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Abstract: With the advent of unmanned aerial vehicles (UAVs), a major area of interest in the research
field of UAVs has been vision-aided inertial navigation systems (V-INS). In the front-end of V-INS,
image processing extracts information about the surrounding environment and determines features or
points of interest. With the extracted vision data and inertial measurement unit (IMU) dead reckoning,
the most widely used algorithm for estimating vehicle and feature states in the back-end of V-INS
is an extended Kalman filter (EKF). An important assumption of the EKF is Gaussian white noise.
In fact, measurement outliers that arise in various realistic conditions are often non-Gaussian. A lack
of compensation for unknown noise parameters often leads to a serious impact on the reliability and
robustness of these navigation systems. To compensate for uncertainties of the outliers, we require
modified versions of the estimator or the incorporation of other techniques into the filter. The main
purpose of this paper is to develop accurate and robust V-INS for UAVs, in particular, those for
situations pertaining to such unknown outliers. Feature correspondence in image processing front-end
rejects vision outliers, and then a statistic test in filtering back-end detects the remaining outliers of the
vision data. For frequent outliers occurrence, variational approximation for Bayesian inference derives
a way to compute the optimal noise precision matrices of the measurement outliers. The overall
process of outlier removal and adaptation is referred to here as “outlier-adaptive filtering”. Even
though almost all approaches of V-INS remove outliers by some method, few researchers have treated
outlier adaptation in V-INS in much detail. Here, results from flight datasets validate the improved
accuracy of V-INS employing the proposed outlier-adaptive filtering framework.

Keywords: V-INS; UAV; EKF; IMU; camera vision; computer vision; image processing; outlier
rejection; adaptive filtering; sensor fusion; navigation

1. Introduction

The most widely used algorithms for estimating the states of a dynamic system are a Kalman
Filter [1,2] and its nonlinear versions such as an extended Kalman filter (EKF) [3,4]. After the NASA
Ames Research Center implemented the Kalman filter into navigation computers to estimate the
trajectory of the Apollo program, engineers have developed a myriad of applications of the Kalman
filter in navigation system research areas [5]. For example, Magree and Johnson [6] developed a
simultaneous localization and mapping (SLAM) architecture with improved numerical stability based
on the UD factored EKF, and Song et al. [7] proposed a new EKF system that loosely fuses both absolute
state measurements and relative state measurements. Furthermore, Mostafa et al. [8] integrated radar
odometry and visual odometry via EKF to help overcome their limitations in navigation. Despite the
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development of numerous applications of the Kalman filter in various fields, it suffers from inaccurate
estimation when required assumptions fail.

Estimation using a Kalman filter is optimal when process and measurement noise are Gaussian.
However, sensor measurements are often corrupted by unmodeled non-Gaussian or heavy-tailed noise.
An abnormal value relative to an overall pattern of the nominal Gaussian noise distribution is called
an outlier. In other words, in statistics, an outlier is an observation that deviates so much from other
observations as to arouse suspicion that it is generated by a different mechanism [9]. Such outliers have
many anomalous causes. They arise due to unanticipated changes in system behavior (e.g., temporary
sensor failure or transient environmental disturbance) or unmodeled factors (e.g., human errors or
unknown characteristics of intrinsic noise). As an example of measurement outliers in many navigation
systems, either computer vision data contaminated by outliers or sonar data corrupted by phase noise
lead to erroneous measurements. Process outliers also occur by chance. Inertial measurement unit
(IMU) dead reckoning and wheel odometry as a proxy often generate inaccurate dynamic models in
visual-inertial odometry (VIO) and SLAM algorithms, respectively. Without accounting for outliers,
the accuracy of the estimator significantly degrades, and control systems that rely on high-quality
estimation can diverge.

1.1. Related Work

1.1.1. State Estimation for Measurements with Outliers

As the performance of the Kalman filter degrades at the presence of measurement outliers, many
researchers have investigated other approaches to mitigate the impact of the outliers. Mehra [10] created
adaptive filtering with the identification of noise covariance matrices and showed the asymptotic
convergence of the estimates towards their true values. Maybeck [11] and Stengel [12] found other
noise-adaptive filtering such as covariance matching. However, all of these filters performed only
offline and required filter tuning. To estimate parameter values in unknown covariances without the
need for manual parameter tuning, Ting et al. [13] used a variational expectation–maximization (EM)
framework. That is, they introduced a scalar weight for each observed data sample and modeled the
weights to be Gamma distributed random variables. However, it assumed that noise characteristics
are homogeneous across all measurements even though sensors have distinct properties. Särkkä and
Nummenmaa [14] provided the online learning of the parameters of the measurement noise variance,
but to simultaneously track the system states and the levels of sensor noise, they additionally defined
a heuristic transition model for the noise parameters. Piché et al. [15] developed Gaussian assumed
density filtering and smoothing framework for nonlinear systems using the multivariate Student
t-distribution, and Roth et al. [16] included an approximation step for heavy-tailed process noise, but
these filters are not applicable in high dimensions. Next, Solin and Särkkä [17] found that the added
flexibility of Student-t processes over Gaussian processes robustifies inference in outlier-contaminated
noisy data, but they treated only analytic solutions enabled by the noise entanglement.

Recently, Agamennoni et al. developed the outlier-robust Kalman filter (ORKF) [18,19] to obtain
the optimal precision matrices of measurement outliers by variational approximation for Bayesian
inference [20]. However, this method requires iterations at every time, even when observed data contain
no outliers. Graham et al. also established the `1-norm filter [21] for both types of sparse outliers.
However, the filter might not work for nonlinear systems since they derived the constraint of `1-norm
optimization based on only linear system equations. Similar to the ORKF, the `1-norm filter needs the
constrained optimization at all times, even when no additional noise present as outliers. Therefore, these
two approaches demand some extensive computational complexity for either iterations or optimization.
As outliers do not always arise (i.e., are rare), we reduce such computation cost if a test detects the time
when outliers occur. All of the above methods were not validated for complicated systems such as
unmanned aerial vehicles or vision-aided inertial navigation [6,22,23] or with sequential measurement
updates [24,25].
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1.1.2. Outlier Rejection Techniques

One of the primary problems in vision-aided inertial navigation systems (V-INS) is incorrect
vision data correspondence or association. Matched features between two different camera views are
corrupted by outliers because of image noise, occlusions, and illumination changes that are not modeled
by the feature matching techniques. To provide cleaned measurement data to the filter, outlier removal
in image processing front-end is essential. One of standard outlier rejection techniques is RANdom
SAmple Consensus (RANSAC) [26]. RANSAC is an iterative approach to estimate the parameters of a
mathematical model from a set of observed data contaminated by outliers. An underlying assumption is
that the data consist of inliers whose distribution is described by some set of the parameters of the model
and outliers that do not fit the model. The generated parameters are then verified on the remaining
subset of the data, and the model with the highest consensus is a selected solution. In particular, 2-point
RANSAC [27,28] is an extended RANSAC-based method for two consecutive views of a camera rigidly
mounted on a vehicle platform. Given gyroscopic data from IMU measurements, randomly selected
two-feature correspondences hypothesize an ego-motion of the vehicle. This motion constraint discards
wrong data associations in the feature matching processes.

