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Abstract

The published biomedical research literature encompasses most of our understanding of
how drugs interact with gene products to produce physiological responses (phenotypes).
Unfortunately, this information is distributed throughout the unstructured text of over 23 mil-
lion articles. The creation of structured resources that catalog the relationships between
drugs and genes would accelerate the translation of basic molecular knowledge into discov-
eries of genomic biomarkers for drug response and prediction of unexpected drug-drug
interactions. Extracting these relationships from natural language sentences on such a
large scale, however, requires text mining algorithms that can recognize when different-
looking statements are expressing similar ideas. Here we describe a novel algorithm,
Ensemble Biclustering for Classification (EBC), that learns the structure of biomedical rela-
tionships automatically from text, overcoming differences in word choice and sentence
structure. We validate EBC's performance against manually-curated sets of (1) pharmaco-
genomic relationships from PharmGKB and (2) drug-target relationships from DrugBank,
and use it to discover new drug-gene relationships for both knowledge bases. We then
apply EBC to map the complete universe of drug-gene relationships based on their descrip-
tions in Medline, revealing unexpected structure that challenges current notions about how
these relationships are expressed in text. For instance, we learn that newer experimental
findings are described in consistently different ways than established knowledge, and that
seemingly pure classes of relationships can exhibit interesting chimeric structure. The EBC
algorithm is flexible and adaptable to a wide range of problems in biomedical text mining.

Author Summary

Virtually all important biomedical knowledge is described in the published research litera-
ture, but Medline currently contains over 23 million articles and is growing at the rate of
several hundred thousand new articles each year. In this environment, we need computa-
tional algorithms that can efficiently extract, aggregate, annotate and store information
from the raw text. Because authors describe their results using natural language, descrip-
tions of similar phenomena vary considerably with respect to both word choice and
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sentence structure. Any algorithm capable of mining the biomedical literature on a large
scale must be able to overcome these differences and recognize when two different-looking
statements are saying the same thing. Here we describe a novel algorithm, Ensemble
Biclustering for Classification (EBC), that learns the structure of drug-gene relationships
automatically from the unstructured text of biomedical research abstracts. By applying
EBC to the entirety of Medline, we learn from the structure of the text itself approximately
20 key ways that drugs and genes can interact, discover new facts for two biomedical
knowledge bases, and reveal rich and unexpected structure in how scientists describe
drug-gene relationships.

Introduction

Biomedical research generates text at an incredible rate. Each year, several hundred thousand
new articles enter Medline from over 5,500 unique journals [1, 2]. The literature’s rapid growth
and the rise of interdisciplinary domains like bioinformatics and systems biology are changing
how the scientific community interacts with this important resource. Knowledge bases like
OMIM [3], DrugBank [4] and PharmGKB [5] manually curate and restructure information
from the literature to increase its accessibility to researchers and clinicians. These knowledge
bases capture cross-sectional “slices” of the literature, drawing connections among facts
reported in different journals, at different times, and in different research domains. Often, they
examine the literature in ways not easily captured by current indexing strategies, such as MeSH
terms or key words.

As the literature grows and the information we need to extract increases in complexity, full
manual curation of these knowledge bases is rapidly becoming infeasible. Progress in natural
language processing (NLP) has encouraged the development of automated and semi-auto-
mated methods for enabling more efficient curation of biomedical text [6-9], especially as bio-
medical research begins to explore even larger text-based resources, such as electronic medical
records (EMRs) [10, 11]. However, tasks that are simple for human readers, such as recogniz-
ing when two different-looking statements mean the same thing, or when one statement is a
more general version of another statement, are often extremely challenging for NLP algo-
rithms. One way around this problem is to infer the meaning of words and phrases by examin-
ing their usage patterns in large, unlabeled text corpora, an approach called “distributional
semantics” [12-14]. If two words or phrases are used in similar contexts, they are likely to be
semantically related.

Here we introduce a novel algorithm, called Ensemble Biclustering for Classification (EBC),
that applies this strategy to uncover relationships between biomedical entities, such as drugs,
genes and phenotypes. We focus on the problem of drug-gene relationship extraction and char-
acterization from unstructured biomedical text, using statistical dependency parsing to extract
descriptions of drug-gene relationships from Medline sentences and applying EBC to recognize
when two drug-gene pairs share a similar relationship, even when they are described differently
in the text. We show that EBC significantly improves our ability to extract both pharmacogeno-
mic and drug-target relationships, and use it to discover new drug-gene relationships for
PharmGKB and DrugBank. Finally, we combine EBC and hierarchical clustering to map the
global “landscape” of drug-gene interactions, revealing much unforeseen complexity in how
these relationships are described in text. We learn, for example, that there are subtle differences
in how static knowledge (past discoveries) and new experimental discoveries are described,
even when they refer to similar phenomena like inhibition, and that seemingly well-defined
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relationship classes (such as pharmacogenomic and drug-target relationships) often exhibit
much more detailed chimeric structure than anticipated. More generally, we demonstrate that
extracting biomedical relationships based on corpus-level usage patterns, rather than on the
properties of individual sentences, helps bypass the need for large, annotated biomedical train-
ing corpora—an important property in a domain where few such corpora are available.

Results

Quantifying the variability of drug-gene descriptions in Medline
sentences

The full set of abstracts from the 2013 edition of Medline contains approximately 184,000 sen-
tences in which at least one drug name and at least one gene name are present. Many of these
sentences contain multiple drug and gene names; the total number of unique drug-gene-sen-
tence combinations is approximately 236,000.

As described in the Methods, we use dependency parsing to prune away irrelevant terms
and phrases and focus attention on the parts of a drug-gene sentence most relevant to the rela-
tionship between a drug and a gene. The pruned versions of drug-gene sentences are called
dependency paths. Fig 1 illustrates how dependency paths are constructed from raw sentences.
Table 1 provides some common drug-gene dependency paths and associated example sen-
tences. Details about the meanings of the individual grammatical dependencies, with examples,
can be found in [15].

We can quantitatively estimate the diversity of drug-gene descriptions in Medline by con-
sidering the space of all unique drug-gene dependency paths. The vast majority of dependency
paths are rare, indicating high variability in how drug-gene relationships are described. The
total number of unique drug-gene dependency paths in Medline is approximately 197,000, of
which 7,272 (4%) connect at least two different drug-gene pairs. The total number of unique
drug-gene pairs co-occurring in Medline sentences is 49,564, of which 14,052 (28.4%) share a
dependency path with at least one other drug-gene pair.

Table 2 describes the two datasets used in this paper, which consist of matrices, M, in which
the rows are drug-gene pairs and the columns are dependency paths. A cell of M, M, contains
“17 if drug-gene pair i is connected by dependency path j somewhere in Medline and “0” other-
wise. Both of the datasets are over 99% sparse. An important goal, therefore, must be to recog-
nize when different-looking statements are saying the same thing. Otherwise, we can only
recognize that two drug-gene pairs share a relationship if their dependency paths are identical.
The details of how EBC builds connections among different dependency paths can be found in
the Methods.

Identifying pharmacogenomic and drug-target relationships in
biomedical text

We evaluated EBC’s ability to mine the literature for drug-gene pairs exemplifying two specific
types of drug-gene relationships. The algorithm was given only the full, unlabeled text of Med-
line and a small number of drug-gene pairs that exemplified each type of relationship. We refer
to the small sets of labeled drug-gene pairs (sizes 1, 2, 3, 4, 5, 10, 25, 50, and 100) as “seed sets”.
No text was annotated and no specific sentences were marked as “evidence” for any particular
type of relationship. The two relationship types we examined were:

1. Pharmacogenomic (PGx) relationships. PharmGKB’s relationships database [5] contains
6283 manually-curated drug-gene associations in which polymorphisms in the gene are
known to impact drug response.
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Fig 1. Example of a dependency graph for a Medline 2013 sentence. (a) The raw sentence. (b) The
complete dependency graph for the sentence. (c) The dependency path connecting the gene CYP3A4 with
the drug rifampicin. (d) A more compact representation of the dependency path.

doi:10.1371/journal.pcbi.1004216.9001

2. Drug-target relationships. DrugBank [4] maintains a list of known drug-gene relationships
in which the protein product of the gene is a known target of the drug. This list contains
14,594 known relationships.

Fig 2 shows EBC’s performance extracting PGx and drug-target drug-gene pairs on the two
datasets described in Table 2, and compares EBC to two alternative classifiers that do not
account for the semantic relatedness of different dependency paths.

