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Introduction: Uveal melanoma (UM) is the most common intraocular malignancy in

adults. Plaque brachytherapy remains the dominant eyeball-conserving therapy for UM.

Tumor regression in UM after plaque brachytherapy has been reported as a valuable

prognostic factor. The present study aimed to develop an accurate machine-learning

model to predict the 4-year risk of metastasis and death in UM based on ocular

ultrasound data.

Material and Methods: A total of 454 patients with UM were enrolled in this

retrospective, single-center study. All patients were followed up for at least 4 years after

plaque brachytherapy and underwent ophthalmologic evaluations before the therapy.

B-scan ultrasonography was used to measure the basal diameters and thickness of

tumors preoperatively and postoperatively. Random Forest (RF) algorithm was used to

construct two prediction models: whether a patient will survive for more than 4 years and

whether the tumor will develop metastasis within 4 years after treatment.

Results: Our predictive model achieved an area under the receiver operating

characteristic curve (AUC) of 0.708 for predicting death using only a one-time follow-up

record. Including the data from two additional follow-ups increased the AUC of the model

to 0.883. We attained AUCs of 0.730 and 0.846 with data from one and three-time

follow-up, respectively, for predicting metastasis. The model found that the amount

of postoperative follow-up data significantly improved death and metastasis prediction

accuracy. Furthermore, we divided tumor treatment response into four patterns. The

D(decrease)/S(stable) patterns are associated with a significantly better prognosis than

the I(increase)/O(other) patterns.

Conclusions: The present study developed an RF model to predict the risk of

metastasis and death from UM within 4 years based on ultrasound follow-up records

following plaque brachytherapy. We intend to further validate our model in prospective

datasets, enabling us to implement timely and efficient treatments.
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INTRODUCTION

Uveal melanoma (UM) is the most common aggressive ocular
tumor in adults. The annual incidence rate per million people
is 6 in non-Hispanic whites (1) and 0.3–0.6 in Asians (2–4).
Although new techniques such as proton beam therapy have been
introduced (5), plaque brachytherapy, mainly using iodine-125,
remains the dominant option as an eyeball-conserving treatment
for UM. In the United States, the ratio of plaque brachytherapy is
increasing each year, which accounts for more than 50% recently
(6, 7). The same case was also seen in our eye center. However,
patients with UM have high mortality with approximately 50%
of patients developing metastatic disease and eventually dying
within 5 years (8, 9). Therefore, it is important to predict the
metastasis risk and long-time survival accurately.

Several factors have been proven to correlate with patient
outcomes. These include tumor size and location, as well
as related features such as retinal detachment, extrascleral
extension, and retinal invasion (10, 11). The most significant
factor for melanoma-specific mortality prediction is dependent
on tumor-specific genetic alterations and histopathologic factors
including epithelioid cell type, monosomy 3 and 6p gain, and loss
of BAP-1 gene (12). Gene expression profiling (GEP) of 15 genes
was divided into class 1 and class 2 UM, those with the class 2
GEP have a greater rate of metastasis and mortality compared
to class 1 GEP. However, fine-needle aspiration is not available in
most cases for patients with UM treated by plaque brachytherapy.
Therefore, we wish to construct a prediction model with more
readily accessible clinical data.

Ultrasonography, a cost, and time-effective non-invasive
examination is the most used application for determining the
dimensions of a posterior UM. And it is essential throughout
follow-up for tumor measurement (13). Tumor regression
has commonly been evaluated as a percentage change from
initial tumor thickness measured with B-scan ultrasonography.
According to the Collaborative Ocular Melanoma Study, a
15% increase in tumor thickness after brachytherapy should
be considered as a failure. Many previous studies have shown
that such local treatment failure (14–17) and rapid regression
of tumors after plaque brachytherapy (18, 19) predict a
lousy prognosis.

Previous models based on clinical and demographic
characteristics have been developed to predict individual patient
prognosis after UM treatment (20–26). To our knowledge,
this is the first report that describes a mathematical model for
patients with UM after iodine-125 plaque brachytherapy using
postoperative follow-up ultrasound data. The present study
investigates the prognostic value of dynamic morphometric
parameters to predict 4-year survival and metastasis status
(Figure 1).