For detecting remaining outliers that are not rejected in the image processing front-end, outlier
detection tests are required in filtering back-end. Most of the statistical tests [29] that require access to
the entire set of data samples for detecting outliers might not be a viable option in real-time applications.
For example, the typicality and eccentricity data analysis [30,31] used in [32] is an inadequate measure
in V-INS, as computing the means and the variances of each residual of sequential measurements is
challenging. In V-INS, the tracking of some measured features is possibly lost due to out of sight, and
new feature measurements are coming for initialization.

For the real-time outlier detection of sequential measurements in V-INS, the Mahalanobis gating
test [33] is a useful measure based on the analysis of residual and covariance signals at each feature
measurement. The approach builds upon each Mahalanobis distance [34] of residuals and compares
each value against a threshold given by the quantile of the chi-squared distribution with a certain
degree of freedom. The confidence level of the threshold is designated prior to examining the data. Most
commonly, the 95% confidence level is used. This hypothesis testing, called goodness of fit, is a commonly
used outlier detection method in practice. Because of such suitability of the Mahalanobis gating test to
real-time detection in V-INS, this paper combines the test with the ORKF [18,32] to detect and handle
measurement outliers in vision-aided estimation problems. Similar to the derivation of update steps for
handling measurement outliers in the ORKF, for computing the optimal precision matrices of unmodeled
outliers in V-INS, Section 4 will derive feasible update procedures by variational inference. In other
words, whenever unexpected outliers appear, the outlier-adaptive filtering in this paper updates and
marginalizes measurement outliers to improve the robustness of the navigation systems.

1.2. Summary of Contributions

This paper presents improving the use of outlier removal techniques in image processing front-end
and the development of a robust and adaptive state estimation framework for V-INS when frequent
outliers occur. For outlier removal in the image processing front-end of V-INS, feature correspondence
constitutes the following three steps: tracking, stereo matching, and 2-point RANSAC. To estimate
the states of V-INS in which vision measurements still contain remaining outliers, we propose a novel
approach that combines a real-time outlier detection technique with an extended version of the ORKF
in the filtering back-end of V-INS. Therefore, our approach does not restrict noise at either a constant
or Gaussian level in filtering. The testing results of benchmark flight datasets show that our approach
leads to greater improvement in accuracy and robustness under severe illumination environments.

Starting from the architecture of the existing vision-aided inertial navigation system, this paper
more focuses on contributing to the development of red boxes in Figure 3.
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1.3. A Guide to This Document

The remainder of this document contains the following sections. Section 2 introduces background
for all of this study. To estimate the states of V-INS in which frequent outliers arise, Section 3 examines
outlier rejection techniques in image processing front-end, and Sections 4 and 5 formulate a novel
implementation of robust outlier-adaptive filtering. Section 6 shows testing results of this study on
benchmark flight datasets. The last section concludes and plans future work.

2. Preliminaries

2.1. The Extended Kalman Filter

The system equations with continuous-time dynamics and a discrete-time sensor are as follows,

ẋ(t) = f ( x(t), η(t) ) (1)

y(tk) = h( x(tk) ) + ζ(tk), (2)

where x ∈ Rn is the state and y ∈ Rm a measurement. f (·) and h(·) are the nonlinear dynamic and
measurement functions, respectively. Let us assume that these functions are known based on each
equation of motion and modeling. To clarify, t denotes continuous time, subscript k represents the k-th
time step, and initial condition x(0) = x0 is given. Moreover, let us assume that both propagation and
measurements are corrupted by additive zero-mean white Gaussian noise; that is, η(t) ∼ N (0, Q) and
ζ(tk) ∼ N (0, R).

2.1.1. Time Update

To estimate the state variables of the system, we design a hybrid EKF in the following steps.
In the propagation step, state estimate x̂ := E[x] and its error-covariance P := E[ (x− x̂)(x− x̂)T ] are
integrated from time (k− 1)+ to time k− with respect to variable τ

x̂−k = x̂+k−1 +
∫ tk

tk−1

f (x̂(τ)) dτ,

where let x̂k = x̂(tk). Hat “ ˆ ” denotes an estimate, and superscripts − and + represent a priori and a
posteriori estimates, respectively. Here, for one numerical solution of the ordinary differential equation,
we use the Heun’s method [35] that refers to the improved Euler’s method or a similar two-stage
Runge–Kutta method. Jacobian A, B, and state transition matrix Φ are defined by

Ak−1 =
∂ f (x)

∂x

∣∣∣∣
x̂+k−1

, Bk−1 =
∂ f (x)

∂η

∣∣∣∣
x̂+k−1

Φk−1 = exp(Ak−1 ∆tk−1) ≈ I + Ak−1 ∆tk−1, (3)

where ∆tk−1 = tk − tk−1. Letting Pk = P(tk), the time update of error covariance is

P−k = Φk−1 P+
k−1 ΦT

k−1 + Bk−1 Q BT
k−1 ∆tk−1. (4)

2.1.2. Measurement Update

Using actual sensor measurements, the measurement update step of the EKF corrects state
estimates and its corresponding error covariance after propagation. Letting yk = y(tk), at every time k
when yk is measured,
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Kk = P−k CT
k (CkP−k CT

k + R )−1 (5)

x̂+k = x̂−k + Kk ( yk − h(x̂−k ) ) (6)

P+
k = P−k − KkCkP−k , (7)

where K is called the Kalman gain and Jacobian C is defined as

Ck =
∂h(x)

∂x

∣∣∣∣
x̂−k

.

Equation (7) is the Joseph’s form [36] of the covariance measurement update, so this form
preserves its symmetry and positive definite. For more details such as optimality and derivation, see
References [24,37].

2.1.3. Sequential Measurement Update

When myriad measurements are observed at one time, sequential Kalman filtering is useful.
In fact, we obtain N measurements, y1, y2, · · · , yN , at time k; that is, we first measure y1, then y2, · · · ,
and finally yN , shown in Figure 1.

Figure 1. A schematic of the sequential measurement update.

We first initialize a posteriori estimate and covariance after zero measurement is processed; that
is, they are equal to the a priori estimate and covariance. For i = 1, · · · , N, perform the general
measurement update using the i-th measurement. We lastly assign the a posteriori estimate and
covariance as x̂+k ← (x̂k)N and P+

k ← (Pk)N . Based on Simon [24]’s proof that the sequential Kalman
filtering is equivalent formulation of the standard EKF, the order of updates does not affect overall
performance of estimation.