On both datasets, and on both tasks, EBC outperforms the other classifiers by a significant
margin. On the dense dataset, using seed sets of only 10 labeled drug-gene pairs as input, EBC
accurately (AUC > 0.7) ranks 89.6% of test sets for the PGx task and 96.5% of test sets for the
drug-target task. In comparison, using the same seed and test sets, the best-performing non-
EBC classifier accurately ranks only 31.3% of test sets for the PGx task and 49.6% for the drug-
target task. On the sparse dataset, EBC’s increased performance is even more pronounced.
Again using only 10 labeled pairs, EBC accurately ranks 54.4% of test sets on the PGx task and
90.4% on the drug-target task, compared to 1.1% and 6.3% for the best-performing non-EBC
classifier.

EBC’s raw assessments of the similarity of all drug-gene pairs in both datasets can be found
in S1 Data.
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Table 1. Selected dependency paths and representative sentences.

(1]
(2]
(3]

(4]
(5]
[6]
(71
(8]
(9]
[10]
(1]

2]

(13]
[14]

(18]

Dependency path

[appos, inhibitor, amod]
[appos, inhibitor, prep_of]

[appos, antagonist, amod]

[nsubjpass, metabolized, agent]
[nsubj, inhibits, dobyj]

[nsubyj, inhibited, dobj, activity,
amod]

[appos, antibody, prep_against]

[nsubj, increased, doby,
expression, amod]

[nsubj, substrate, prep_for]
[agent, activated, nsubjpass]
[nsubj, binds, prep_to]

[nsubj, induces, dobyj]

[nsubj, increased, dobyj, levels,
amod]

[prep_of, metabolism, prep_in,
involved, nsubjpass]

[nsubj, inhibits, dobj, activation,
prep_of]

Example sentence (PubMed ID)

Geldanamycin (GA), an HSP90 inhibitor, is able to suppress 1,25-induced differentiation of
HL60 cells. (20138989)

The mNQO activity was insensitive to dicoumarol, a potent inhibitor of cytosolic NQO1.
(10683249)

The recommended therapy for stage lll disease, based on clinical trials and by the Israeli
Ministry of Health for 2006, includes bosentan (Tracleer), an endothelin-1 antagonist.
(18686806)

Amodiaquine is mainly metabolized hepatically towards its major active metabolite
desethylamodiaquine, by the polymorphic P450 isoform CYP2C8. (18855526)

Salbutamol inhibits IFN-gamma and enhances IL-13 production by PBMCs from asthmatics.
(20523061)

Clonidine noncompetitively inhibited acetylcholinesterase activity in vitro and after in vivo
administration at protective doses. (3761196)

Trastuzumab, a monoclonal antibody against HER2, has shown survival benefits when given
with chemotherapy in all setting of HER2-positive breast cancer patients. (21129604)

Carbachol significantly increased VEGF expression in TMps, and this effect was totally
reversed by methoctramine and pirenzepine. (15987429)

Cyclosporin, an immunosuppressant with a narrow therapeutic window, is a substrate for both
CYP3A4 and P-glycoprotein (Pgp). (12427482)

These results suggest that TRPV2 is specifically activated by probenecid and that this
chemical might be useful for investigation of pain-related TRPV2 function. (17850966)

Pertuzumab binds to ErbB2 near the center of domain Il, sterically blocking a binding pocket
necessary for receptor dimerization and signaling. (15093539)

Tadalafil is mainly metabolized by cytochrome P450 (CYP) 3A4, and as bosentan induces
CYP2C9 and CYP3A4, a pharmacokinetic interaction is possible between these agents.
(18305126)

When cells were cultured in a medium containing estrogen, resveratrol increased the ErbB2
protein levels in a dose-dependent manner. (16488535)

The results of preclinical studies demonstrated that CYP3AA4 is involved in the metabolism of
gefitinib and that gefitinib is a weak inhibitor of CYP2D6 activity. (16176119)

Imatinib also inhibits the activation of e¢-Abl, which is a key downstream molecule of
transforming growth factor-beta signaling, and PDGF receptors. (17603257)

Frequency
1181

452

338

204
118
73
71
64
57
53
51

30

29
21

17

The drug and gene names flanking each path are bolded. Some key abbreviations are listed here: appos: appositional modifier, amod: adjectival modifier,
prep: prepositional modifier (if prep_of, the specific preposition used is “of”, if prep_to, it's “to”, if prep_for, it's “for”), nsubjpass: passive nominal subject,
agent: complement of passive verb, dobj: direct object of active verb, nsubj: noun subject of active verb.

doi:10.1371/journal.pcbi.1004216.t001

Table 2. Summary of datasets for the PGx and drug-target relation extraction tasks. In the dense dataset, the drug-gene pairs and dependency paths
represented must have occurred at least five times in Medline. In the sparse dataset, the dependency paths must have occurred at least twice, and all drug-
gene pairs connected by these paths were included, even if they only occurred once.

Dataset Task Drug-gene
pairs
Dense  PGx 3514
Drug-
target
Sparse  PGx 14,052
Drug-
target

doi:10.1371/journal.pcbi.1004216.t002

Dependency Nonzero matrix elements Known relationships in Optimal row and column
paths (sparsity) dataset cluster numbers
1232 10,007 (99.8%) 290 k=30,/=125
410
7272 29,456 (99.97%) 545 k=7,1=25
779
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Fig 2. Classifier performance at the task of recognizing (a) PGx associations (dense matrix), (b) drug-target associations (dense matrix), (c) PGx
associations (sparse matrix) and (d) drug-target associations (sparse matrix).

doi:10.1371/journal.pcbi.1004216.9002

Inferring connections among related descriptions based on patterns in
the text

The backbone of EBC is a biclustering algorithm called Information-Theoretic Co-Clustering
(ITCCG; [16], see Methods). Fig 3 shows the result of one ITCC run on a small sample dataset
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Fig 3. Example of ITCC output for a small matrix consisting of drug-CYP3A4 pairs and their
associated dependency paths. The top heatmap shows the original data after the clustering was
performed. An orange square represents an observed path (column) between a given drug-gene pair (row).
The bottom heatmap shows the approximate distribution arising from a single ITCC run.

doi:10.1371/journal.pcbi.1004216.9003
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Table 3. Some dependency paths that cluster together with relatively high frequency.

First Pattern Second Pattern Frequency of co-clustering
[nsubj, antibody, partmod, directed, prep_against] [nsubj, antibody, partmod, targeting, dobyj] 0.59
D is an antibody directed against G. D is an antibody targeting G.

[prep_such_as, inhibitor, amod] [prep_including, inhibitors, amod] 0.31
G inhibitor such as D G inhibitors, including D

[prep_such_as, agonists, nn] [amod, activators, nn] 0.12
G agonists, such as D,. . . G activators, D and. . .

[nsubjpass, metabolized, agent] [dep, substrates, nn) 0.11
D is metabolized by G G substrates (D,. . .),. . .

[nsubj, blocked, dobj, activation, amod] [nsubj, inhibited, dobj] 0.07
D blocked G activation D inhibited G

[nsubj, increased, dobj, expression, prep_of, mRNA, nn] [nsubj, induces, dobj, activity, amod] 0.03

D increased the expression of G mRNA

D induces G activity

The first line of each row shows the dependency path, the second an example of what that path would look like in the raw text. The symbol D represents

the drug and G represents the gene.

doi:10.1371/journal.pcbi.1004216.t003

consisting of dependency paths that connect different drugs to the gene CYP3A4 (a liver cyto-
chrome involved in the pharmacokinetic pathways of many drugs) at least five times in Med-
line. This dataset contains 62 drug-gene pairs (where the gene is always CYP3A4) and 14
unique dependency paths. As with the datasets in Table 2, these are arranged in a matrix, M,
where an element M;; is “1” if drug-gene pair i is connected by path j somewhere in Medline,
and “0” otherwise. We used ITCC to bicluster this matrix into four row clusters and six column
clusters. Besides biclustering the matrix, ITCC produces a “smoothed” version of the matrix
where certain elements that were not observed in the original dataset are filled in.

Fig 3 illustrates that the rows fragment into four clusters that reflect distinct ways that drugs
can interact with CYP3A4. Row cluster 1 contains CYP3A4 inhibitors, a few of which are also
substrates. Row cluster 2 contains CYP3A4 inducers. Row clusters 3 and 4 contain substrates
of CYP3A4 that are not known inhibitors. EBC combines information from thousands of dif-
ferent biclusterings like this one to assess the relationship similarity of any two drug-gene pairs
(rows) in the matrix, by looking at how frequently they cluster together.

