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Background: Gamma-linolenic acid (GLA) is found in animals and plants that play a role in brain function and metabolism.
Objective: This study aimed to investigate the analgesic effects of GLA on peripheral formalin injection.
Methods: Wistar rats were randomly assigned to four groups: Sham, formalin, formalin/GLA 100mg/kg, and formalin/GLA 150mg/
kg. The Formalin test was utilized to create a pain model. A tissue sample was prepared from the spinal cords of rats to measure
oxidative stress parameters and pro-inflammatory cytokines. Furthermore, the authors analyzed the expression of c-Fos protein in
the spinal cords.
Results: Our findings demonstrate that GLA has a reliable pain-relieving effect in the formalin test. GLA 100 increased superoxide
dismutase (SOD) (P< 0.05), glutathione (GSH) (P< 0.001), and catalase (CAT) (P<0.05), and decreased the levels of c-Fos
(P<0.001), interleukin-1 beta (IL-1β) (P<0.001), tumour necrosis factor-alpha (TNF-α) (P< 0.001), and malondialdehyde (MDA)
(P<0.001) in the spinal cord. AlsoGLA 150 increased SOD (P<0.05), GSH (P<0.001), andCAT (P< 0.05) and decreased the levels
of c-Fos (P< 0.001), IL-1β (P< 0.001), TNF-α (P<0.001), and MDA (P< 0.001) in the spinal cord.
Conclusion: The findings have validated the antinociceptive impact of GLA and hinted towards its immunomodulatory influence in
the formalin test.
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Introduction

Pain can result from tissue damage, chemicals, or abnormal
immune system activation that triggers pain receptors. It is widely
recognized that the spinal cord plays a crucial role in transmitting
pain signals from damaged tissues. Chronic conditions, such as
inflammation, can change the characteristics of the somatic sen-
sory pathways. This can lead to symptoms such as hyperalgesia,
which is an increased sensitivity to pain. It can also cause changes
in the excitability of primary afferent neurons, which are
responsible for transmitting sensory information from the body
to the brain[1–3]. Following the injection of irritant chemicals such
as formalin into the peripheral region, cell migration, oedema,
and fever may be induced. This process is mediated by cytokines
and prostaglandins. Additionally, pro-inflammatory mediators

have the potential to sensitize pain afferent neurons and increase
pain behaviour, resulting in hyperalgesia or allodynia[4]. The
formalin test was created by Dubuisson and Dennis in 1977 to
evaluate pain-related reactions and has been widely used since[5].
Various animal species, such as rats, mice, rabbits, cats, guinea
pigs, and primates, are used[6].

The c-Fos gene encodes the nuclear protein Fos and is rapidly
and transiently expressed in neurons in response to a pain
stimulus[7]. FOS can alter spinal pain circuits, leading to mod-
ulation of spinal pain processes[8–10].

According to research, the spinal cord microglia’s become
reactive before the astrocytes when inflammation occurs in the
body. In situations of inflammatory pain, the dorsal horn of the
spinal cord produces pro-inflammatory cytokines due to periph-
eral macrophages and activated microglia[11–14]. As a result, these
cells increase the expression of cytokines such as tumour necrosis
factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-
6 (IL-6), which are associatedwith inflammation-induced pain[15].

HIGHLIGHTS

• Gamma-linolenic acid (GLA) has a reliable pain-relieving
effect in the formalin test.

• GLA increased superoxide dismutase (SOD), glutathione
(GSH), and catalase (CAT) and decreased the levels of
c-Fos, interleukin-1 beta (IL-1β), tumour necrosis factor-
alpha (TNF-α), and malondialdehyde (MDA) in the
spinal cord.

• The findings have validated the antinociceptive impact of
GLA and hinted towards its immunomodulatory influence
in the formalin test.
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The increase of IL-1β and TNF-α can lead to the induction of
oxidative stress[16].

The polyunsaturated fatty acids (PUFAs) are important for
both health and disease. The body produces powerful mod-
ulatory molecules for inflammatory responses, such as pros-
taglandins, leukotrienes, and interleukins. These molecules affect
the gene expression of various bioactive molecules. Gamma-
linolenic acid (GLA), which is an essential fatty acid of the omega-
6 series, is produced by the body from linoleic acid through the
delta-6-desaturase enzyme. Linoleic acid is also known as all cis
6, 9-octadecadienoic acid. While the positive effects of GLA
supplementation have been established, the exact molecular
mechanism responsible for its health benefits remains unclear[17].
There are some studies that have pointed to the analgesic effects
of GLA. GLA may be helpful in managing breast pain and
reducing nerve pain in people with diabetic neuropathy[18]. Pre-
treatment with GLA in diabetic rats reduced the pain perception
caused by the tail-flick test[19]. GLA reduces inflammation by
deactivating nuclear factor kappa B (NF-κB) and activator pro-
tein 1 (AP-1) through the reduction of oxidative stress and inhi-
bition of the inflammatory pathways[20]. It is imperative to
conduct studies on the possible mechanisms behind GLA’s pain-
relieving properties to complete its analgesic profile. The current
lack of information on this topic needs to be addressed. It has
previously been demonstrated that injecting formalin periph-
erally can increase the levels of inflammatory mediators and
oxidative stress in the spinal cord[21]. Our goal was to study the
effects of GLA on pain responses caused by peripheral formalin
administration. Additionally, we researched the molecular
mechanisms contributing to GLA’s pharmacological properties.