2.2. Models of Vision-Aided Inertial Navigation

2.2.1. Vehicle Model

The nonlinear dynamics of a vehicle is driven by raw micro-electromechanical system (MEMS)
IMU sensor data including specific force and angular velocity inputs. The estimated vehicle state is
given by

x̂V =
[

i p̂T
b/i

i v̂T
b/i δθ̂

T b̂T
a b̂T

ω

]T
, (8)

where pb/i, vb/i are the position and velocity of the vehicle with respect to the inertial frame,
respectively. δθ is the error quaternion of the attitude of the vehicle, and its more details are explained
in [38–40]. ba and bω are the acceleration and gyroscope biases of the IMU, respectively. Left superscript
i denotes a vector expressed in the inertial frame. The EKF propagates the vehicle state vector by
dead reckoning with data from the IMU. Raw MEMS IMU sensor measurements araw and ωraw are
corrupted by noise and bias as follows,



Sensors 2020, 20, 2036 6 of 24

araw = atrue − Tb/i
ig + ba + ηa

ωraw = ωtrue + bω + ηω

ḃa = ηba (9)

ḃω = ηbω
, (10)

where atrue and ωtrue are the true acceleration and angular rate, respectively, and g is the gravitational
acceleration in the inertial frame. ηa and ηω are zero-mean, white, Gaussian noise of the accelerometer
and gyroscope measurement, and Tb/i = Ti/b

T denotes the rotation matrix from the inertial frame to
the body frame.

ηba and ηbω
in Equations (9) and (10) are the random walk rate of the acceleration and gyroscope

biases. From the works in [40–42], the MEMS accelerometer and gyroscope are subject to flicker noise
in the electronics and other components susceptible to random flickering. The flicker noise causes their
biases to wander over time. Such bias fluctuations are usually modeled as a random walk. In other
words, slow variations in the bias of the IMU sensor are modeled with a “Brownian motion” process,
also termed a random walk in discrete-time. In practice, the biases are constrained to be within some
range, and thus the random walk model is only a good approximation to the true process for short
periods of time.

The vehicle dynamics is given by

i ˙̂pb/i =
i v̂b/i (11)

i ˙̂vb/i = T̂i/b ( araw − b̂a ) +
ig (12)

˙̂qi/b′ =
1
2
Q(ωraw − b̂ω ) q̂i/b′ (13)

δ ˙̂θ = −
⌈
(ωraw − b̂ω )×

⌋
δθ̂ (14)

˙̂ba = 0 (15)
˙̂bω = 0, (16)

where dα×c is a skew symmetric matrix, and functionQ(·) maps a 3 by 1 vector of the angular velocity
into a 4 by 4 matrix [25]. The use of the 4 by 1 quaternion representation in state estimation causes
the covariance matrix to become singular, so it requires considerable accounting for the quaternion
constraints. To avoid these difficulties, engineers developed the error-state Kalman filter in which
3 by 1 infinitesimal error quaternion δθ is used instead of 4 by 1 quaternion q in the state vector.
In other words, we use attitude error quaternion to express the incremental difference between tracked
reference body frame b′ and actual body frame b for the vehicle. Jacobian matrix A = ∂ ẋ

∂ x |x̂ and
B = ∂ ẋ

∂ η , where η = [ ηT
a , ηT

ω, ηT
ba

, ηT
bω

]T, are computed in Appendix A.

2.2.2. Camera Model

An intrinsically calibrated pinhole camera model [27,43] is given by

[
uj
vj

]
= yj = hj (x) + ζ j =

 fu
cXj
cZj

+ ζuj

fv
cYj
cZj

+ ζvj

 (17)

[
cXj, cYj, cZj

]T
= c p f j/c = Tc/i

(
i p f j/i − i pc/i

)
= Tc/b T (qi/b)

(
i p f j/i − i pb/i

)
− Tc/b

b pc/b, (18)

where x is the state vector including the vehicle state and the feature state, and measurement yj is the
j-th feature 2D location on the image plane. fu and fv are the horizontal and vertical focal lengths,



Sensors 2020, 20, 2036 7 of 24

respectively, and ζu and ζv are additive, zero-mean, white, Gaussian noise of the measurement. Vectors
p f j/c, p f j/i are the j-th feature 3D position with respect to the camera frame and the inertial frame,

respectively. Extrinsic parameter Tc/b and b pc/b are known and constant. Jacobian matrix Cj =
∂ yj
∂ x |x̂ is

computed in Appendix A. In addition, from Equation (18), if j-th measurement yj on an image is a new
feature, then i p f j/i is unknown so need to be initialized. Details of feature initialization are explained
in Appendix B.

3. Outlier Rejection in Image Processing Front-End

3.1. Feature Correspondence

In this study, a feature detector using the Features from Accelerated Segment Test (FAST)
algorithm [44,45] maintains a minimum number of features in each image. For each new image, a feature
extractor using the Kanade–Lucas–Tomasi (KLT) sparse optical flow algorithm [46] tracks the existing
features. Even though Paul et al. [47] proved that descriptor-based methods for temporal feature
tracking are more accurate than KLT-based methods, as Sun et al. [48] found that descriptor-based
methods require much more computing resource with a small gain in accuracy, we employ the KLT
optical flow algorithm in the image processing front-end of this study. Next, our stereo matching
using a fixed baseline stereo configuration also applies to the KLT optical flow algorithm for saving
computational loads compared to other stereo matching approaches. With the matched features, a
2-point RANSAC [26] is applied to remove remaining outliers by utilizing the RANSAC step in the
fundamental matrix test [27]. In the scope of this study, we implement the 2-point RANSAC algorithm
by simply running one of open source codes.

Similar to [48,49], our outlier rejection is composed of three steps, shown in Figure 2. We assume
that features from previous c1 and c2 images are outlier-rejected points, where c1 and c2 are left and
right camera frames of a stereo camera, respectively. The three steps form a closed loop of previous
and current frames of left and right cameras. The first step is the stereo matching of tracked features
on current c1 image to c2 image. The next steps are applying 2-point RANSAC between previous and
current images of the left camera and another 2-point RANSAC between previous and current images
of the right camera. For steps 2 and 3, stereo-matched features are directly used in each RANSAC.

Figure 2. Close loop steps of outlier rejection in image processing front-end.

3.2. Algorithm of Feature Correspondence

Algorithm 1 summarizes the feature correspondence for outlier rejection. For the scope of
this paper, the OpenCV library [50] and open source codes of RANSAC are extremely useful and
directly applied.