MATERIALS AND METHODS

Source of Data
This is a retrospective, single-center study conducted in the
Beijing Tongren Eye Center. The study population included adult
patients that were clinically diagnosed with UM from July 2007 to

December 2016. Generally, iodine-125 plaque brachytherapy was
used for tumors with a thickness of <10mm in our center. The
standard dose of irradiation was 100Gy to the apex of the tumor.
However, patients who were refractory to other treatments and
strongly requested it were also treated by brachytherapy.

Selection of Participants
Patients who were diagnosed with UM at the Beijing Tongren Eye
Center and subsequently received brachytherapy were included
in this study. The exclusion criteria were: (1) age<18 years,
(2) received other therapies, (3) alive and had a follow-up
time of fewer than 4 years, (4) the third follow-up time was
more than 3 years, (5) filled follow-up time was later than
the time of outcome, (6) had metastatic disease at the time of
diagnosis. Finally, 454 patients were included to construct the
model for predicting death and 424 patients to build the model
for predicting metastasis (Figure 2A). Moreover, 177 surviving
patients with UM had a follow-up duration ranging from 3 to 4
years. They will be included in the prospective validation of our
models in future studies (Figure 2B).

Data Collected
The age, gender, and involved eye were recorded from each
patient’s record during the initial interview. The presence of
subretinal fluid, optic disk involvement, vitreous hemorrhage,
ciliary body involvement, tumor thickness, minimum and
maximum tumor diameter, tumor shape and position,
intraocular pressure and visual acuity, photographs, and
ultrasound records were collected from the preoperative medical
records. Several strategies, including fundus photography,
fluorescein angiography, indocyanine green angiography,
standardized echography, and orbital MRI, were conducted to
assist diagnosis. Tumors were staged according to the American
Joint Committee on Cancer (AJCC) consensus. We excluded
duplicate factors and factors that did not differ among groups
(Figure 2C).

Ultrasound images were reviewed by two independent
radiologists with at least 5 years of experience in interpreting
ocular ultrasound images. The radiologists were blinded to the
clinical data. When two radiologists failed to reach a consensus
through their independent assessment, the image would be
reviewed jointly to ultimately achieve agreement. They measured
the tumor’s thickness from the inner surface of the sclera to the
tumor apex and maximum basal diameter. Thickness and the
minimum basal diameter were measured from two meridians,
along with the maximum basal diameter and perpendicular to
it. Representative digitized scans were stored at the time of each
diagnostic and follow-up visit.

Missing Value Completion
There were some missing data values due to the loss of clinical
data and some missing features. The missforest algorithm (R
package missForest) was used to fill in the blank values in
the dataset (27). Missforest iteratively filled all features with
missing values by predicting missing values from existing values.
The order for filling missing values was from features with
the fewest missing value to the feature with the most missing
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FIGURE 1 | Workflow of the research. Machine learning was carried out according to the clinical and follow-up data from patients to predict the prognosis. Results of

metastasis and survival analysis are based on filtered data.

values. Moreover, numerical features and nominal features were
predicted with Random Forest (RF) regression and classification,
respectively. The follow-up information of patients with less than
three visits was also filled, and the length of follow-up was less
than that of outcome events.

Prediction Model
Machine learning is a powerful tool for mining the hidden
relationships in our dataset which included imaging (28–32),
genetic (33), clinical (27, 34), multi-modal sensor data (35–
37), and other sources (38). RF is a type of ensemble learning
method which encapsulates multiple decision trees to vote the
classification results. The decision tree is a basic machine learning
method that applies tree data structure to recursively split the
whole dataset into multiple subsets. Finally, the samples in each
leaf node either belong to one class or own more features could
be used to be split, namely, the class of each sample can be
inferred according to the paths from the root node to leaf nodes
in the tree (39–42). In our research, the RF model was used to
construct models of whether a patient will survive for more than
4 years and whether the tumor will metastasis within 4 years

after plaque brachytherapy. This was done using demographic
attributes, clinical features, and follow-up records.