It is also interesting to examine which columns of the matrix cluster together, as this pro-
vides insight into how the method is working. Fig 3 shows that the dependency paths naturally
fragment into clusters reflecting known biomedical properties. All of the paths referring to
inhibition, for example, appear together in column cluster 2. The sole path referring to induc-
tion appears by itself in column cluster 6. The other four clusters include paths describing situ-
ations where the drug is a substrate of CYP3A4, or is metabolized by it. We see a similar
pattern emerge when we examine co-clustering frequencies of the columns on a larger dataset:
the dense dataset from Table 2. Table 3 shows some dependency paths from this dataset that
frequently cluster together over 2000 separate runs of ITCC. Paths that frequently cluster
together appear to be semantically related.

Mapping the semantic landscape of drug-gene interactions

EBC provides a measure of relationship similarity between every drug-gene pair and every
other pair (the frequency with which each pair of rows in the data matrix cluster together). By
combining these assessments with hierarchical clustering, we created the dendrogram shown
in Fig 4, the details of which are described in the figure caption. Table 4 summarizes the general

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004216  July 28, 2015 8/27
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Fig 4. Dendrogram illustrating the semantic relationships among 3514 drug-gene pairs. In this dendrogram, the leaves represent 3514 drug-gene pairs
that co-occur in Medline sentences at least 5 times, and we have cut the dendrogram at various levels (illustrated by the red lines in the interior of the
dendrogram) to produce the colored clusters shown around the edges. Drug-gene pairs that are known drug-target relationships from DrugBank are denoted
by blue dots, and those that are known PGx relationships from PharmGKB are denoted by orange dots. The heights of the turquoise bars are proportional to
how often the corresponding drug-gene pairs co-occur in Medline sentences (a proxy for how well-documented they are).

doi:10.1371/journal.pcbi.1004216.9004

“themes” of the clusters from Fig 4 and includes the size of each cluster and the density of
known PGx and drug-target relationships within that cluster. The cluster assignments for dif-
ferent slices of the dendrogram are provided in S3 Data.

Cluster 8, the largest cluster, contains drug-gene pairs whose descriptions mainly refer to
inhibition. This cluster is highly enriched for both PGx and drug-target relationships. When
cluster 8 is subdivided by cutting the dendrogram at a lower height, a subcluster (8a) of antago-
nists and their protein targets splits off from the main cluster. EBC has learned that antagonism
is a subclass of inhibition. Cluster 10, which is a close relative of cluster 8 in the dendrogram,
contains drug-gene pairs where the drug is both an inhibitor and a substrate of the protein,
such as verapamil/P-glycoprotein.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004216  July 28, 2015 9/27
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Table 4. Explanation of the clusters shown in Fig 4. Clusters with 20 or fewer members are not described in the table in the interest of space.

1a

1b

3a

3b

3c

7c

7d

Theme Cluster  Key word/phrase Example drug- % % Comment
size gene pair PGx Drug-
Target
Synthesis 34 synthase aldosterone, 0.0 176 Many of the drugs in this cluster are
P450aldo endogenous compounds.

11 beta-Hydroxylase (P45011 beta) and aldosterone synthase (P450aldo) were situated in the inner mitochondrial membrane of the zona
fasciculata-reticularis cells and in that of the zona glomerulosa cells, respectively. (9617077)

Activation 134 increased activity curcumin, 9.0 6.7 In this cluster, activation is frequently
caspase-8 associated with phosphorylation.

Curcumin also stimulated the activity of caspase-8, which initiates Fas signalling pathway of apoptosis. (11396178)

Enzyme activity 45 activity estradiol, E2DH 6.7 6.7 The gene is typically an enzyme that

chemically modifies the drug. A few
transporter pairs are also present, such as
(ornithine, ORNT1).

A fraction of the estradiol 17 beta-oxidoreductase (E2DH) activity in the vesicle remained associated to the membrane after disruption and
treatment with 2 M NaCl. (3459941)

Substrates 64 substrate aminopterin, 29.7 7.8 Relatively few mentions of “metabolism”
hOAT1 compared to 3b and 3c. Reference to
transporters such as P-gp, hOAT1, SERT.

These findings show that both aminopterin and methotrexate are substrates of hOAT1 and hOATS3, and that there are differences between the
antifolates in terms of their transport characteristics. (20460822)

Metabolism 131 metabolized rosiglitazone, 37.4 0.8 Frequent reference to liver cytochromes
CYP2C8 such as CYP3A4 and CYP2D6.

Rosiglitazone, a thiazolidinedione antidiabetic medication used in the treatment of Type 2 diabetes mellitus, is predominantly metabolized by the
cytochrome P450 (CYP) enzyme CYP2C8. (15606443)

Substrates that 70 substrate efavirenz, 37.1 5.7 The drug-gene pairs in this sub-cluster are
(often) also affect CYP2B6 mentioned together less frequently in the
activity literature than those in 3a or 3b.

Efavirenz is extensively metabolized by CYP2B6, and associations between CYP2B6 polymorphisms and plasma efavirenz exposure have been
reported. (20639527) Our results confirm that efavirenz induces CYP2B6 enzyme activity in vivo, as demonstrated by an increase in bupropion
hydroxylation after 2 weeks of efavirenz administration. (18989234)

Third party 28 Inhibits. . . to/by rapamycin, 3.6 3.6 All of the drug-gene pairs in this cluster are
involvement PHAS-I connected by exactly one path, and the
paths are unusual. They often refer to the
involvement of a third molecule of some
kind, raising the possibility of three-way
interactions among drugs and genes.
Rapamycin may inhibit translation initiation by increasing PHAS-I binding to elF-4E. (7629182)

Coadministration 172 in presence of sunitinib, IFN- 0.6 0.6 This cluster illustrates the blurry line
alpha between drugs and genes (proteins) since
many drugs (in this case, IFN-alpha) are
also proteins.
Herein, we report the results of a phase | dose-finding study of sunitinib in combination with IFN-alpha as first-line treatment in patients with
metastatic RCC. (19213665)

Increased production 141 induced, production, PGE2, VEGF 1.4 1.4 Cluster 7 is distinguished by the presence
increase of many proteins that act as drugs. These
include IL-2, gp120, and PGE2.

These findings raise the possibility that endogenous PGE2 stimulates VEGF and bFGF mRNA expression in Mueller cells in vivo under conditions in
which PGE2 production is increased, such as in injury. (9501870)

Raised levels 52 levels, production cisplatin, Rad51 5.8 3.8 Similar in theme to 7a-c, descriptions from
this cluster involve drugs that raise protein
levels. Sentences mostly report
experimental results.

In addition, gefitinib decreased cisplatin- or MMC-elicited Rad51 protein levels by increasing Rad51 protein instability. (18544565)
(Continued)
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Table 4. (Continued)

8a

8c

10

1

12

13

14a

14b

15

Theme Cluster  Key word/phrase Example drug- % % Comment
size gene pair PGx Drug-
Target
Antagonists 101 antagonist, blocker plerixafor, 11.9 39.6 Cluster 8 references inhibition more
CXCR4 generally. EBC learns that antagonism

(cluster 8a) is a subclass of inhibition.

Plerixafor is a selective antagonist of CXCR4 used for mobilization of hematopoietic stem cells (HSCs) for autologous stem cell transplantation
(SCT) in patients with multiple myeloma (MM) and non-Hodgkin lymphoma (NHL). (19748593)

Inhibition 380 inhibitor of, inhibits sildenafil, PDE5 18.7 37.9 Cluster 8c is large and includes some
interesting smaller subclusters, such as
antibodies against particular proteins, and
inhibition, specifically, of protein activity or
phosphorylation.

Although active sites of PDEs are apparently structurally similar, PDE4 is specifically inhibited by selective inhibitors such as rolipram, while PDE5 is

preferentially blocked by sildenafil. (15224132)

Specific drug-protein 56 target, kinase, protein hyaluronate, 3.6 143 These are pairs where the protein is named

interactions GHAP for its function, which involves a particular
action on the drug in question. In the
second sentence, the pair is pyridoxal/Pdxk.

Cells were probed with the glial hyaluronate binding protein (GHAP) which was itself then visualized by conventional indirect immunofluorescence.
(2070821) Transcriptome profiling revealed pyridoxal kinase (Pdxk) as a target gene of PAR bZip proteins in both liver and brain. (15175240)

Inhibitors and 70 inhibitor, substrate, verapamil, P-gp 30.0 4.3 Many drugs act as both inhibitors and

substrates metabolized substrates of proteins, including ritonavir/
CYP3A4, quinidine/P-gp, and omeprazole/
CYP2C19, all found in cluster 10.