In Algorithm 1, Pyramid is a type of multi-scale signal representation in which an image is subject
to repeated smoothing and sub-sampling.
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Algorithm 1 Feature Correspondence for Outlier Rejection

Require: Pyramids and outlier-rejected points of previous c1, c2 images

1: Feature Tracking:

2: function BUILDOPTICALFLOWPYRAMID(current c1 or c2 image) . OpenCV [50]
3: return pyramid of current c1 or c2
4: end function
5: function PREDICTFEATURES(outlier-rejected points of previous c1, T̂curr←prev of c1, Intrinsic c1)
6: return predicted features of current c1
7: end function
8: function CALCOPTICALFLOWPYRLK(pyramids of previous and current c1, outlier-rejected points

of previous c1, predicted features of current c1) . OpenCV [50]
9: return tracked points of previous c1 and c2, tracked features of current c1

10: end function

11: Stereo Matching:

12: function STEREOMATCHING(tracked points of previous c1 and c2, tracked features of current c1)
13: Initialize c2 points by projecting the tracked features of current c1 to c2 using the rotation from

stereo extrinsic
14: function CALCOPTICALFLOWPYRLK(pyramid of current c1 and c2, tracked features of current

c1, initialized c2 points) . OpenCV [50]
15: end function
16: Further remove outliers based on the essential matrix
17: return matched points of previous c1 and c2, matched features of current c1 and c2
18: end function

19: 2-Point RANSAC:

20: function TWOPOINTRANSAC(matched points of previous c1 or c2, matched features of current c1
or c2, T̂curr←prev of c1 or c2, Intrinsic of c1 or c2)

21: return outlier-rejected points of current c1 or c2
22: end function

23: Addition of Newly Detected Features:

24: Create a mask to avoid re-detecting existing features

25: function FASTFEATUREDETECTOR(current c1 image, mask)
26: return new features on current c1
27: end function
28: function STEREOMATCHING(new features on current c1)
29: return matched new features on current c2
30: end function

31: Group all of outlier-rejected features

4. Outlier Adaptation in Filtering Back-End

Even though image processing front-end removes outliers by tracking, stereo matching, and
2-point RANSAC, some outlier features still survive and enter the filter as inputs. This section explains
the outlier rejection procedure in filtering back-end.

4.1. Outlier Removal in Feature Initialization

If a measurement is a new feature, our system initializes its 3D position with respect to the inertial
frame. In feature initialization, Gaussian–Newton least-squares minimization first estimates the depth
of left c1 camera. If either the estimated depth of the left or right camera is negative, then the solution
of the minimization is invalid since features are always in front of both camera frames observing
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them. This process of removing features that has the invalid depth is referred to as outlier removal in
feature initialization.

4.2. Outlier Detection by Chi-Squared Statistical Test

Before operating navigation systems, we initialize the chi-squared test table with a 95% confidence
level. While the systems estimate the state variable, if j-th measurement yj at time k is the existing
feature, then its residual rj and Jacobian Cj are computed. Next, we proceed a Mahalanobis gating
test [33] for residual rj to detect remaining outliers. In fact, Mahalanobis distance [34] γj is a measure
of the distance between residual rj and covariance matrix Sj = Cj (Pk)j−1 CT

j + R

γj = rT
j

(
Cj (Pk)j−1 CT

j + R
)−1

rj. (19)

In the statistic test, we compare γj value against a threshold given by the 95-th percentile of the
χ2 distribution with νj degree of freedom. Here, νj is the number of observations of the j-th feature
minus one. If the feature passes the test, the EKF uses residual rj to process the measurement update.

4.3. Outlier-Adaptive Filtering

Unlike the extended ORKF (EORKF) [32], for a practical estimation approach in V-INS, this study
investigates only measurement outliers due to the following reasons. As the measurement update
is not the process performed at every time step, the outlier detection by each residual value cannot
directly detect the outliers of IMU measurements. Furthermore, in the sequential measurement update,
multiple residuals are computed to update at one IMU time stamp. In other words, as only rare
observations among feature measurements from one image are corrupted by the remaining outliers,
hypothesizing that the outliers come from the IMU may be faulty. Therefore, in the scope of this paper,
we handle only measurement outliers.

4.3.1. Student’s t-Distribution

Despite the true system with outliers, the classical EKF assumes that each model in the filter is
corrupted with additive white Gaussian noise. The levels of the noise are assumed to be constant and
encoded by sensor covariance matrices Q and R (i.e., ηk ∼ N (0, Q), (ζ j)k ∼ N (0, R)). However, as
outliers arise in the realistic system, now we do not restrict noise at either a constant or Gaussian level.
Instead, their levels vary over time, or noise have heavier tails than the normal distribution as follows,

ζ j
∣∣
k ∼ ST(0, R̃j, νj), where R̃j ∼ W−1 ( νjΛj, νj

)
, (20)

where ST(·) denotes a Student’s t-distribution, and νk > m− 1 is degrees of freedom. Covariance matrix
R̃j follows the inverse-Wishart distribution, denoted asW−1(·). Λj � 0 is m×m precision matrix.

In Bayesian statistics, the inverse-Wishart distribution is used as the conjugate prior for the
covariance matrix of a multivariate normal distribution [20]. The probability density function (pdf) of
the inverse-Wishart is

p(R̃j | νj, Λj) ∝ |R̃j|−
νj+m+1

2 exp
[
−

νj

2
tr(Λj R̃−1

j )

]
, (21)

where tr(·) denotes the trace of a square matrix in linear algebra. Moreover, in probability and statistics,
a Student’s t-distribution is any member of a family of continuous probability distributions that arises
when estimating the mean of a normally distributed population in situations where the standard
deviation of the population is unknown [51]. Whereas a normal distribution describes a full population,
a t-distribution describes samples drawn from a full population; thus, the larger the sample, the more
the distribution resembles a normal distribution. Indeed, as the degree of freedom goes to infinity, the
t-distribution approaches the standard normal distribution. In other words, when the variance of a
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normally distributed random variable is unknown and a conjugate prior placed over it that follows an
inverse-Wishart distribution, the resulting marginal distribution of the variable follows a Student’s
t-distribution [52]. Then, the Student-t, a sub-exponential distribution with much heavier tails than the
Gaussian, is more prone to producing outlying values that fall far from its mean.

4.3.2. Variational Inference

The purpose of filtering is generally to find the approximations of posterior distributions
p(xk | y1:k), where y1:k = [y1, y2, · · · , yk] is the histories of sensor measurements obtained up to time k.
For systems with the heavy-tailed noise, we also wish to produce another inference about covariance
matrices whose priors follow the inverse-Wishart distribution. Hence, our goal in this section is
to find both approximations for posterior distribution p(x1:k, R̃1:k

∣∣y1:k) and model evidence p(y1:k).
Compared to sampling methods, the variational Bayesian method performs approximate posterior
inference at low computational cost for a wide range of models [20,52]. In the method, we decompose
log marginal probability

ln p(y1:k) = KL [ q ‖ p ] + L[ q ], (22)

where

KL [ q ‖ p ] =
∫

q(x1:k, R̃1:k) ln
q(x1:k, R̃1:k)

p(x1:k, R̃1:k
∣∣ y1:k)

(23)

L[ q ] =
∫

q(x1:k, R̃1:k) ln
p(x1:k, R̃1:k, y1:k)

q(x1:k, R̃1:k)
. (24)

p is the true distribution that is intractable for non-Gaussian noise models, and q is a tractable
approximate distribution.