Methods

Animals

Thirty two male Wistar rats, with an average weight of
250 ± 20 g, were housed in a facility with a 12-h light and 12-h
dark cycle, at a temperature of 22 ± 2°C. They were given free
access to food and water. The experiments were carried out
according to the ARRIVE (Animal Research: Reporting of in
Vivo Experiments) guidelines 2.0[22]. GLA was derived from
evening primrose oil produced by Barij Essence Pharmaceutical
Company in Iran. The protocol of this study was approved by the
Research Ethics Committee (EE/1401.2.24.14812/scu.ac.ir).

Study design

There were four groups of animals in this study (n=8). The first
group received sunflower oil for seven days. They also received a
subcutaneous injection of normal saline on the right hind paw on
the seventh day. The second group received a formalin injection
of 50 µl with a concentration of 2.5% in their right hind paw after
receiving sunflower oil injection for seven days. The third group,
known as the GLA 100 group, was injected with GLA 100 mg/kg
of sunflower oil for seven days before undergoing the formalin
test. Lastly, the GLA 150 group was injected with GLA 150 mg/
kg of sunflower oil for seven days before the formalin test was
conducted[23]. It is important to note that both the drug and drug
carrier were administered through an intraperitoneal injection.

Formalin test

Prior to the experiment, rats were placed in a test chamber for
20 min to become accustomed to their surroundings. Then, a
50 µl injection of 2.5% formalin solution (dissolved in NaCl
0.09%) was administered subcutaneously into the rat’s right hind
paw using a syringe[24,25]. The behavioural data was recorded for
40 min following the formalin injection. The Formalin test is
divided into two phases: acute phase (0–5min) and chronic phase
(16–40 min)[5,26].

Tissue sampling

The rats were anesthetized using a combination of ketamine and
xylazine (40 and 5 mg/kg, receptively) and immediately (< 60
sec) sacrificed[27]. After injecting formalin, samples were collected
from the spinal cord of four animals in each group to assess
biochemical parameters 24 h later[28]. In each group, the L4–6
spinal cords were isolated to evaluate c-Fos protein levels 2 h after
formalin injection (n=4)[29,30]. All the samples were stored at
− 70°C until further testing.

Measurement of biochemical parameters

Samples of the spinal cords were taken to analyze various bio-
chemical parameters such as malondialdehyde (MDA), IL-1β,
and TNF-α. The antioxidant parameters such as glutathione
(GSH), superoxide dismutase (SOD), and catalase (CAT) were
also analyzed. The total protein content was measured in all
samples using the Bradford method. These parameters were
established using the Enzyme-Linked Immunosorbent Assay
technique (ELISA). All these analyses were done using Kiazist
products from Hamedan, Iran, with the following product
numbers: KMDA96 (MDA), E0119Ra (IL-1β), E0764Ra (TNF-
α), KTHI96 (GSH), KSOD96 (SOD), KCAT96 (CAT), and
KBRD96 (total protein content).

Western blot

Tissues were lysed using a buffer and a protease inhibitor.
Samples were homogenized and centrifuged. Protein concentra-
tion was measured, and samples were boiled and transferred to a
gel for electrophoretic separation and immunoblotting. Band
density was calculated by scanning photosensitive papers. Protein
density was analyzed using JS 2000 software.

Statistical analyses

We utilized version 26 of SPSS software to analyze the data.
Before proceeding, we conducted a normalization test on the data
based on their distribution and homogeneity of variances, using
the Kolmogorov–Smirnov test available in SPSS. The test revealed
that the data were normally distributed, so we performed a one-
way ANOVA to assess the groups. Post hoc analyses were con-
ducted using the Tukey test. A significance level of P less than
0.05, P less than 0.01, and P less than 0.001 were considered.