It has been reported that verapamil and atorvastatin are inhibitors of both P-glycoprotein (P-gp) and microsomal cytochrome P450 (CYP) 3A4, and
verapamil is a substrate of both P-gp and CYP3A4. (18193210)

Inhibition 148 inhibitor of; G inhibitors, miglitol, alpha- 122 27.0 There is little difference in meaning between
such as D; inactivator glucosidase this cluster and cluster 8c, except that there
are variations in phrasing that are more
common to one or the other cluster.

alpha-Glucosidase inhibitors, such as miglitol, are drugs that have greater affinity towards this enzyme in comparison to carbohydrates. (19563873)

Receptors 80 receptor(s), gene, urokinase, uPAR 1.3 325 Cluster 12 contains a subcluster primarily
antagonist composed of antagonist pairs, and a larger
subcluster involving pairs where the gene is
described as the “receptor” for the drug.

The urokinase receptor urokinase-type plasminogen activator receptor (UPAR) is a surface receptor capable of not only focalizing urokinase-type
plasminogen activator (uPA)—mediated fibrinolysis to the pericellular micro-environment but also promoting cell migration and chemotaxis.
(22285761)

Activation 112 activated, increased simvastatin, 0.0 0.0 This is the largest cluster with zero
expression Ract representation of either PGx or drug-target
relationships. The pair in the second
sentence is estradiol/HO-1.

The small GTPase Rac1 was activated by simvastatin, and this was required for both PKB activation and IL-1beta secretion. (18684863) Estradiol
increased HO-1 expression by 2- to 3-fold, an effect blocked by SU5416, and PPT mimicked the effects of estradiol on HO-1. (20644008)
Agonists 129 agonist, hormone, analog  sumatriptan, 7.0 333

5-HT1B

We compared the vasoconstrictor effects of 5-HT with those of the selective 5-HT1B/1D-receptor agonists sumatriptan and rizatriptan in human
isolated cranial (middle meningeal) arteries. (9862247)

Activation / 138 activates, induced, resveratrol, 1.4 4.3 Focus is similar to cluster 13 but notably,
stimulation stimulates AMPK there is relatively little reference to
expression.
Moreover, resveratrol activated AMPK and inhibited phosphorylation of 4E-BP1 and S6 in diabetic rat kidneys. (20332614)
Protein binding 28 binds to; binding to glibenclamide, 71 357
SURT1
(Continued)
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Table 4. (Continued)

17d

17e

18a

18b

19

20a

20b

21

Theme Cluster  Key word/phrase Example drug- % % Comment
size gene pair PGx Drug-
Target

ATP, in the presence of an ATP-regenerating system to oppose hydrolysis during incubation, inhibited glibenclamide binding to SUR1 and SUR2B
(Y1206S) by approximately 60%, to SUR2A (Y1206S) by 21%. (12145099)

Experimental 151 treatment, concentration,  dasatinib, STAT3 1.8 2.4 This cluster includes many sentences

methods toxicities, mice, cells describing observed effects on expression/
activity, but not as many as other nearby
clusters. Cluster 17d is also home to one
insidious error: the term “DLTS" (“dose-
limiting toxicities") identified as a gene.

We hypothesized that the reactivation of STAT3 after dasatinib treatment represents the engagement of a compensatory signal for cell survival that

blocks the antitumor effects of SFK inhibition. (17634553) Treatment of cultured cells from WT or Delta 18 COX-2 mice with flurbiprofen, which

blocks substrate-dependent degradation, attenuates COX-2 degradation, and treatment of normal mice with ibuprofen increases the levels of COX-

2 in brain tissue. (19758985)

Effect on expression 148 investigate effect on G colchicine, 1.3 0.0 If directionality of effect is reported in
expression; alter, affect, MEFV cluster1 17g, it is most often inhibition.
decrease, regulated

To investigate the effect of colchicine (the main therapeutic agent for FMF patients) and certain inflammatory cytokines (IL-1 beta, TNF-alpha, IFN-
alpha, IFN-gamma) on MEFV expression and Cba inhibitor activity in neutrophils and primary peritoneal fibroblast cultures. (11802319)

Induction of 123 increased/induced imatinib, CXCR4 1.6 1.6 Typically experimental results reporting a

expression expression positive effect of the drug on gene
expression.

In KBM5 and K562 cells, imatinib, INNO-406, or IFN-alpha increased CXCR4 expression and migration. (18202009)

Effect on expression, 65 by expression, inducer of, melatonin, bcl-2 1.5 15 In many sentences, we know only that the

usually induction was induced by effect of the drug on the expression of the

gene was investigated. If directionality of
effect is reported, it is most often induction.

Melatonin given before the ischemia enhanced the expression of bcl-2 in the penumbra area and had no significant effect on the expression of bax.
(10678086)

Inhibition of activation 41 inhibited / suppressed fluvastatin, NF- 4.9 4.9 This is another set of three-way interactions
activation (of G) kappaB where the drug is suppressing activation of
the protein by some other molecule.

Interestingly, fluvastatin suppressed IFN-gamma-induced NF-kappaB activation in parallel with p38 MAPK phosphorylation. (19594754)

Effect on expression, 54 expression by, montelukast, 0.0 3.7 There is a fairly even split in this cluster
usually inhibition expression of, inhibited iNOS between methods and results.
expression, decreased,
reduced

This study investigated the effects of montelukast (a leukotriene receptor antagonist) on iNOS expression and activity in a Brown Norway (BN) rat
allergic inflammation model and in L2 lung epithelial cell. (14559427)

Decreased levels 59 decreased levels, gefitinib, Rad51 1.7 0.0 Note that the example sentence here is
inhibited expression, identical to that in cluster 7d, but the drug in
suppression question is different. This single sentence

describes two separate relationships with
different characters.

In addition, gefitinib decreased cisplatin- or MMC-elicited Rad51 protein levels by increasing Rad51 protein instability. (18544565)

Inhibited activity / 76 inhibited activity, inhibited  minocycline, 39 105 Focus is experimental observations, as
expression expression MMP-2 opposed to stated prior knowledge (the

dominant theme in cluster 8c).
Intraperitoneal minocycline at 45 mg/kg concentration twice a day (first dose immediately after the onset of reperfusion) significantly reduced
gelatinolytic activity of ischemia-elevated MMP-2 and MMP-9 (p < 0.0003). (16846501)

(Continued)
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Table 4. (Continued)

22

23

24

25c¢

25d

25f

Theme Cluster  Key word/phrase Example drug- % % Comment
size gene pair PGx Drug-
Target
Inhibition 78 inhibited; G inhibitors, trastuzumab, 10.3 17.9 There are some subtle differences between
such as. . . HER2 cluster 22 and cluster 8. Most notably,

cluster 22 never references antagonism.
Cluster 22 also contains some descriptions
that never occur in cluster 8, such as
“inhibited induction of” and “inhibited
activation”. Similarly, cluster 8 contains
some descriptions (besides those of
antagonists) that never occur in cluster 22,
such as “inhibitors of G, such as. . .”,
“decreased activity”, and “inhibit activity”.

The humanized anti-HER2 monoclonal antibody trastuzumab inhibits the activation of HER2 and its multiple downstream signaling pathways,
including the Ras/mitogen-activated protein kinase pathway. (18451248)

Protein binding (and) 33 activity, protein, binds gp120,DC-SIGN 0.0 121 This small cluster actually contains two

affects activity smaller subclusters, one of which focuses
on protein activity and the other on binding.
The descriptions of these drug-gene pairs
include some different variants of those in
clusters 15 and 25f.

gp120 additionally binds to DC-SIGN, a C-type lectin expressed on immature dendritic cells. (11825572) Moreover, exposure of hippocampal
neurons to dexamethasone significantly increased caspase-3 activity, which was inhibited by co-treatment with agmatine. (16777341)

Patients with disease 92 treatment, patients, glyburide, 3.3 2.2 This cluster illustrates one problem

(error) disease NIDDM associated with using simple string
matching to lexicons to identify drugs and
genes: COPD and NIDDM are both gene
names. Notably, however, these types of
errors are “quarantined” together in the
dendrogram.

140 NIDDM patients being treated with either glyburide (n = 70) or glipizide (n = 70) were randomly selected from the populations of patients
receiving either drug using computerized pharmacy records. (1421641)

Affects secretion / 50 secretion octreotide, 0.0 0.0 Genes (proteins) in this cluster are
release calcitonin generally hormones or cytokines, such as
gastrin, lactogen, IL-1RA, and IL-13.

The inhibitory effect of octreotide on rGRF-induced calcitonin secretion was partially abolished by pretreating the cells with pertussis toxin.
(1355052)

Expression 252 on expression, by indomethacin, 2.0 2.0 The directionality of the drug's effect on
expression, inhibited / MCP-1 expression varied within this cluster. The
increased expression sentences mostly report experimental

findings.