In probability theory, a measure of the difference between two probability distributions p and
q is the Kullback–Leibler divergence, denoted as KL[·]. If we allow any possible choice for q such
as the Gaussian distribution, then lower bound L[q] is maximum when the KL divergence vanishes;
that is, q(x1:k, R̃1:k) = p(x1:k, R̃1:k | y1:k). To minimize the KL divergence, we seek the member of
a restricted family of q(x1:k, R̃1:k). Indeed, maximizing L[q] is equivalent to minimizing another
new KL divergence [52], and thus the minimum occurs when factorized distributions q(x1:k, R̃1:k) =

q(x1:k) q(R̃1:k) and the following Equations (25) and (26) hold,

ln q(x1:k) = ln p(x1) +
k

∑
t=2

Eq(R̃1:t)
[ln p(xt

∣∣ xt−1)] +
k

∑
t=1

Eq(R̃1:t)
[ln p(yt

∣∣ xt, R̃t)] + · · · (25)

ln q(R̃k) = Eq(x1:k)
[ ln p(yk

∣∣ xk, R̃k) ] + ln p(R̃k) + · · · , (26)

where Eq(·) represents the expectation with respect to q(·). With assuming that initial state x1 is
Gaussian, the measurement update with varying noise covariance E[ R̃−1

t ] = Λ−1
t , which closely

resemble the EKF updates, solve Equation (25). Algorithm 2 describes the details of the updates.
Now let us assume that the true priors are IID noise models as the case in this study; that is, p(R̃k)

followsW−1(νR, ν) distribution. Then, second term ln p(R̃k) in the right-hand side of Equation (26) is
computed using the pdf of the inverse-Wishart distribution in Equation (21) with its prior noise model.

ln p(R̃k) = −
ν + m + 1

2
ln |R̃k| −

ν

2
tr(R R̃−1

k ). (27)

As the term is conjugate prior for Equation (20), the approximations of q(R̃k) have same
mathematical forms as priors; that is, q(R̃k) also followsW−1(ν̃k Λk, ν̃k) distribution.

ln q(R̃k) = −
ν̃k + m + 1

2
ln |R̃k| −

ν̃k
2

tr(Λk R̃−1
k ). (28)
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As yt
∣∣{xt, R̃t} ∼ N (h(xt), R̃t),

E
[

ln p(yk | xk, R̃k)
]
= −1

2
ln |R̃k| −

1
2

tr
(
E[ζk ζT

k ] R̃−1
k

)
. (29)

From Equations (26)–(29), to handle measurement outliers, similar to Agamennoni et al. [18,19]’s
derivation, we derive how to compute precision matrix Λk of approximate distribution q(R̃k) of R̃k
as follows,

ν̃k = 1 + ν, ν̃k Λk = E[ζk ζT
k ] + νR

⇒ Λk =
νR +E[ζk ζT

k ]

ν + 1
, (30)

where each feature from one image is independent and

(ζ j)k = (yj)k − h( x(timg) )

= (yj)k − h
(
(x̂k)j + ej

)
≈ (yj)k − h

(
(x̂k)j

)
− Cj ej.

Next, in Equation (30),

E
[
(ζ j)k (ζ j)

T
k

]
=
[
(yj)k − h

(
(x̂k)j

)] [
(yj)k − h

(
(x̂k)j

)]T . . .

+ Cj E[ej eT
j ]CT

j

= rj rT
j + Cj (Pk)j CT

j , (31)

where estimation error ej = xk − (x̂k)j and the Jacobian Cj =
∂hj
∂x

∣∣
(x̂k)j

. In the sequential measurement

update, (x̂k)j and (Pk)j are corrected by Kalman gain Kj that is a function of (Λj)k, so these update
steps are coupled. Hence no a closed-form solution exists, and we can only solve iteratively. The
purpose of the iteration seems to be similar to that of the online learning of unknown variances of
each noise [10]. In addition, similar to Agamennoni et al.’s interpretation [19], the convergence and
optimality of the derived update steps for outliers are guaranteed since the variational lower bound is
convex with respect to (x̂k)j, (Pk)j, and (Λj)k. In particular, as the j-th feature is observed countless
times (i.e., νj→ ∞), Λj converges to R in the limit of an infinitely precise noise distribution, so the
iterative update steps reduce to the standard sequential measurement update of the EKF.

If true state x(timg) is significantly different from its estimate (x̂k)j, then statistics E
[
(ζ j)k (ζ j)

T
k
]

dominates, and (Λj)k becomes much larger than R. This ζ j is regarded as a measurement outlier at
time k. As Kalman gain Kj is a function of the inverse of precision matrix (Λj)k, the larger (Λj)k values,
the smaller the Kalman gain. Therefore, to deal with situations where measurement outliers occur, the
iteration for Equations (30) and (31) corrects the state estimates and its covariance with low weights.

5. Implementation

5.1. Marginalization of Feature States

If measurement outliers often occur, a few numbers of sequential updates in the EKF are proceeded
to correct the state estimates. Without a sufficient number of measurement updates, the EKF is
not robust and even diverges. Hence, outlier-adaptive filtering introduced in Section 4.3 performs
the modified measurement update even when a residual is detected as an outlier. Indeed, to save
computation resources, this study operates the outlier-adaptive filtering for only features detected
frequently outliers. For implementation, we count how many numbers of features augmented in state
variables are detected as outliers. Once updating feature outliers by the outlier-adaptive filtering
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approach, we prune the used feature states from the state vector (Figure 3). In addition, similar to that
mentioned in Appendix B, to maintain a certain size of the state vector, after the feature initialization,
we marginalize the features with the least number of observations among tracked features.

Figure 3. A block diagram of the vision-aided inertial navigation system employing the outlier-adaptive filtering.

5.2. Summarized Algorithm

This section summarizes and describes an implementation of the proposed method. Figure 4 and
Algorithm 2 illustrate a flow chart and the pseudocode of the overall process of the outlier-adaptive
filtering approach for V-INS, respectively. For the robust outlier-adaptive filter presented in this paper,
the blue boxes in Figure 4 are extended from the figure in [25].

Figure 4. A flow chart of the overall process of the outlier-adaptive filtering.
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Algorithm 2 The Outlier-Adaptive Filtering

Require: x̂+0 (= x̂+V0
), P+

0 , Q, R, χ2

1: for k = 1 : T do
2: . Image processing front-end in different thread
3: if new image capture then
4: Image Processing: . Algorithm 1
5: Stereo matching between current images of left camera c1 and right camera c2
6: RANSAC between previous and current images of camera c1
7: RANSAC between previous and current images of camera c2

8: end if
9: . Filtering back-end in different thread

10: if new IMU packet arrival then
11: Time Update:
12: State prediction
13: end if
14: if new vision data packet arrival then
15: for j = 1 : ] of observed features N do
16: if new feature then
17: Feature Initialization:
18: If any depth of c1 or c2 is negative, j-th feature is outlier

19: else . tracked feature
20: Outlier Gating Test:
21: rj = yj − hj

(
(x̂k)j−1

)
22: Sj = (Cj)k (Pk)j−1 (Cj)