Additionally, all datasets used were imbalanced. Therefore,
the most convenient, cost-sensitive method (43) was used to
tackle this problem and assist RF in constructing the models.
Synthetic Minority Oversampling Technique (SMOTE), the
simplest oversampling algorithm, is typically used to enrich the
minority in each training set of the internal cohort. Numerical
and nominal features are preprocessed differently in terms of
measuring the distance of two samples. However, we did not
adopt this method because we cannot guarantee the ratio for
generating more minority class samples. It will also import some
noise into the dataset. The numerical and nominal features were
separately oversampled and then merged. The under-sampling
method (44) randomly deleted some majority samples in the
training set, which was not suitable for our study because the
follow-up dataset is precious. We cannot sacrifice the majority
class to trade off the minority class. Similar to the multi-objective
optimization, the cost-sensitive method (43) leveraged another
objective function (cost function) and accuracy function in
constructing a machine learning model. The number of trees
in RF was primarily set as 500 when experiments were carried
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FIGURE 2 | Steps for excluding features and samples to preprocess the input dataset for machine learning. (A) The workflow for excluding some samples. (B)

Prospective validation (C) The workflow for excluding some features.

out. Four-fold stratified cross-validation was used to evaluate
the performance of RF fairly, and the subjects in each fold were
independent (a patient owns only one entry of data).

Statistical Analysis
The baseline characteristics of enrolled participants were
presented and compared between survivors and non-survivors
by applying either Student’s t-test, Chi-square test, and Mann-
Whitney U-test as appropriate. Continuous variables were
characterized as mean (standardized differences [SD]) or median
(interquartile range [IQR]), while categorical or ranked data
were reported as count and proportion. One-way ANOVA and
Kaplan-Meier analysis were used to evaluate tumor regression
patterns. All calculations were performed in Statistical Package

for the Social Sciences (SPSS) version 26 and GraphPad
Prism version 7. Random forest was performed using Python
3.7.3 (Wilmington, DE, United States) and MATLAB R2016a.
Accuracy, sensitivity, specificity (32, 45, 46), Receiver Operating
Characteristic (ROC) curve, Precision-Recall (PR) curve, and
Area under Receiver Operating Characteristic Curve (AUROC)
were used to evaluate the performance of models.

RESULTS

Baseline Characteristics
A total of 454 patients with UM treated by plaque brachytherapy
were included in the death analysis. 210 (46.3%) were male.
UM occurred in 248 right eyes and 206 left eyes. The mean
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FIGURE 3 | Boxplot of follow-up time. (A) Death analysis. (B) Metastasis analysis.

FIGURE 4 | Machine learning result of death and metastasis model. (A) Receiver operating characteristic (ROC) curve. (B) Precision-recall (PR) curve. (C) Boxplot of

all metrics for predicting death. (D) Boxplot of all metrics for predicting metastasis.
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age was 46.3 ± 11.7 years. We used the criteria of the AJCC
consensus to determine that there were 41 T1 stage tumors, 213
T2 stage tumors, 137 T3 stage tumors, and 11 T4 stage tumors.
In total, 48 of 424 (11.3%) patients developed metastasis during
the follow-up period, and 52 of 454 (11.5%) patients died. The
baseline characteristics are compared in Supplementary Table 1.
The stage, position, ciliary body involvement, subretinal fluid,
maximum and minimum basal diameter, and follow-up data
were significantly correlated with death and metastasis. The
median period was 154 [IQR:124, 251], 402 [IQR:315, 530], 700
[IQR:581, 839] days respectively for the three follow-up visits
(Figure 3).

Evaluation of Model Performance
In our research, we developed a model to predict death 4
years after treatment, (Figures 4A,B) with 70.51% sensitivity,
56.96% specificity, and overall diagnostic accuracy of 58.51%
using the first follow-up data. The overall performance of the
prediction model was improved when three follow-up records
were included. The performance was raised to a sensitivity of
80.45%, a specificity of 83.35%, and overall diagnostic accuracy of
83.02% (Figure 4C, Supplementary Table 2). Due to imbalanced
datasets, we used a relatively high cost-sensitive parameter to
increase sensitivity. A higher sensitivity means that patients
with poor prognoses are more likely to be detected in clinical
practice and radical treatments can be undertaken earlier to
improve patient outcomes. The maximum basal diameter was
the top-ranked preoperative factor related to death within 4
years after surgery (Figure 5). Position, preoperative minimum
basal diameter, corrected visual acuity, and intraocular pressure
was also clearly correlated with death. In addition, the span
of records from the follow-up was remarkably correlated with
predicting death. Thus, obtaining data from three follow-ups had
the greatest impact on accuracy.

