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Aminoacyl tRNA synthetases are ancient proteins that interpret the genetic material in all life forms.
They are thought to have appeared during the transition from the RNA world to the theatre of pro-
teins. During translation, they establish the rules of the genetic code, whereby each amino acid is
attached to a tRNA that is cognate to the amino acid. Mistranslation occurs when an amino acid
is attached to the wrong tRNA and subsequently is misplaced in a nascent protein. Mistranslation
can be toxic to bacteria and mammalian cells, and can lead to heritable mutations. The great chal-
lenge for nature appears to be serine-for-alanine mistranslation, where even small amounts of this
mistranslation cause severe neuropathologies in the mouse. To minimize serine-for-alanine mistran-
slation, powerful selective pressures developed to prevent mistranslation through a special editing
activity imbedded within alanyl-tRNA synthetases (AlaRSs). However, serine-for-alanine mistran-
slation is so challenging that a separate, genome-encoded fragment of the editing domain of
AlaRS is distributed throughout the Tree of Life to redundantly prevent serine-to-alanine mistrans-
lation. Detailed X-ray structural and functional analysis shed light on why serine-for-alanine
mistranslation is a universal problem, and on the selective pressures that engendered the appearance
of AlaXps at the base of the Tree of Life.
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1. INTRODUCTION
The genetic code was perhaps the greatest discovery of
the twentieth century. Most striking was the concept
that all forms of life—simple micro-organisms, ptero-
dactyls, great mammoths, dolphins, finches and
humans—were different manifestations of the same
universal code that was imbedded in the genetic
material. The code is a simple algorithm that relates
each of 20 amino acids to specific nucleotide triplets.
These relationships are established by aminoacyl
tRNA synthetases—enzymes that catalyse the amino-
acylation reactions that attach each amino acid to its
cognate tRNA that, in turn, harbours the anticodon
triplets of the code [1,2]. The aminoacylation reac-
tion is the first step of protein synthesis and results
in the production of Ala-tRNAAla, Ile-tRNAIle, Gln-
tRNAGln . . . . As essential enzymes needed to interpret
the genetic material, the tRNA synthetases are thought
to have arisen during the transition from the RNA
world to the theatre of proteins. Thus, they appeared
at the base of the Tree of Life before it expanded to
three great kingdoms (figure 1).

Recent work has revealed the causal connection of
pathologies and even heritable genetic mutations to
mistranslation of genetic information by tRNA synthe-
tases. The work also has demonstrated the powerful
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mechanisms that control mistranslation, using special-
ized activities of tRNA synthetases as well as of a few
novel genome-encoded accessory proteins specifically
designed to provide a redundant mechanism to further
limit mistranslation. These mechanisms to control mis-
translation can be traced back to the base of the Tree
of Life, thus suggesting that extant organisms could
not exist without them. Interestingly, the mistranslation
of serine for alanine, which creates Ser-tRNAAla and can
result in the insertion of serine at places in proteins that
are reserved for alanine, is an ancient problem and
paradox that affects organisms throughout evolution.
Ser-to-Ala mistranslation has been connected to disease
in mammals. Phylogenetic, structural and functional
analysis suggests that the problem of serine-for-
alanine mistranslation may have been the most difficult
for living organisms to solve. Summarized below is an
overview of this problem and the unconventional
solution to overcome it.

2. THE PHENOMENON OF STATISTICAL
PROTEINS
An early genetic code may have treated similar amino
acids as equivalent. Examples would be isoleucine,
leucine and valine being considered as interchangeable,
and likewise for the aromatic amino acids—tyrosine,
phenylalanine and tryptophan [3]. In this scenario, a
polypeptide encoded by the genome would be a statisti-
cal entity, that is, a collection of similar sequences in
admixture. Statistical proteins could have some advan-
tages in an early environment for the evolution of life.
This journal is q 2011 The Royal Society
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Figure 1. The universal Tree of Life with emergence of
tRNA synthetases at the base of the Tree. LUCA, last
universal common ancestor.
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Figure 2. Domains of AlaRS arranged in a linear fashion
along the sequence. This arrangement of domains is con-
served in all three kingdoms of the Tree of Life. The
location of sti mutation associated with neurological degener-