We found that, in murine podocytes, expression of monocyte chemoattractant protein 1 (MCP-1) in response to TNF-alpha was suppressed by
indomethacin but not by ibuprofen. (18799549)

Affects activity 38 activity, on activity amitriptyline, 26 105
EAAT3

Our results suggested that amitriptyline at clinically relevant concentrations reversibly reduced EAATS3 activity via decreasing its maximal velocity of
glutamate transporting function. (19405995)

doi:10.1371/journal.pchi.1004216.t004

Cluster 3, another large cluster, is almost exclusively devoted to metabolism and substrate
relationships, and is highly enriched for PGx relationships, though not drug-target relation-
ships. Cluster 3 contains three subclusters with slightly different properties. Cluster 3a involves
mainly substrate relationships where the concept of “metabolism" is not mentioned. These
include, for example, transport relationships like aminopterin/hOAT1. Cluster 3b contains
most of the metabolic relationships, many of which involve liver cytochromes like CYP3A4
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and CYP2D6. Cluster 3c includes substrate relationships where the drug is often also described
as having an effect on the activity of the protein.

Other clusters enriched for drug-target relationships include cluster 12, where the protein is
described as the receptor for the drug, cluster 14a, where the drug is described as an agonist of
the protein, and cluster 15, which refers to protein binding. Notably, cluster 14a (agonists) is
part of a larger cluster, cluster 14, that encompasses activation and stimulation relationships.
Here, EBC has learned that agonism is a subclass of activation. Interestingly, cluster 14b, the
part of cluster 14 that refers to activation more broadly and does not specifically refer to agon-
ism, is not enriched for drug-target relationships.

Clusters 1-16, which comprise 3 of the 4 main high-level groups within the dendrogram,
are relatively easy to interpret: in general, each displayed a consistent theme. Clusters 17-25,
however, involve descriptions of experimental methods or results about drug effects on gene
expression or protein activity. Here, the dendrogram reveals a distinction between past and
present knowledge. Drug-gene pairs that are already well-studied are often reported in a static
context—“D is an inhibitor of G”, or “D is a G agonist”’-whereas other pairs are reported pri-
marily in an experimental context—“we investigated the effect of D on G expression”, “G was
activated by D”, or “exposure to D significantly increased G activity”. Depending on the relative
frequency of different types of descriptions, a drug-gene pair exemplifying an inhibitory rela-
tionship might end up in cluster 8 (mostly static descriptions) or cluster 21 (mostly experimen-
tal descriptions). Interestingly, drug-gene pairs from cluster 21 appear together in the literature
significantly fewer times than drug-gene pairs from cluster 8 (median 9 times for cluster 21 vs.
16 times for cluster 8; maximum 66 times for cluster 21 vs. 2722 times for cluster 8; p < 0.0001,
Mann-Whitney test), which seems to corroborate our assertion that the drug-gene pairs from
cluster 21 represent more tentative experimental findings as opposed to well-established static
knowledge.

Finally, the dendrogram reveals that PGx and drug-target relationships do not constitute
distinct classes of relationships, but are chimeras. PGx relationships are composed of relatively
distinct subgroups corresponding to (a) situations where the drug inhibits the gene/protein
(and therefore, mutations in the gene could be expected to impact response to the drug), and
(b) situations where the protein is involved in the metabolism or transport of the drug. Drug-
target relationships overlap with (a) but not (b), and include other non-PGx subclasses, such as
receptor binding and agonism.

Discovering novel relationships for PharmGKB and DrugBank

EBC reliably detects new drug-gene pairs reflecting relationships of interest to PharmGKB and
DrugBank, so we attempted to discover new examples from our corpus. We built seed sets con-
taining all known relationships from PharmGKB and DrugBank and incorporated these into
EBC to rank the remaining drug-gene pairs according to EBC’s certainty that they represented
PGx or drug-target relationships. There was 13.6% overlap between the two seed sets, with 84
drug-gene pairs in both, 206 in PharmGKB only, and 326 in DrugBank only, and 2898 pairs
that were unknown to both.

The dendrogram shown in Fig 5 is identical to that in Fig 4, except that the clusters are
replaced by vertical bars, the heights of which correspond to EBC's relative certainty that the
pairs in question represent PGx relationships (shown in orange) or drug-target relationships
(shown in blue). The raw prediction data can be found in S4 Data. Known PGx or drug-target
pairs are excluded from the bar graphs, but are denoted beneath the bars with orange or blue
dots. As expected, we see high prediction certainty for drug-target and PGx relationships
among the inhibitors in cluster 8, and high certainty for PGx relationships among the
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Fig 5. Dendrogram illustrating predictions of novel PGx and drug-target relationships among 3514
drug-gene pairs. The height of the bars corresponds to EBC's certainty that the pair in question represents a
relationship of the corresponding type (orange: PGx relationships, blue: drug-target relationships). The dots
represent known PGx and drug-target relationships, as in Fig 4.

doi:10.1371/journal.pcbi.1004216.9005

metabolic/substrate relationships in cluster 3. We also observe an interesting area of high
enrichment for both types of relationships among clusters 21-23, where inhibition is mostly
reported in an experimental context, but the density of known PGx and drug-target relation-
ships is quite low. These could represent new experimental findings that will be discussed as
static knowledge in a few years.

Table 5 shows the top 20 predictions of new PGx candidate pairs for PharmGKB, and
Table 6 shows the top 20 candidate drug-target pairs for DrugBank. Among the top 20 PGx
predictions, five are already known to PharmGKB and have been demonstrated experimentally
(one or more variants of the gene have been shown to impact response to the drug), but were
coded in the PharmGKB relationships file in such a way that they were not included in the seed
set. One is brand new: polymorphisms in ABCB1 (P-glycoprotein) do impact clinical response
to fentanyl, but this relationship is currently unknown to PharmGKB. An additional eight
pairs represent likely PGx relationships, such as known inhibitory or metabolic relationships,
but no experiments have yet been conducted that might relate polymorphisms in the gene to
drug response. And finally, in five cases, the potential for a PGx association was considered
likely enough that it was investigated experimentally, but no significant clinical association
between genotype and drug response was found.

Among the top 20 predictions for new drug-target relationships for DrugBank, four are
already known but were listed in DrugBank under alternate gene names. An additional seven
are new, proven drug-target relationships. Of these, five involve drugs that are themselves
unknown to DrugBank (there are no entries for ketanserin, cangrelor, nutlin-3, or tropisetron
in DrugBank). There are also several interesting, yet erroneous findings arising from parser
and lexicon errors in which a molecule, such as IL-1, is mistaken for its receptor, and that
receptor is the true target of the drug. These are explored further in the Discussion.
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Table 5. Top 20 predictions of new drug-gene relationships for PharmGKB, and whether a PGx relationship has been documented in the literature.

[l

[2]
[3]
[4]

[s]

(6]
[7]
(8]
[9]

[10]

[11]
[12]
[13]

[14]
[15]
[16]
(171
(18]
[19]
[20]

Candidate drug-
gene pair

omeprazole,
CYP2C19
mexiletine, CYP1A2
fentanyl, P-gp

voriconazole,
CYP3A4

cyclosporine,
CYP3A4

duloxetine, CYP1A2
fluconazole, UGT2B7
montelukast, CYP2C8

dydrogesterone,
AKR1C1

voriconazole,
CYP2C9

imipramine, FMO1
ticlopidine, CYP2C19
moclobemide, MAO-B

ritonavir, P-gp
cyclosporin, MDR1
cyclosporin, P-gp
vinblastine, P-gp
amprenavir, CYP3A4
perazine, CYP1A2
lopinavir, ABCB1

Relative
certainty

1.000

0.995
0.994
0.986

0.983

0.983
0.982
0.973
0.968

0.966

0.962
0.961
0.960

0.958
0.955
0.952
0.951
0.950
0.945
0.939

Literature Comment

reference (PMID)

11069321 **% |ndividual polymorphisms of CYP2C19 already associated with omeprazole
in PharmGKB.

9690950 **

17192767 *xx

17433262 **

18978522 ***  Association listed in PharmGKB as “ambiguous”.

18307373 **

16542204 **

21838784 **

20727920 **

16940139 *

19262426 **%  Experiment conducted in mice.

21178986 *

7586937 In this article, MAO-B activity was studied in relation to moclobemide
response, but specific polymorphisms were not investigated.

16184031 ***  Association listed in PharmGKB as “ambiguous”.