Moreover, we constructed a model to predict four-year
metastasis status (Figures 4A,B), with 66.67% sensitivity,
69.42% specificity, and 69.10% accuracy. We then incorporated
additional follow-up information to achieve a sensitivity of
77.08%, a specificity of 79.79%, and overall diagnostic accuracy
of 79.48% (Figure 4D, Supplementary Table 2). The model for
predicting death did perform better than the one for metastasis.
We found that the maximum basal diameter, intraocular
pressure, minimum basal diameter were the most critical factors
(Figure 5). Similarly, additional follow-up information beyond
the first collection was significantly related to successfully
predicting metastasis. Tumor thickness recorded in the third
follow-up was the most important information.

Regression Pattern
We next investigated investigate the importance of tumor
thickness after treatment. We classified the tumor response to
brachytherapy into the following four main patterns (47, 48)
(Figure 6). Pattern D (decrease) involved at least one follow-up
visit, the thickness decreased by at least 15% compared to the
preoperative period, and two other visits also showed a decrease
in thickness. Pattern S (stable) indicates there was < a 15%
change in thickness. Pattern I (increase) is defined by at least one

follow-up visit, the thickness increased by at least 15% compared
to the preoperative period, and thickness also increased at two
other visits. Pattern O (others) indicates an irregular change in
thickness. Preoperative tumor sizes of different patterns are listed
in Table 1. It was found that the tumor regression rate increased
with increasing tumor thickness (P < 0.001) (Figure 7).

As shown in Figures 8A,B, there is a statistical significance
relating metastasis and death (P < 0.001) to different tumor
regression patterns. Patterns D/S were associated with a
significantly better prognosis than the I/O group. Then, we
further categorized the O group into three subtypes: DI (decrease
followed by increase), ID (increase followed by decrease), and Z
(“zigzag” or alternating measurements). Kaplan-Meier survival
analysis revealed that pattern DI was significantly related to a
higher death rate (P < 0.001) (Figure 8).

DISCUSSION

Great changes have taken place in traditional medicine after entry
into the era of data. Physiological parameters can be recorded
by wearable smart products (such as smart glasses, watches, and
bracelets (49, 50), biological parameters can be expressed by gene
sequencing (51), and anatomical parameters can be displayed by
image data (52). The limits on analysis of such data by humans
alone have clearly been exceeded, necessitating an increased
reliance on machines. Accordingly, at the same time that there
is more dependence than ever on humans to provide healthcare,
algorithms are desperately needed to help (53).

Uveal melanoma (UM) is the most common intraocular
tumor in adults. Although several treatments are available for
patients with UM, more than half of patients end up with
distant metastases. Unfortunately, there is currently no effective
treatment for themetastatic disease, and themedian survival time
for metastatic UM is only 12 months (54–56). So risk factors
that allow the early prediction of the metastasis and survival
time of patients will contribute to the implementation of a more
aggressive treatment strategy and improve patient outcomes
(57). Additionally, numerous studies have shown that the great
majority of patients want to know whether their prognosis is
good or bad both before surgery and during follow-up. Although
the bad news is particularly upsetting, patients feel a sense of
empowerment over their future planning and a reduction in
uncertainty and accompanying anxiety (58–60).

Our previous studies, and those of others, have shown
that clinical characteristics such as male gender, advanced age,
larger tumor size, epithelioid cell type, subretinal fluid, and
ciliary body involvement can increase the risk of metastasis
and death (10, 11, 61–64). Additionally, the treatment response
by tumors can also affect the outcome to some extent. Several
studies discovered that local treatment failure, defined by COMS
as a 15% increase in tumor thickness after brachytherapy
was significantly related to uveal melanoma-related mortality
and systemic dissemination (15, 65). Furthermore, Augsburger
and Kaiserman (19, 66) found that rapid regression of
tumors after plaque brachytherapy indicates an unfavorable
prognosis. Also, in other treatment modalities, Christoph et al.
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FIGURE 5 | Relative importance of each factor in the machine learning model.
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FIGURE 6 | Percentage graph of initial tumor thickness vs. duration of

follow-up after iodine 125 brachytherapy for patients with uveal melanoma by

tumor regression patterns (D vs. S vs. I vs. O).