Results

Formalin test

Figure 1 shows the results of the formalin test (mean ±ESM).
During the acute phase (0–5 min) of the test, the formalin
group had higher average pain intensity than the sham group
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(P< 0.001). However, groups GLA 100 and 150 showed lower
average pain intensity than the formalin group (P<0.001,
P< 0.01). During the chronic phase (16–40 min), the formalin
group showed higher pain intensity compared to the sham group
(P< 0.001). Additionally, groups GLA 100 and 150 exhibited
lower average pain intensity than the control group (P< 0.01,
P< 0.001).

The c-Fos protein expression in the spinal cord

It was observed that there was an increase in the amount of c-Fos
protein in the spinal cord after formalin injection as compared to
the sham group (P<0.001). Additionally, we conducted an
analysis to determine the effects of GLA on the expression of
c-Fos in the spinal cord in the formalin test. The results showed a
difference between the formalin group and the GLA 100
(P< 0.001) as well as the 150 mg/kg (P<0.001) groups (Fig. 2).

The levels of IL-1β in the spinal cord

Following the injection of formalin, it was observed that the
formalin group had higher levels of IL-1β compared to the sham
group (P< 0.001). However, by administering GLA 100 and
150 mg/kg, the IL-1β levels in the formalin group were reduced
(P< 0.001, P<0.001), as demonstrated in Fig. 3.

The levels of TNF-α in the spinal cord

After injecting formalin, the TNF-α levels were found to be higher
in the formalin group in comparison to the sham group
(P< 0.001). However, when GLA was administered at a dose of
100 and 150 mg/kg, the TNF-α levels decreased as compared to
the control group (P< 0.001, P<0.001), as shown in Fig. 3.

The levels of SOD, GSH, CAT, and MDA in the spinal cord

Our study showed that animals treated with formalin had lower
levels of SOD, GSH, and CAT in their spinal cord compared to
healthy rats (P< 0.001, P< 0.001, P<0.001). However,
administering GLA at dosages of 100 mg/kg resulted in increased
levels of SOD, GSH, and CAT compared to the formalin group
(P< 0.05, P<0.001, P< 0.05). In addition, GLA at a dosage of
150 mg/kg significantly increased SOD, GSH, and CAT levels
compared to the formalin group (P< 0.05, P< 0.001, P< 0.05).
Furthermore, we observed increased levels of MDA in the spinal
cord of animals treated with formalin compared to healthy rats

A

B

Figure 1. Effect of GLA pre-treatment (100 and 150 mg/kg) on pain behaviour
in the formalin test. (A) Antinociceptor score between 0 and 5 min. (B)
Antinociceptor score between 16 and 40 min. All data are presented as the
mean ± SEM (n = 8 per group). One-way ANOVA was used to identify the
overall differences between the groups. The significant statistical difference
between the specified groups revealed by post hoc Tukey’s test. *P< 0.05, #
P< 0.01 and @ P< 0.001. GLA, Gamma-linolenic acid.

Figure 2. Effect of GLA pre-treatment (100 and 150 mg/kg) on c-Fos protein
expression (western. blot). All data are presented as the mean ± SEM (n = 4
per group). One-way ANOVA was used to identify the overall differences
between the groups. The significant statistical difference between the specified
groups revealed by post hoc Tukey’s test. @ P< 0.001. GLA, Gamma-
linolenic acid.
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(P< 0.001). Nevertheless, administering GLA at dosages of 100
and 150 mg/kg resulted in decreased levels of MDA compared to
the formalin group (P<0.001, P< 0.001) (Fig. 4).

Discussion

GLA is an 18C omega-6 polyunsaturated fatty acid in black-
currant, borage, evening primrose oil, and milk[31]. Current stu-
dies on GLA primarily focus on its potential therapeutic benefits
for inflammation[32]. In various clinical studies, GLA adjuvant
has been studied as a potential treatment for influenza, tubercu-
losis, malaria, HIV, schistosomiasis, leishmaniasis, and Hansen’s
disease[33]. Also, changes in blood GLA levels have been reported
in some diseases[34]. In our search, we found only a few studies
that describe the use of GLA for pain[17,20]. In diabetic rats, the
GLA decreased the pain perception caused by the tail-flick test[19].
Furthermore, studies have demonstrated that GLA can effectively
decrease breast pain[18]. Despite the potential benefits of using
PUFAs, such as GLA, there are limitations when it comes to
conducting large clinical trials. This is due to the fact that subjects

may have varying levels of 18C- and LC-PUFA in their circulation
and tissue, resulting in inconsistent reactions to PUFA-based
supplements. As such, further studies are needed to fully under-
stand the effects of these supplements. Balancing n-6 and n-3
metabolic pathways can improve health by reducing inflamma-
tion and preventing disease. PUFA-based supplements, such as
GLA-enriched supplements, can be used in complex supple-
mentation strategies to address individual and population dif-
ferences for personalized medicine[35]. In our study, we aimed to
minimize these variables by using rats of the same breed and sex.