T
k + R . (Cj)k =

∂hj
∂x

∣∣
(x̂k)j−1

23: γ = rT
j S−1

j rj
?
< χ2

j

24: Measurement Updates:
25: if outlier detected then
26: x̃j ← (x̂k)j−1 , P̃j ← (Pk)j−1 . (x̂k)0 = x̂−k , (Pk)0 = P−k
27: while until converged do
28: Update measurement noise given the state
29: r̃j = yj − hj(x̃j)

30: C̃j =
∂hj
∂x

∣∣
x̃j

31: Wj = r̃j r̃T
j + C̃j P̃j C̃T

j

32: Λj ←
νj R + Wj

νj + 1
33: Update the posteriori state given noise
34: S̃j = (Cj)k (Pk)j−1 (Cj)

T
k + Λj

35: K̃j = (Pk)j−1 (Cj)
T
k S̃−1

j

36: x̃j ← (x̂k)j−1 + K̃j rj

37: P̃j ← (Pk)j−1 − K̃j (Cj)k (Pk)j−1

38: end while
39: (x̂k)j = x̃j, (Pk)j = P̃j

40: else . standard sequential EKF in Section 2

41: Kj = (Pk)j−1 (Cj)
T
k S−1

j
42: (x̂k)j = (x̂k)j−1 + Kj rj

43: (Pk)j = (Pk)j−1 − Kj (Cj)k (Pk)j−1

44: end if
45: end if
46: end for . x̂+k = (x̂k)N , P+

k = (Pk)N

47: end if
48: end for

6. Flight Datasets Test Results

To examine the influence of outliers in V-INS and validate the reliability and robustness of the
proposed outlier-adaptive approach for navigation systems with outliers, we test one of benchmark
flight datasets, the so-called “EuRoC MAV datasets” [53]. The visual-inertial sequences of the datasets
were recorded onboard a micro aerial vehicle (MAV) while a pilot manually flew around the indoor
motion capture environment. For more details, see Appendix C. To articulate the significance of outliers,
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we select two datasets of the bright scene, called “EuRoC V1 Easy”, and motion blur, called “EuRoC
V1 Difficult.” As the images in the difficult dataset are dark scene or motion blur, we hypothesize that
outliers occur more frequently in the difficult dataset.

The EKF estimates the relative location and orientation from a starting point. As we do not know
the exact absolute location of the origin of given datasets, to compare with ground-truth data given in
the datasets, we require certain evaluation error metrics such as so-call “absolute trajectory error [54]”.
For more details, see Appendix D. The absolute trajectory error as an evaluation error metric yields
the following various comparison plots. Figure 5 illustrates the top-down view of the estimated flight
trajectory of the difficult dataset.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x position [m]
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2
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Figure 5. Top-down view of flight trajectory of the EuRoC V1 difficult dataset by the outlier-adaptive filter.

Figures 6 depict the estimated x,y,z position and their respective estimation errors. All the
estimation errors are bounded within each standard deviation σ envelope, so the proposed approach
is reliable vision-aided inertial navigation under even poor illumination environments. Conceptually,
the position error gets locked in, and it tends to increase with the length of the trajectory until new
features are being mapped.

Similar to the analysis presented in [25], the adaptive filter is a well-tuned estimator since the
performance of doing runs with ×3 or ×10 ( /3 or /10) multiplier on the R matrix used in the filter is
worse for all of those, shown in Table 1. That is, the fact that using the multipliers reveals larger root
mean square (RMS) estimation errors indicates that our filter is well-tuned.

Table 1. Indication that the outlier-adaptive filter is well-tuned for the EuRoC V1 difficult dataset.

Multiplier on R /10 /3 1 ×3 ×10

RMS error [m] 0.9240 0.3801 0.1700 0.5153 0.5610
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Figure 6. Position and estimation error of the EuRoC V1 difficult dataset by the outlier-adaptive filter.

Figure 7 shows the advantages of the addition of the outlier adaptation proposed in this paper by
comparing it with a baseline, the standard EKF in V-INS.

As Lee [25] and other researchers showed that the standard EKF is a basic filter in V-INS, we
choose the method as a baseline here. The baseline only rejects outliers whenever the chi-squared test
fails, whereas the outlier-adaptive filtering follows all proposed adaptive approaches in Algorithm 2.
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Although the iteration in the outlier-adaptive filtering might increase computational resources, it
significantly improves the accuracy of estimation. Fortunately, the “while” loop iteration in Algorithm 2
rapidly converges to the optimal noise covariance by twice or three times iterations. For sensitivity
analysis, RMS position errors resulting from the baseline and the outlier-adaptive filtering are compiled
in Table 2.

BASE x ADAPTIVE x BASE y ADAPTIVE y BASE z ADAPTIVE z
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Figure 7. Box plot of absolute estimation error of the position of the EuRoC V1 difficult dataset by the
outlier-adaptive filter.

Table 2. Sensitivity analysis in RMS position error [m] of the outlier-adaptive filtering.

Dataset EuRoC V1 Easy EuRoC V1 Difficult
Slow Motion 0.41 m/s, 16.0 deg/s Fast Motion 0.75 m/s, 35.5 deg/s

Method Bright Scene Motion Blur

Baseline 0.2558 0.3656
Outlier-Adaptive 0.2237 0.2264

Motion blur datasets are more sensitive to outliers as the improvement is larger when applied to
those datasets. Although the outlier-adaptive filtering is the best choice for motion blur datasets, we
can select an adequate mode depending on computation margin and cost.

Although a number of researchers have investigated V-INS of the EuRoC datasets [55], only a
few of them thoroughly has focused on vision measurements with outliers. Table 3 reveals that the
proposed estimator, the outlier-adaptive filter, outperforms other state-of-the-art V-INS techniques,
called “SVO+MSF [56,57]” and “S-MSCKF [48,58] ” in which stereo is available. As SVO+MSF is
loosely coupled, its algorithm actually gets diverged.

Table 3. Comparison with other methods in RMS position error [m] of the outlier-adaptive filtering.

Dataset EuRoC V1 Easy EuRoC V1 Difficult
Method Bright Scene Motion Blur

Outlier-Adaptive Filter 0.2237 0.2264

SVO+MSF [56,57] (loosely coupled) 0.40 ×
S-MSCKF [48,58] (stereo-filter) 0.34 0.67
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7. Discussion

This paper has presented practical outlier-adaptive filtering for a vision-aided inertial navigation
systems (V-INS) and evaluated its performance with flight datasets testing. In other words, this
study develops a robust and adaptive state estimation framework for V-INS under frequent outliers
occurrence. In the image processing front-end of the framework, we propose the improved utilization of
outlier removal techniques. In filtering back-end, for estimating the states of V-INS with measurement
outliers, we implement a novel approach of the outlier-robust extended Kalman filter (EKF) to V-INS,
for which we derive iterative update steps for computing the precision noise matrices of vision outliers
when the Mahalanobis gating test detects remaining outliers.