TABLE 1 | Preoperative tumor size of different patterns.

D S I O P-value

Maximum basal

diameter, mm

11.7 ± 2.8 12.0 ± 2.5 12.1 ± 3.6 12.5 ± 3.7 0.311

Minimum basal

diameter, mm

10.4 ± 2.7 10.5 ± 2.4 10.6 ± 3.2 11.1 ± 2.7 0.409

Maximum

thickness, mm

7.6 ± 2.3 6.3 ± 2.0 4.9 ± 2.0 6.2 ± 2.4 <0.001

FIGURE 7 | Boxplot of preoperative maximum thickness of different tumor

regression patterns (D vs. S vs. O vs. I). **P ≤ 0.05, ***P < 0.001.

(67) reported a non-linear influence of the regression rate
of choroidal melanoma as an independent risk factor of
metastatic disease after linear accelerator stereotactic fractionated
photon radiotherapy. Thus, tumor size change after surgery is
significantly correlated with prognosis. In our research, we added
this aspect to the construction of the model to determine whether
postoperative information could improve model performance
for prediction.

Medicine has experienced the recent emergence of artificial
intelligence (AI) as a novel tool for analyzing large amounts
of data (68). AI has recently achieved high accuracy in

recognizing ocular structure. Deep-learning convolutinal neural
networks (CNNs) developed by Li Dong et al. (69–71) have
shown superior performance in assessing axial length, subfoveal
choroidal thickness, and fundus tessellated density with color
fundus photographs. In the diagnosis of multiple ocular
disorders, AI outperformed human experts with multimodality
imaging, including magnetic resonance imaging (MRI), fundus
photographs, and fundus fluorescence angiography (FFA). An
updated meta-analysis demonstrated that AI-based algorithms
are capable of detecting age-related macular degeneration
(AMD) in fundus images with a pooled AUC 0.983 (72,
73). Naoya Nezu et al. (74) recently reported that several
algorithms predicted the diagnosis of 17 selected intraocular
diseases including UM with aqueous humor cytokines, and
indicated some new biomarkers facilitating the diagnosis of
relevant diseases. In addition, Zhang et al. (75) also justified the
effectiveness of deep learning for predicting nBAP1 expression in
UM based only on Hematoxylin and eosin (H&E) sections.

Models based on clinical and demographic characteristics
are being used to predict the prognosis of individual patients
with UM after treatment. Jorge Vaquero-Garcia et al. (24)created
an interactive web-based tool for the Prediction of Risk of
Metastasis in Uveal Melanoma (PRiMeUM), which provides a
tool for assessing the personalized risk for metastasis based
on individual and tumor characteristics. The accuracy of the
risk prediction was 80% using only chromosomal features, 83%
using only clinical features, and 85% using combined clinical
and chromosomal information. However, in most eye centers,
chromosomal information is not available. Fine-needle aspiration
biopsy is an invasive method and may contribute to some
related complications such as vision loss, persistent hemorrhage,
and even extraocular extension (76). Therefore, most patients
being treated by plaque brachytherapy are reluctant to accept
this examination.

We previously applied machine learning technology to
establish a model to predict whether a patient would die or
metastasize within 2 years after initial treatment. This model
achieved an overall accuracy of 77.0 and 75.0% with all features
(77). Information extracted from B-ultrasound images was
additionally applied to machine learning to provide personalized
risk prediction. To the best of our knowledge, ours is the first
machine learning-based UM prognosis model using follow-up
information after surgery. With the increasing availability of
follow-up information, the performance of predictive models has
improved significantly. The AUC of models increased from 0.708
to 0.883 after two additional follow-up records were added.