15116055 *

15116055 * Same gene as 15.

16917872 ***  Association listed in PharmGKB as “ambiguous”.

9649346 **

11026737 **

21743379 *

*** indicates that an association has been demonstrated experimentally between changes in the expression/activity of the gene/protein and the efficacy
of the drug
** indicates that such an association is likely, but has not yet been studied

* indicates that the association has been studied experimentally, and the experiment refuted the association. Here we include only associations between
pharmaceutical compounds and single genes; predicted associations involving endogenous compounds and/or groups of genes are included in the
supplement, however.

doi:10.1371/journal.pchi.1004216.t005

Discussion
Relationship extraction in the biomedical domain

Although a great deal of research effort has been directed at the problem of relationship extrac-
tion in pharmacogenomics [17-19], and in the biomedical domain in general [20-25], high-
quality biomedical knowledge bases like OMIM, DrugBank and PharmGKSB still rely almost
entirely on human curators, who comb the literature manually in search of new relationships.
The authors of BioGraph, a new biomedical knowledge base incorporating data from 21 differ-
ent sources, recently decided to exclude databases that were not manually curated, citing data
quality issues [26]. Why is biomedical relationship extraction so challenging?

We believe that one key stumbling block lies in how the problem has historically been
defined. Biomedical relationship extraction is usually thought of as a sentence-level problem-
does a particular sentence describe a specific type of relationship or not? However, as we have
seen, sentence-level descriptions are highly erratic. Faced with a bewildering array of
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Table 6. Top 20 predictions of new drug-target relationships for DrugBank.

[l
[2]

3]
[4]

[s]
[6]

[7]
(8]
[9]
[10]
[11]

[12]
[13]
[14]
[15]

[16]
171

[18]

[19]
[20]

Candidate drug-
gene pair
ketanserin, 5-HT2A
losartan, A-Il

cangrelor, P2Y12

phencyclidine,
nAChR

anakinra, IL-1

bosentan,
endothelin-1

imatinib, EGFR
propanolol, Beta2
carvedilol, Alpha1
MK-571, leukotriene

zafirlukast,
leukotriene

degarelix, GnRH

nutlin-3, Mdm2
genistein, EGFR

montelukast,
leukotriene

aprepitant, NK-1

staurosporine,
calmodulin

nutlin-3, HdM2

tropisetron, 5-HT4
basiliximab, CD25

Relative
certainty

1.000
0.998

0.993
0.992

0.991
0.987

0.985
0.984
0.984
0.983
0.981

0.980
0.980
0.979
0.977

0.977
0.975

0.975

0.974
0.972

Literature Comment
reference (PMID)
16615363 **%  Ketanserin not in DrugBank.
24807206 **  “A-II” refers to the angiotensin type Il receptor. In DrugBank this is listed as
“Type-1 angiotensin Il receptor”.
20048234 ***  Cangrelor not in DrugBank.
9862757 ***  Phencyclidine is a noncompetitive inhibitor of NAChR.
P
P
15887238 * Imatinib's effect on EGFR is ambiguous. It is not likely to be a direct target.
P
P
L MK-571 is unknown to DrugBank.
L
**  GnRH receptor listed in DrugBank as “Gonadotropin-releasing hormone
receptor’. Complicated because degarelix often referred to as “GnRH
antagonist” but the target is actually the GnRH receptor.
18646312 **¥*  Nutlin-3 disrupts the p53-Mdm2 complex. Nutlin-3 is unknown to DrugBank.
21603581 *** |nterestingly, authors found that genistein promotes cancer progression and
increases EGFR signaling.
L
**  NK-1 listed in DrugBank as “Substance-P receptor”.
1846174 * Staurosporine inhibits calmodulin-dependent protein kinase, not calmodulin.
19696166 **%*  Nutlin-3 is unknown to DrugBank. Hdm2 refers to the human version of the
Mdm2 protein (13, above).
11243577 *¥**  Tropisetron is unknown to DrugBank.
12591363 **  CD25 is listed in DrugBank as “Interleukin-2 receptor subunit alpha”.

*** indicates that the drug has been shown experimentally to have modified the activity of the gene/protein

** means that the interaction is known to DrugBank but is listed under an alternate drug or gene name

* means the interaction has been studied and is unlikely; P refers to a particular type of parser error in which the ligand of a receptor is mistaken for that
receptor; L refers to a lexicon error (see Discussion).

doi:10.1371/journal.pcbi.1004216.t006

possibilities for how similar relationships can be described, sentence-level relationship extrac-
tion algorithms often rely on manually-constructed rules or ontologies that map diverse surface
forms onto common semantics [17, 27-29]. These systems require a non-trivial amount of
human maintenance and must be rebuilt for each new domain. Machine learning algorithms
for sentence-level relationship extraction avoid rules but face another serious problem: the
need for annotated training sentences. Recently, researchers have begun to produce annotated
training sets for the biomedical domain [30, 31] but manual annotation is almost as expensive
as manual curation, both in time and human effort. As a result, little to no annotated training
data exist for many classes of biomedically interesting relationships.

These are important problems for NLP, but they only exist because we think of biomedical
relationships at the level of individual sentences. From a biomedical research standpoint, there
is no need to do so—we are most interested in the true relationship between a drug and a gene,
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not in the meaning of any particular sentence. As a result, we have taken a corpus-level
approach where all of the information about a drug-gene pair from all of its available sentence-
level descriptions is combined. Latent connections among different-looking descriptions are
then discovered in an unsupervised fashion from structure inherent in the raw text, requiring
no human effort and boosting our ability to extract relationships of interest.

Support for corpus-level inference

We contend that biomedical relationships should be considered properties of biomedical enti-
ties like drug-gene pairs, not individual sentences. A description like “D decreased G levels”
does not constitute an inhibitory relationship; it is simply an experimental finding that
increases the likelihood of such a relationship. This allows the same sentence to provide evi-
dence for or against multiple types of relationship, the exact definitions of which are applica-
tion dependent. It also allows drug-gene pairs to exhibit multiple relationship types at once.

We see evidence for such an approach when we contrast EBC’s performance at extracting
PGx relationships with its performance extracting drug-target relationships. EBC was uni-
formly worse at extracting PGx relationships, even though these two sets of experiments used
the same data matrices. We see why in Fig 4: it turns out that what we originally considered to
be well-defined relationship classes (PGx and drug-target relationships) are actually compos-
ites of several finer-grained sub-classes. A high percentage of PGx relationships reside in cluster
3, the metabolism/substrate cluster, which inhabits a region of the dendrogram far from the
inhibition clusters. In cases where the seed set consists mostly of metabolic relationships and
the test set mostly of inhibition relationships, we would not expect EBC to perform well, even
though both groups are still technically PGx relationships.

We initially believed that PGx relationships would be expressed in sentences relating spe-
cific polymorphisms to changes in drug efficacy, such as, “The CYP3A4 C3435T polymor-
phism influences rifampicin exposure in human hepatocytes”. In reality, however, relatively
few such sentences exist. Most evidence for PGx relationships comes instead from descriptions
of other types of relationships, such as inhibition and metabolism. So we see that although a
PGx relationship can be considered a property of a drug-gene pair, it is not generally a property
of any particular sentence describing that pair.

Distributional semantics for relationship extraction

EBC is part of a subfield of NLP called distributional semantics, in which patterns in large,
unlabeled text corpora are used to create feature representations of words, phrases, or other
entities (in our case, drug-gene pairs) based on how they are used in context. The similarity of
these representations then serves as a proxy for semantic relatedness [12]. Distributional
semantics algorithms’ theme of discovering semantic relatedness by looking at large-scale
usage patterns inspired our corpus-level approach to drug-gene relationship extraction. For
example, in EBC, these representations are the co-clustering frequencies of each drug-gene pair
with every other pair, and the contextual features are the dependency paths.

EBC builds on a long history of distributional semantics work in the NLP literature, much
of which focuses on assessing the semantic similarity of individual words [12, 13, 32], and
some of which has tackled relationship extraction outside the biomedical domain [33-36].
EBC is most similar in spirit to matrix factorization techniques like Latent Semantic Analysis
(LSA) [13]; ITCC forms a low-rank approximation of the original drug-gene-pair-by-depen-
dency-path matrix, and EBC stacks thousands of slightly different ITCC-based approximations
on top of each other to make its similarity assessments. LSA uses the singular value decomposi-
tion (SVD) [37] instead of ITCC to accomplish a similar goal, and has been applied in at least
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one case to corpus-level relationship extraction (a technique called Latent Relational Analysis,
or LRA) [36]. We compare EBC to LSA on the PGx relationship extraction task in S2 Text.