To validate the accuracy of the proposed approach and compare it with other state-of-the-art
V-INS algorithms, we test the performance of V-INS employing the outlier-adaptive filtering algorithm
in the realistic benchmark flight datasets. In particular, to show more improvements of our method
over the others’ approaches, we use the fast motion and motion blur flight datasets. Results from the
flight datasets testing show that the novel navigation approach in this study improves the accuracy
and reliability of state estimation in V-INS with frequent outliers. Using the outlier-adaptive filtering
reduces the root mean square (RMS) error of the estimates and accelerates the robustness of the
estimates, especially for the motion blur datasets.

The primary goals of future work are listed as follows. Since an inertial measurement unit (IMU)
is also a sensor, it could generate outliers in V-INS. With accounting for the process outliers, the
accuracy and robustness of the estimator would be improved. If we distinguish process outliers from
IMU sensors with measurement outliers from vision data, the extended outlier-robust EKF [32] may
be an impressive and innovate approach for this case. Furthermore, the investigation of color noise
in V-INS is another possible future work. One of the required assumptions of the Kalman filter is
the whiteness of measurement noise. As an illustration, during sampling and transmission in image
processing, color noise that may be originated from a multiplicity of sources could degrade the quality
of images [59]. The vibrational effects of camera sensors might also produce colored measurement
noise [60]. That is, if the residuals of vision data are correlated with themselves at different timestamp,
then colored measurement noise occurs in V-INS. Therefore, the images with color noise would be
filtered for ensuring the accuracy of locating landmarks. As modeling noise without additional prior
knowledge of the noise statistics is typically difficult, the machine learning techniques-based state
estimator for colored noise [61,62] may handle the unknown correlations in V-INS.

This study showcases the approaches using stereo cameras but is also suitable for monocular
V-INS and employable to other filter-based V-INS frameworks. We test benchmark flight datasets to
validate the reliability and robustness of this study, but additional validating with other flight datasets
or real-time flight tests would help to prove its more robustness. In addition, we can operate unmanned
aerial vehicles (UAVs) stacked the navigation algorithms in this study and a controller-in-the-loop.
The use of the controller-in-the-loop could be a more important validation criteria due to the potential
for navigation-controller coupling. The research objectives and contributions presented here will
remarkably advance the state-of-the-art techniques of vision-aided inertial navigation for UAVs.
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The following abbreviations are used in this manuscript:

V-INS Vision-aided Inertial Navigation Systems
VIO Visual-Inertial Odometry
IMU Inertial Measurement Unit
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MEMS Micro-ElectroMechanical System
EKF Extended Kalman Filter
UAV Unmanned Aerial Vehicle
RANSAC RANdom SAmple Consensus
FAST Features from Accelerated Segment Test
KLT Kanade–Lucas–Tomasi
ST Student’s t-distribution
ROS Robot Operating System

Nomenclature

x state y measurement
k discrete time j index of measurements
Q process noise covariance R measurement noise covariance
P error state covariance r residual

Appendix A. Jacobians of Models

From Sections 2.2.1 and 2.2.2, Jacobian A,B, and C are

A =



0 ∂ i ˙̂pb/i
∂ i v̂b/i

0 0 0

0 0 ∂ i ˙̂vb/i
∂ δθ̂

∂ i ˙̂vb/i
∂ b̂a

0

0 0 ∂ δ ˙̂θ
∂ δθ̂

0 ∂ δ ˙̂θ
∂ b̂ω

0 0 0 0 0
0 0 0 0 0


, B =



0 0 0 0
∂ i ˙̂vb/i

∂ ηa
0 0 0

0 ∂ δ ˙̂θ
∂ ηω

0 0

0 0 ∂ ḃa
∂ ηba

0

0 0 0 ∂ ḃω
∂ ηbω


(A1)

∂ i ˙̂pb/i

∂ i v̂b/i
= I3×3,

∂ i ˙̂vb/i

∂ δθ̂
= −T̂i/b′

⌈
( araw − b̂a )×

⌋
,

∂ i ˙̂vb/i

∂ b̂a
= −T̂i/b,

∂ δ ˙̂θ
∂ δθ̂

= −
⌈
(ωraw − b̂ω )×

⌋
,

∂ δ ˙̂θ
∂ b̂ω

= −I3×3,

∂ i ˙̂vb/i
∂ ηa

= −T̂i/b,
∂ δ ˙̂θ
∂ ηω

= −I3×3,
∂ ḃa

∂ ηba

= I3×3,
∂ ḃω

∂ ηbω

= I3×3,

Cj =

[
∂ yj

∂ i p̂b/i
0

∂ yj

∂ δθ̂
0 0

∣∣ 0 · · · ∂ yj
∂ i p̂ f j/i

· · · 0
]

(A2)

∂ yj

∂ i p̂b/i
=

(
∂ yj

∂ c p̂ f j/c

)
(−T̂c/i),

∂ yj

∂ i p̂ f j/i
= −

∂ yj

∂ i p̂b/i
, (A3)

∂ yj

∂ δθ̂
=

(
∂ yj

∂ c p̂ f j/c

)
Tc/b

⌈
b′ p̂ f j/b×

⌋
(

∂ yj

∂ c p̂ f j/c

)
=

1
cẐj

 fu 0 − fu
cX̂j
c Ẑj

0 fv − fv
cŶj
c Ẑj

 , (A4)

where for more detailed derivations, see reference [25,63].

Appendix B. Feature Initialization

In the first step of the measurement update, we employ Gauss–Newton least-squares
minimization [58,64] to estimate feature 3D position i p̂ f j/i. To avoid local minima, we apply the
inverse depth parameterization of the feature position [65] that is numerically more stable than the
Cartesian parameterization.
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We assume that the intrinsic and extrinsic parameters of a stereo camera are known and constant
values. c1, c2 frames are the left and right camera frame of the stereo, respectively. Since the baseline
of the stereo is fixed, rotation Tc2/c1 and translation c2 pc1/c2 between both cameras are constant and
known values. Feature coordinates c[X, Y, Z]T with respect to both cameras are

c2 p f j/c2 = Tc2/c1
c1 p f j/c1 +

c2 pc1/c2 (A5)[
c2 Xj

c2Yj
c2 Zj

]T
= Tc2/c1

[
c1 Xj

c1Yj
c1 Zj

]T
+ c2 pc1/c2 (A6)

= c1 Zj

 Tc2/c1


c1 Xj
c1 Zj
c1 Yj
c1 Zj

1

+
1

c1 Zj

c2 pc1/c2

 (A7)

= c1 Ẑj

 Tc2/c1

ûj,1 / fu1

v̂j,1 / fv1

1

+
1

c1 Ẑj

c2 pc1/c2

 . (A8)

Simplifying Equation (A8), c2 Xj
c2Yj
c2 Zj

 = c1 Ẑj


mx

my

mz

+
1

c1 Ẑj

trx

try

trz


 , (A9)

where mx, my, and mz are scalar functions of given j-th measurement and constant extrinsic rotation
matrix. Based on Equation (17), as the measurement equations from the stereo camera are

yj =


uj,1
vj,1
uj,2
vj,2

 =



fu1

c1 Xj
c1 Zj

fv1

c1 Yj
c1 Zj

fu2

c2 Xj
c2 Zj

fv2

c2 Yj
c2 Zj


+ ζ j,

right c2 camera measurements are expressed in Ax = b form.