Figure 5 shows that follow-up data were remarkably
correlated with 4-year survival. This suggests we can provide a
more accurate prognostic evaluation for patients by intensive
follow-up, which is readily obtained. In our study, tumor
treatment response was divided into four patterns. The D pattern
of decreasing tumor thickness correlated to the best prognosis,
contrary to some previous research (18, 19). It found that early
rapid regression of tumors after plaque brachytherapy was
associated with an unfavorable outcome for patients with UM.
However, a greater regression indicated a better prognosis in our
relatively longer postoperative follow-up. In addition, similar to

Frontiers in Medicine | www.frontiersin.org 8 January 2022 | Volume 8 | Article 777142

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Luo et al. Uveal Melanoma Prognosis Prediction Model

FIGURE 8 | Kaplan-Meier analysis. (A,B) Kaplan-Meier analysis of survival curve (A) and non-metastasis curve (B) for patients with uveal melanoma after iodine 125

plaque brachytherapy by tumor regression patterns (D vs. S vs. I vs. O), expressed in three follow-up visits. (C) Kaplan-Meier analysis of survival curve for patients with

uveal melanoma after iodine 125 plaque radiotherapy by tumor regression patterns (DI vs. ID vs. Z), expressed in three follow-up visits.

their results, a positive correlation between tumor thickness and
regression rate was also found in our research.

Among the patients enrolled for model construction, the 177
surviving patients with UM with follow-up ranging from 3 to
4 years, can validate algorithms in a short time. Additionally,
we welcome external datasets, especially with Asian patients,
to continue our validation efforts. We hope that a predictive
model for Asian patients can be established using factors that are
non-invasive and easily available clinically in the future.

Deep learning (DL)-powered ultrasound has begun to be
widely used in diagnosing certain diseases and for distinguishing
between benign and malignant tumor types (78–80). But it has
been used less for determining prognosis. Thus, we have also
tried to construct a DL model using B-ultrasound images to
predict long-term survival in patients with UM. However, the
performance was found to be unsatisfactory. We do plan to
undertake additional prospective studies that will incorporate
uniform standard ultrasound images and color Doppler flow
imaging to gather more prognostic information. In addition,
multiple imaging modalities have been used recently with
deep learning, including CT and MRI. Using these tools,
researchers can attain more specific and informative histology
and prognostic information. Compared to ultrasound, MRI
provides excellent contrast resolution and multiple tissue-
contrasts. Due to the paramagnetic effect, lesions with different
melanin contents will present distinct signal intensities in
MRI. Furthermore, the use of multiple sequences including
dynamic contrast-enhanced (DCE) sequence and diffusion-
weighted MR imaging has made it easier to identify intertumor
heterogeneity (81, 82). It has been proven that quantitative
multiparametric MRI can be used to predict monosomy 3
and UM metastasis (83, 84). Therefore, we propose to adopt
DL to automatically extract high-throughput features from
multi-modal, multi-channel preoperative MRI to predict the
survival time for patients with UM. This will enable us
to better develop personalized treatment plans and realize
precision medicine.

There are some limitations in our study that should be noted.
First, while death is an outcome that can be precisely determined
metastasis can only be detected at follow-up visits. Therefore,
metastasis may present before the clinical diagnosis, which would
affect our model’s predictive value for metastasis. Second, due
to the retrospective nature of this study, the follow-up interval

after surgery in our study was not fixed. This affected the results
to some extent. Third, based on the COMS data, post-therapy
surveillance relies on decreasing thickness with ultrasound B
repeated every 6 months for 2 years and yearly after that (16).
But most of our patients can only be checked three times within
3 years. Our results showed that the algorithm’s performance
could be enhanced with more follow-up visits. Frequent follow-
up of patients is advisable, ideally leading to earlier detection
of metastasis and timely enrollment into treatment and care.
Thus, patients will be strictly followed up in the future to
further explore the role of data from follow-up examinations in
predicting prognosis.

CONCLUSIONS

In conclusion, the present study developed an RF model
to predict the risk of UM metastasis and death within 4
years based on ultrasound follow-up records following plaque
brachytherapy. We intend to further validate our model in
prospective datasets, which can prompt us to implement timely
and efficient treatments.
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