There are dozens of other clustering and matrix factorization methods available, and some
have already been applied to text mining tasks like relationship extraction. Several methods
cluster textual patterns to discover latent groupings of entity pairs corresponding to distinct
relations [38-41]. Others use the entity pairs flanking different textual patterns to group the
patterns themselves into semantically related classes [33]. Some methods, like EBC, address
both problems simultaneously [42-45]. The issue of textual “entailment”finding the degree to
which one statement implies the existence of another-is also an active area of research in NLP
and is closely related to several of the methods described above [46]. Although these techniques
have already shown great promise on related tasks in web and newswire data, to our knowledge
none has yet been applied to relationship extraction in the biomedical domain.

Study limitations: Dependency paths, lexicons and abstracts

In our analysis of drug-gene relationships, we made several choices about (a) how to identify
drugs and genes in text, (b) the type of text to use as our corpus, and (c) what constitutes a “fea-
ture” (a single column in the data matrix). In all cases, we made the simplest choices possible,
both to enable others to reproduce our results, and to distinguish EBC’s own limitations from
errors/omissions in the preprocessing steps and text itself.

We identify drugs and genes in the text based on simple string matching to single-word
drug and gene names from PharmGKB [5]. Named entity recognition (NER) is its own area of
NLP, and identifying biomedical entity names in text is itself a nontrivial proposition. We can
see one obvious disadvantage of this approach in cluster 24 of Fig 4 and Table 4, which includes
“gene names” like COPD (a.k.a. chronic obstructive pulmonary disease) and NIDDM (non-
insulin-dependent diabetes mellitus). Table 6 also reflects a lexicon error where the term “leu-
kotriene” is listed as a synonym for the leukotriene B4 receptor. Some such errors might be
avoided if we used a more elaborate NER system [47, 48], though such systems themselves are
not perfect and can introduce new sources of error. Our stipulation that the entity names be
single words also led to errors in cases (see Table 6) where a molecule, such as IL-1, is mistaken
for its receptor, the “IL-1 receptor”, because “IL-1 receptor” is a multi-word phrase not allowed
in the lexicon, while “IL-1” is allowed.

We also made no attempt to normalize gene names, so in our results, ABCB1, MDR-1, and
P-gp are all different. Again, this was done to avoid introducing normalization errors, and
because genes and their corresponding proteins are often described in different contexts.

To construct dependency paths from raw Medline sentences, we used the Stanford Parser
[49], a free and open-source statistical parser. The Stanford Parser was trained using labeled
text from newswire corpora, so it sometimes fares poorly on biomedical text. For example, the
parser often mistakes gene names for adjectives (“CYP3A4” in the phrase “CYP3A4 polymor-
phism” is frequently labeled as an adjective). We used the out-of-box implementation of the
Stanford Parser and did not perform any manual review or correction of parses to improve its
performance (again in the interest of simplicity). Because EBC operates at the level of drug-
gene pairs and not individual sentences, its performance is generally robust to parsing errors as
long as the parser makes the same errors consistently.

There are some errors that do lead to incorrect conclusions, however. For example, we
observe some situations where dependency paths bypass important details about relationships,
such as a sentence where a drug is described as “transcriptionally up-regulating G expression”
and the dependency path only captures the effect on expression, not its directionality. These
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are usually generalizations rather than errors, but they do result in some loss of information
from the sentence.

Finally, our corpus consisted of all abstracts from the 2013 edition of Medline. Including
information from the full text of the research articles could help discover relationships not
mentioned in the abstracts, but many journals do not provide access to the full text, and we did
not wish to bias our results in favor of relationships reported in a subset of journals. Our
approach would remain the same regardless of the corpus.

Extensions and future applications

The combination of EBC and dependency path features described here allows us to reliably
extract biomedical relationships of interest from Medline sentences, smoothing over differ-
ences in how these relationships are described. This finding opens the door to many interesting
possible future applications. For example, EBC could be used to extract relationships spanning
multiple sentences or entire abstracts by using features such as individual dependencies, words,
or phrases in place of dependency paths. As new gold-standard sets of biomedical relationships
become available (such as all drug-gene pairs reflecting inhibitory relationships or specific
collections of drug-gene pairs relevant to particular laboratories’ research efforts) these can
seamlessly be incorporated into EBC to extract these relationships at scale. EBC could also
potentially be used for lexicon or ontology expansion in a manner similar to LSA or random
indexing [50, 51]. At its core, EBC is not relationship extraction-centric. The algorithm itself is
agnostic to the type of data contained in its input matrix. EBC simply allows us to use latent
structure in large, unlabeled datasets to boost our ability to extract new information from those
datasets, even when our access to labeled training examples is limited. Datasets like these occur
throughout biomedical research, even beyond NLP. We look forward to seeing how EBC fares
on some other classes of related problems, in NLP and elsewhere.

Methods
Outline of the EBC algorithm

When applied to drug-gene relationship discovery, the EBC algorithm operates on a data
matrix where the rows are drug-gene pairs and the columns are dependency paths that connect
them in the literature. The algorithm has two steps, the first unsupervised and the second
supervised.

First, unsupervised biclustering is used to simultaneously discover (a) latent connections
among dependency paths (columns) that appear different but connect similar drug-gene pairs,
and (b) latent similarities among different drug-gene pairs (rows) that are connected by similar
dependency paths. Over multiple iterations of (a) and (b), the algorithm can infer that two
drug-gene pairs share a similar relationship, even when they share no dependency paths in
common. To make its similarity assessments, EBC uses an ensemble of biclustering runs where
the cluster centers are initialized randomly on each run, providing many different guesses
about which dependency paths and drug-gene pairs are related.

In the second step, EBC incorporates a small seed set of drug-gene pairs (rows) reflecting
some known relationship, and ranks other pairs based on their similarity to the pairs in the
seed set. The specific steps of the EBC algorithm are as follows:

Preprocessing (drug-gene relationship extraction task):

1. Identify all drug-gene pairs co-occurring in sentences within a corpus of text. (In our experi-
ments, these were drug-gene pairs co-occurring in Medline sentences.) Call the number of
drug-gene pairs n.
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2. Extract all dependency paths connecting these drug-gene pairs in the corpus. Call the total
number of observed paths m.

3. Arrange the data in an n x m matrix where the rows represent drug-gene pairs and the col-
umns dependency paths. A cell with coordinates (3, j) in this matrix contains “1” if drug-
gene pair i has been connected by path j somewhere in the corpus, and “0” otherwise.

EBC algorithm:

4. (Unsupervised step.) Use Information-Theoretic Co-Clustering (ITCC; [16], details below)
to bicluster the n x m matrix N times, recording the number of runs in which each row
appears in a row cluster with each other row. The result is an #n x n array, C, of co-occur-
rence values. Note that no information about the seed set is incorporated at this stage, so the
unsupervised step need be run only once per data matrix.

5. (Supervised step.) Identify a seed set, S, of rows that share some property of interest. (In our
experiments, these were drug-gene pairs with known PGx or drug-target relationships.)
Rank the entity pairs in a test set, T, based on a scoring function related to how often they
co-cluster with members of S (details below). Repeat this step as desired with different seed
sets.

Named entity recognition of drugs and genes

We identified drug and gene entity names in the text using simple string matching to lexicons,
though any type of named entity recognition software could be incorporated at this stage [47,
48]. We obtained drug and gene lexicons from PharmGKB [5] and filtered them against a dic-
tionary of common English words to remove promiscuous terms (such as “CAT”, which is
both a gene name and an animal). We included only drug and gene entities with one-word
names, as these names mapped to single nodes in the dependency graphs. The final drug lexi-
con contained 4008 unique terms, and the final gene lexicon contained 109,597 terms (many
genes/proteins had multiple names).

Extraction of dependency paths from Medline abstracts

We used the Stanford Parser [49] to generate dependency graphs for all sentences in Medline
2013 between 4 and 50 words in length (roughly 95% of all sentences in Medline). The input to
the parser is a raw Medline sentence, and the output is a dependency graph. A dependency
graph (see Fig 1) is one way to represent the grammatical architecture of a sentence; the nodes
are words, and the edges are grammatical dependencies (grammatical relationships between
pairs of words, described in detail in [15]).

A dependency path is a path through a dependency graph that connects two entities of
interest. Considering a dependency path, instead of an entire sentence, can help “prune out”
irrelevant terms and phrases and focus our attention on the part of the sentence directly rele-
vant to the relationship between the two entities. We extracted all dependency paths linking
drugs to genes.