In the present study, both GLA 100 and a dosage of 150mg/kg
were effective in reducing the pain intensity in the formalin test. It
is worth noting that there was no significant difference observed
between the 100 mg/kg and 150 mg/kg dose of GLA. In the acute
phase of the formalin test, the group that received formalin
treatment experienced higher average pain intensity than the
normal rat group. However, the groups treated with GLA 100
and 150 mg/kg showed a decrease in pain intensity compared to
the formalin group[6]. During the second phase of the formalin
test, research has shown that the pain experienced is due to the
central sensitization of spinal dorsal horn neurons[6]. The sensi-
tivity of central neurons can be verified by an increase in the
c-Fos[36].

The C-Fos expression in the spinal cord increased 2 h after
formalin injection[37–39]. The c-Fos gene is an immediate-early
gene that is rapidly transcribed into messenger RNA, leading to
the expression of Fos protein that lasts for up to an hour[40]. In the
present study, treatment with GLA 100 and 150 mg/kg reduced
c-Fos expression in the spinal cord following formalin injection.
A study has reported that mRNA for c-Fos is reducedmarkedly in
human T cells incubated with GLA in patients with rheumatoid
arthritis. In that study, the reduction of c-Fos interacted with the
reduction of IL-2[41].

The injection of formalin into the periphery caused elevated
levels of IL-1β and TNF-α in the spinal cord. When the inflam-
masome is activated, certain molecules are released as a response
by the body. This leads to an increase in pro-inflammatory cyto-
kines. These cytokines can be transported in a retrograde manner
either through axonal or non-axonal mechanisms from the
environment to the spinal cord. This can contribute to
nociception[42]. Based on our research, after formalin adminis-
tration, GLA was found to have neuroimmunomodulatory effects
on the spinal cord by reducing concentrations of IL-1β and TNF.
Neuroinflammation is an important factor in nociceptive trans-
mission at both the spinal and supraspinal levels[17]. It has been
reported that compounds containing PUFAs, including fish oil,
have antinociceptive effects[43]. GLA inhibits inflammatory
responses by suppressing ERK/JNK signal transduction and oxi-
dative stress, leading to NF-kB inactivation[20]. Inactivation of the
NF-κB pathway suppresses the production of IL-6 and TNF-α[44].

Previous studies have shown that TNF-α and IL-1β stimulate
the biogenesis of cellular ROS in various tissues, resulting in their
generation[45,46]. Oxidative stress plays a crucial role in inflam-
matory responses. The process of oxidative stress can cause
damage to proteins, lipids, and DNA in both neurons and glial
cells[47]. This can result in a loss of function due to oxidative
degradation. Our study has shown that when formalin is injected
into the peripheral system, it leads to elevated levels of oxidative
stress markers like MDA in the spinal cord. On the other hand,
the production of antioxidant markers such as SOD, CAT, and
GSH is impaired. However, injection of GLA 100 and 150 mg/kg

A

B

Figure 3. Effect of GLA pre-treatment (100 and 150mg/kg) on IL-1β and TNF-α
levels. (A) The. levels of IL-1β in the spinal cord. (B) The levels of TNF-α in the
spinal cord. All data are presented as the mean ± SEM (n = 4 per group). One-
way ANOVA was used to identify the overall differences between the groups.
The significant statistical difference between the specified groups revealed by
post hoc Tukey’s test. *P< 0.05, # P< 0.01 and @ P< 0.001. GLA, Gamma-
linolenic acid.
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decreased MDA levels and increased SOD, CAT, and GSH in the
spinal cord compared with the formalin-treated group. Previous
studies have suggested that the analgesic effects of GLA are
mediated by the neuroprotective, vasodilatory, and antioxidant
properties of GLA[48].

Conclusion

This study shows that GLA has anti-hyperalgesic effects in for-
malin tests. The immunomodulatory mechanism of GLA has
been partially explained, indicating that it has an impact on the
spinal cord and inflammation site. According to the study, GLA
can reduce the levels of pro-inflammatory cytokines like IL-1β
and TNF-α in the spinal cord. This indicates that it may have a
neuroimmunomodulatory impact on central sensitization.
Furthermore, the administration of GLA resulted in a significant
alteration of oxidative stress markers in the spinal cord. In indi-
viduals who experience pain, such as those with rheumatoid
arthritis, supplementation with GLA may be beneficial[49].
However, further studies are needed in order to better compre-
hend the mechanism behind GLA’s pain-relieving effects.
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