DIEP plays an important role in the
classification. This is expected because the STRING database essen-
tially is a ‘‘combined score” computed by combining the probabil-
ities from the different evidence channels to indicate the protein–
protein associations. Here, the ‘‘association”, from a functional per-
spective, includes both direct physical binding and indirect interac-
tion such as participation in the same metabolic pathway or
cellular process as indicated in the publication [42]. Thus, we con-
sidered that ‘‘STRINGPP” is a comprehensive indicator for the asso-
ciation between genes. However, it should be noted that predictors
only using the ‘‘STRINGPP” and without ‘‘STRINGPP” performed
more poorly than DIEP. So there are also other features indepen-
dent of ‘‘STRINGPP” for digenic interaction. Importantly, DIEP also
estimated 82,099 gene pairs with STRINGPP values equal to 0 or
missing in the original database as digenic pairs, and 2.31% of
which even had the predicted digenic potential over 0.9 (Dataset
S6).

There are several reasons why enrichment of digenic interaction
effects was more conspicuous in Mendelian and oligogenic dis-
eases than in polygenic diseases. First, polygenic diseases have dif-
ferent genetic spectrums fromMendelian and oligogenic disorders.
The number of responsible genes for polygenic diseases is usually
large, and the effect sizes of genes are small [71]. It is less likely
that there are many strong interactions among susceptibility genes
for polygenic or complex diseases. On the contrary, most responsi-
ble genes for Mendelian or oligogenic diseases have large effects,
and the synergy of different genes may have greater impacts on
final phenotypes. In addition, our positive gene pairs were col-
lected from severe diseases, which may not represent well for com-
mon diseases. Finally, some tested genes may not be true
susceptibility genes for complex diseases. It has been noted that
it is very difficult to identify genuine causal genes of complex dis-
eases, and many reported genes are indirectly associated with the
diseases due to linkage disequilibrium [72].

DIEP will provide a valuable resource of digenic interaction
effect for genetic mapping of human diseases. Traditional genetic
mapping analyses such as genome-wide linkage and association
studies often focus on individual locus or genes. That is because
genome-wide interaction will substantially enlarge the number
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of hypothesis tests and lead to many false-positive findings by
chance and an extensive computing burden. Therefore, most gene
interaction studies were carried out based on existing knowledge
about the diseases [14,73–76], which is rather limited. For exam-
ple, methods identifying digenic interaction effects such as
family-based association studies and Genome-wide association
studies focus more on the validating level required to know the
candidate gene pairs. However, in practice, especially for rare dis-
eases or polygenic diseases, the disease genes are unknown.
Besides, those genes with invisible influence are difficult to be
identified alone. DIEP can be used to explore all potential gene
pairs with digenic interaction effects. On the one hand, gene pairs
with interaction effects will be considered exhaustively without
limitation from the knowledge. On the other hand, most majorities
of gene pairs without digenic interaction effect will be pre-
excluded according to the prediction of DIEP (Dataset S7), which
will substantially relieve false positives and computing burden.
Remarkably, the whole-genome predicted results were stored as
a triple table, which was compressed from �3.56G to �366 M with
an efficient compression algorithm, providing convenience for
researchers. Besides, an effective and efficient method was also
accessed for searching the digenic scores for specific gene pairs
(https://github.com/pmglab/DIEP).

A limitation of the present study is that the number of positive
gene pairs was not large for both training and validation. The pos-
itive training gene pairs were only identified in a limited number of
diseases, e.g., Bardet-Biedl syndrome, Familial long QT syndrome
and Alport syndrome from DIDA. Such training sets may provide
biased information for machine learning (or overfitting to some
extent), which will make the final predictor inadequate in mapping
digenic pairs in polygenic or more complex diseases. The positive
test set contained only 64 probably digenic gene pairs, although
the difference between the other software (VarCoPP and DiGePred)
and DIEP was significant. Besides, Mikhael et al. had successfully
applied DiGePred to Mayer–Rokitansky–Küster–Hauser Syndrome
and found a likely digenic combination of LAMC1 and MMP14
[77], and our DIEP also discovered it (0.978). Furthermore, Iafusco
et al. reported a new case of digenic GCK/HNF1A variants (DIEP
predicted probability = 0.946) identified in a hyperglycemic sub-
ject. They indicated that identifying mutations in more than one
gene will help researchers better understand the genetic cause of
the diseases [78]. Therefore, despite the limited number of digenic
pairs, DIEP did provide more reliable predicting results with a bet-
ter performance. Certainly, the upcoming more gene pairs with
digenic interaction effect in diseases will help renew the training
set and enhance the robustness of the predictor.

Our work has three promising future usages. First, the DIEP can
be used with genetic data in local samples to jointly prioritize
interactive gene pairs in genetic studies of human diseases. The
bioinformatics supported by accurate prediction of DIEP will
increase the confidence of declaring a potential pathogenic gene-
gene interaction detected in genetic samples. Second, the pre-
calculated digenic interaction scores of all the coding gene pairs
across the human genome can be used to narrow down the
exploratory range in a genome-wide gene-interaction scan of
human diseases among genetic samples. For instance, the scan
can be carried out only at gene pairs with digenic interaction
scores � 0.5. As a result, the interactive pairs will decrease from
192,383,920 to 3,940,174 (2.05%), substantially reducing the com-
puting and multiple testing burden. Finally, our genome-wide pre-
calculated digenic interaction scores can be used to construct
gene-gene interaction networks in the future. Most available
genetic interaction networks nowadays are based on systematic
screens conducted in animal models, e.g., yeast and Caenorhabditis
elegans [1,79], while our scores relied on human diseases and will
lead to a genetic interaction network more relevant to abnormal
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phenotypes in human diseases [80]. A comparative understanding
of genetic interaction networks of different species may get
insights into some long-standing genetic problems [81].

In conclusion, the DIEP is an accurate and superior model to
predict the digenic interaction effect of genes for diseases, which
may effectively relieve the dimension burden in genetic mapping
to reveal more gene interactions.
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