It was possible for a single sentence to generate more than one dependency path if multiple
drug or gene names were present in the sentence. We oriented our paths so that they always
started at the drug and ended at the gene, and we eliminated edge directions. (We never
observed a single situation where we accidentally collapsed paths with different meanings in
doing so, since most pairs of words can only be connected by a particular dependency type, like
amod or nn, in one direction.) We eliminated paths containing dependencies of type conj [15],
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because these were usually errors arising from inadequacies in how the dependency parser rep-
resents lists. Note that because the dependency graphs are trees, there is one unique depen-
dency path for each drug-gene pair in a sentence.

Ensemble biclustering

ITCC forms a low-rank approximation of a matrix by iteratively clustering the rows and col-
umns. ITCC treats the data matrix, M, as a joint probability distribution over its rows (Y, drug-
gene pairs) and columns (X, dependency paths). Given fixed numbers of row (k) and column
() clusters, ITCC finds a set of cluster assignments for the rows and columns that captures
most of the mutual information between X and Y with the stipulation that X and Y only inter-
act via their cluster assignments, X and Y. Mathematically, ITCC replaces the joint distribution
of Xand Y, p(x,y) = p(X, ) p(x, y|%, ), with an approximate distribution of the form

q(x,y) = q(x,¥) q(x|x)q(y|y), and assigns rows and columns to clusters so that g(x,y) captures
most of the mutual information between X and Y in p(x,y) (equivalent definition: the Kullback-
Leibler divergence between p(x,y) and q(x,y) is minimized). We implemented ITCC in Java.
Some technical details about our implementation can be found in S3 Text.

There are two unknown input parameters to ITCC: the numbers of row (k) and column (/)
clusters. The optimal choices for k and I must be decided heuristically. We describe our heuris-
tic for choosing k and /in SI Text A.

Due to random initialization of the row and column cluster centers, ITCC generally con-
verges to a different locally-optimal biclustering on each run; this diversity is what guarantees
optimal performance of the EBC algorithm. We ran ITCC N = 2000 times at the optimal k and
l'and recorded the number of runs in which each pair of rows shared a cluster. We observed
that on our data matrices, EBC’s performance increased monotonically with N, stabilizing at
approximately N = 1000.

Scoring of test set pairs

Once EBC’s unsupervised step is performed and appropriate seed (S) and test (T) sets identi-
fied, test set items can be ranked as follows:

1. EBC’s scoring function. For each test set member, T}, rank all n rows of the data matrix
based on how often they co-cluster with T};. This produces a ranking R; of length » in which
pairs that frequently co-cluster with T; are assigned high ranks and those that seldom co-
cluster get low ranks. The score for T; is the rank sum of the members of the seed set, S,
within this list, or:

score(T,) = Z] -I{R; € S}
=1

where
1 ifR; €S

0 otherwise

I{R, € S} = {

Using ranks instead of absolute co-clustering frequencies produces a score that does not
depend on how often, on average, a given drug-gene pair co-clusters with other pairs, since
this baseline “promiscuity” changes from pair to pair. For some applications, those differ-
ences might not matter (or they might be informative) but we normalized to ranks so
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promiscuous pairs (which are often well-known or frequently mentioned pairs) would not
consistently receive higher scores than less promiscuous pairs. EBC’s scoring function will
assign a high score to a test set member as long as the seed set rows tend to cluster with it
more frequently than other rows do. Ties are broken randomly.

We compared EBC’s performance to two other ranking methods that did not take the
semantic similarity of different dependency paths into account:

2. AvgCosine. Let vr, be the row vector in the data matrix associated with test set member i.
This vector contains m elements: one for each dependency path. Let vs, be the row vector
associated with seed set member j. Here we score each test pair T; based on the average
cosine similarity of vz, with all of the row vectors from the seed set, or:

18] .
1 Vi, " Vs,

IS1= v |,

score(T;)

where ||-|| denotes the Euclidean norm.

3. RankSum. In keeping with the spirit of EBC’s scoring function, for each T; we rank all n
rows of the data matrix based on cosine similarity to vr,. This produces a ranking R; of
length » in which rows with high cosine similarity to v, are assigned high ranks and those
with low cosine similarity to vy, get low ranks. The score for T; is the rank sum of the mem-
bers of S within this list, and looks identical to that for EBC; the only difference is that the
rankings R; are produced using cosine similarity and not EBC.

Evaluating rankings of PGx and drug-target relationships

For both the PGx and drug-target tasks, and for seed set sizes |S| = 1, 2, 3, 4, 5, 10, 25, 50, and
100, we generated 1000 random seed sets and 1000 corresponding test sets, ensuring that the
seed sets and test sets did not overlap. The test sets were all composed of 100 drug-gene pairs,
50 of which had known PGx or drug-target relationships and 50 of which did not. All three
ranking methods were used to rank the members of each test set, using its associated seed set
for scoring.

We also explored the impact of data sparsity by performing these evaluations on two sepa-
rate datasets. In the “dense” dataset, we included only drug-gene pairs and dependency paths
that occurred at least five times in Medline. In the “sparse” dataset, we included dependency
paths occurring at least twice, and any drug-gene pairs they connected (even if they only co-
occurred in a single sentence). More information about the two datasets can be found in
Table 2, and the data matrices themselves can be found in S2 Data.

We evaluated the quality of each ranking by calculating the area under the receiver operat-
ing characteristic curve (AUC) [52], a measure of how likely it is that a positive element of the
test set will be ranked higher than a negative element. We elected to use AUC instead of preci-
sion or recall because we wanted a threshold-independent measure of the overall quality of the
ranking. We used R’s ROCR package to calculate the AUCs. From a practical standpoint, we
were concerned mainly with the following scenario: Given that I have a seed set about whose
quality I know nothing, what is the chance I can accurately prioritize the knowledge I am look-
ing for within my [unlabeled] corpus? Our evaluation metric was, therefore, the fraction of the
1000 seed sets that ranked their corresponding test sets with AUC > 0.7.
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Comparing EBC to Latent Semantic Analysis (LSA)

To investigate how similar EBC’s performance was to a more established method designed to
solve a similar problem, we used the singular value decomposition (SVD) [37] to decompose
our two data matrices, creating “compressed” feature vectors of reduced dimensionality for
each drug-gene pair and incorporating these, rather than the raw row vectors, into the two
non-EBC ranking methods described above. This approach is identical to the famous text min-
ing technique Latent Semantic Analysis (LSA; [13]) which was originally applied to overcome
issues of data sparsity in document retrieval. The results of these experiments are described fur-
ther in S2 Text.

Building a dendrogram of drug-gene pairs based on EBC’s similarity
assessments

EBC provides a natural measure of similarity for each drug-gene pair and every other pair: the
number of times the rows corresponding to those two pairs clustered together over the N
biclustering runs. However, as we have seen, these raw values are not fair measures of distance
for all pairs, since some drug-gene pairs tend to cluster frequently with many other pairs, and
others cluster less frequently. EBC’s rank-based scoring function accounts for this by normaliz-
ing to ranks: each drug-gene pair ranks all other pairs by co-clustering frequency, and these
ranks are used in place of the raw co-clustering values in the scoring function.

To implement EBC's scoring function in an unsupervised manner to construct our dendro-
gram, we started with our # x #n matrix of co-occurrence values, C, in which C;; was the number
of runs (out of N total) in which drug-gene pair i co-clustered with drug-gene pair j. We then
converted C into a correlation matrix, p, also 7 x n, where p;; contained the Spearman correla-
tion of C;. and C;, the ith and jth rows of C (note that C is symmetric, so we could just as easily
have used columns). These correlations are, as in EBC's scoring function, measures of how sim-
ilarly drug-gene pair i and pair j rank all other pairs in the matrix, and are not biased in favor
of promiscuous pairs. We then used 1 — p as the distance measure for hierarchical clustering
using minimax linkage [53] to produce the dendrogram shown in Fig 4. Using a different link-
age function or distance metric, obviously, would produce a different-looking dendrogram.

We used several R packages to produce the dendrogram figures, including ape (a library for
making phylogenetic trees), and protoclust (a library for hierarchical clustering using minimax
linkage). To achieve the radially-spaced tip markers, we used a separate package [54].

Supporting Information

$1 Text. Optimizing row and column cluster numbers for EBC. We describe our heuristic
for choosing the optimal number of row (k) and column (J) clusters for EBC based on the struc-
ture of the data matrix.

(PDF)

S2 Text. Comparing EBC to Latent Semantic Analysis (LSA). We compare EBC to another
related technique that was one of the first to use matrix decompositions to address the problem

of data sparsity in text mining.
(PDF)

$3 Text. Technical details about our implementation of EBC in Java.
(PDF)
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