[
ûj,2 / fu2

v̂j,2 / fv2

]
=

mx + ( trx / c1 Ẑj )

mz + ( trz / c1 Ẑj )

my + ( try / c1 Ẑj )

mz + ( trz / c1 Ẑj )

 (A10)

[
mx − (ûj,2 / fu2)mz

my − (v̂j,2 / fv2)mz

]
c1 Ẑ =

[
(ûj,2 / fu2) trz − trx

(v̂j,2 / fv2) trz − try

]
, (A11)

where let

x = c1 Ẑ, A =

[
mx − (ûj,2 / fu2)mz

my − (v̂j,2 / fv2)mz

]
, b =

[
(ûj,2 / fu2) trz − trx

(v̂j,2 / fv2) trz − try

]
. (A12)

Therefore, the Gauss–Newton least-squares minimization estimates depth c1 Z of left c1 camera using
the pseudo-inverse of A is

Ax = b ⇒ (AT A)x = AT b ⇒ x̂ = (AT A)−1 AT b.

If either estimated depth c1 Ẑ or c2 Ẑ is negative, the solution of the minimization is invalid since
the feature is always in front of both camera frames observing it. By substituting estimated c1 Ẑ into
Equation (A8),
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c1 p̂ f j/c1 =
[
(ûj,1 / fu1)

c1 Ẑ ((v̂j,1 / fv1)
c1 Ẑ c1 Ẑ

]T
, (A13)

where p̂ f j/c is not related to the pose of the vehicle. Likewise, if a monocular camera is used instead, c1

is the camera frame in which the feature was observed at the first time, and c2 is the camera frame at a
different time instance.

The j-th feature 3D position with respect to the inertial frame is

i p̂ f j/i = T̂i/c1
c1 p̂ f j/c1 +

i p̂c1/i

= T̂i/b Tb/c1
c1 p̂ f j/c1 +

(
i p̂b/i + T̂i/b

b pc1/b

)
= T̂i/b′ T̂b′/b

(
Tb/c1

c1 p̂ f j/c1 +
b pc1/b

)
+ i p̂b/i. (A14)

The new feature is initialized using only one image in which the feature is first observed. Although the
new feature is initialized, as it still entails uncertainty, the EKF recursively estimates and updates its
3D position by augmenting into the state vector.

x̂ =
[

x̂T
V

i p̂T
f j/i

]T
, (A15)

where x̂V is the estimated vehicle state vector defined in Equation (8). The overall initialization includes
the initial value of the feature state and its error covariance assignment. The error covariance of the
new feature are initialized using state augmentation with Jacobian J.[

P ∗
∗ ∗

]
=

[
I
J

]
P
[

I JT
]
=

[
P P JT

J P JPJT + Pfnew

]
, (A16)

where Jacobian J =
∂ p f /i

∂ x

∣∣
x̂ is computed as follows,

J =
[

I3×3 03×3 −T̂i/b′
⌈
( Tb/c1

c1 p̂ f j/c1 +
b pc1/b )×

⌋
03×6 03×3N f

]
. (A17)

N f is the number of all features and Pfnew is the initial uncertainty of the initialized new feature. The
error pertains to measurement noise and the error of the least-squares minimization and so on. In fact,
since Montiel et al. [65] validate that the initial uncertainty is coded as Gaussian, the EKF including
the feature initialization still holds optimality.

Once initialized, the EKF processes the feature state in the prediction-update loop. In the time
update of the EKF, we propagate P by Equation (4).[

Φ 0
0 I

] [
Pvv Pv f
Pf v Pf f

] [
ΦT 0
0 I

]
+

[
Qv 0
0 Q f

]
=

[
Φ Pvv ΦT + Qv Φ Pv f

Pf v ΦT Pf f + Q f

]
, (A18)

where state transition matrix Φ ≈ I + A ∆t. PVV := E[ (xV − x̂V)(xV − x̂V)
T ], Pf f is the error

covariance of all features, and PV f = PT
f V represents vehicle-feature correlations. In addition, we

assume that surrounding is static, so the dynamics of features ˙̂p f j/i = 0. In the measurement update
of the EKF, only tracked features are used for the update. For the efficient management of the map
database, if the size of the state vector exceeds than the maximum limit, then the feature with the least
number of observations is pruned and marginalized.

Appendix C. Experimental Equipment and Environments

Burri et al. [53] provide the benchmark datasets of UAV flying, and Table A1 illustrates the
specifications of the sensors used in the datasets.
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Table A1. Sensors of EuRoC Datasets

Sensor Rate Characteristics

Stereo Images (Aptina MT9V034) 2 × 20 FPS Global Shutter, WVGA Monochrome
MEMS IMU (ADIS16448) 200 Hz Instrumentally Calibrated

They obtain the noise model parameters from the IMU at rest and provide them; that is, σa, σω,
σba , and σbω

are known. The intrinsic and extrinsic parameters of both cameras are also given; that
is, fu, fv, Tc/b, and b pc/b are known. The visual-inertial sensor unit is calibrated with Kalibr [66] prior
to dataset collection. Furthermore, IMU and cameras are hardware time-synchronized such that the
middle of the exposure aligned with the IMU measurements.

Visual and inertial data is logged and timestamped onboard the MAV while ground truth is
logged in the Vicon 6D motion capture system on the base station. The accuracy of the synchronization
between the ground truth and the sensor data is limited by the fact that both sources are recorded
on different machines and that the timestamps of the devices are unavailable for the ground-truth
system. A maximum likelihood (ML) estimator [11] aligns the data temporally and calibrates the
position of the ground-truth coordinate with respect to the body sensor unit. In fact, the ML estimator
synchronizes the time-varying temporal offset between the ground truth and the body sensor system.
Moreover, it determines the unknown transform between the ground-truth reference frame and the
body frame. To obtain the full ML solution, they employ a batch estimator in an offline procedure.
Finally, as ground truth, they provide the ML solutions instead of raw data.

Appendix D. Evaluation Error Metric

Sturm et al. [54] provide a set of tools used to preprocess the datasets and evaluate the tracking
results. To validate estimation results, we need to evaluate the errors in the estimated trajectory by
comparing it with the ground truth. Among various error metrics, two prominent methods are the
absolute trajectory error (ATE) and the relative pose error (RPE). In this paper, to evaluate the overall
performance of V-INS employing the outlier-adaptive filtering, the ATE measure is selected.

Absolute Trajectory Error (ATE)

The absolute trajectory error directly measures the difference between points of the true and the
estimated trajectory. As a preprocessing step, we associate the estimated poses with ground-truth
poses using the recorded timestamps. Based on this association, we align the true and the estimated
trajectory using the Horn et al. [67]’s closed-form method based on singular value decomposition
(SVD). Finally, we compute the differences between each pair of poses and output the mean, median,
and standard deviation of these differences.
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