ation in the mouse is noted.
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For example, in contrast to a modern enzyme with exact
specificity, because of the subtle variations in the
substrate recognition site created by the statistical
ensemble of sequences, an enzymatic activity associated
with a statistical protein could act on a variety of closely
similar substrates. In addition, statistical proteins can
explore a larger amount of ‘sequence space’ to find the
optimal sequence for a defined function. However,
while statistical proteins occur naturally in a limited
way in, for example, Candida albicans [4], or byengineer-
ing of E. coli, they are special cases [5]. Modern
organisms, from bacteria to mammals, are adversely sen-
sitive to statistical polypeptides [6–9]. This sensitivity is
manifested in two ways. First, the statistical proteins
themselves are toxic and can, in mammalian cells, lead
to the unfolded protein response and apoptosis [9,10].
Second, as shown in ageing bacteria, mistranslation is
mutagenic, because of the DNA damage over many
generations and the resulting errors of replication that
come from the error-prone DNA repair system [11].
3. CONTROL OF MISTRANSLATION BY EDITING
ACTIVITIES
Some aminoacyl tRNA synthetases are inherently unable
to discriminate against amino acids that are closely simi-
lar to the cognate one [12–14]. An example is isoleucyl-
tRNA synthetase (IleRS), which misactivates valine at a
frequency of roughly 1/200 [15]. Isoleucine can only be
recognized by hydrophobic interactions and valine,
which lacks one methylene group compared with Ile,
can fit into the same binding pocket on the enzyme.
Likewise, valyl-tRNA synthetase (ValRS) misactivates
threonine, which is virtually isosteric with Val. These
examples make clear that misactivation is generally
associated with amino acids that are similar to, but smal-
ler than, the cognate amino acid. In these examples, the
amino acid that is misattached to tRNA is removed by a
separate hydrolytic editing activity, which can act in cis
(that is, before the mischarged tRNA is released from
the synthetase) or in trans (by rebinding of the released
mischarged tRNA and subsequent clearance of the
non-cognate amino acid) [16–21].

Val-tRNAIle þ IleRS! Valþ tRNAIle þ IleRS

and

Thr-tRNAVal þ ValRS! Thrþ tRNAVal þ ValRS:

Paradoxically, alanyl-tRNA synthetase (AlaRS)
misactivates both glycine (smaller than alanine) and
Phil. Trans. R. Soc. B (2011)
serine (larger than alanine) [22]. While the misactiva-
tion of Gly by AlaRS is not surprising, misactivation of
serine cannot be understood as the accommodation of
a smaller amino acid in the amino acid binding pocket.
In both instances, the same active site in AlaRS
removes the mischarged amino acid from tRNAAla.

Gly-tRNAAla þ AlaRS! Glyþ tRNAAla þ AlaRS

and

Ser-tRNAAla þ AlaRS! Serþ tRNAAla þ AlaRS:

The ‘serine paradox’ is deeply rooted in evolution
and reflects some of the limitations in the historical
design of the protein synthesis apparatus [23]. At the
same time, it resulted in an unconventional solution
that is also deeply rooted.
4. SERINE-TO-ALANINE MISTRANSLATION
IN THE MOUSE
The spontaneous sti mutation in the mouse gives rise
to severe neurological disease that is manifested by
ataxia and progressive degeneration of Purkinje cells
in the cerebellum [10]. This ‘sticky mouse’ mutation
(named because of the sticky characteristics of the
fur) renders the animal sensitive to serine-to-alanine
mistranslation. This sensitivity is clearly seen by the
toxicity of serine when added to primary cells cultured
from the sti mouse. In contrast, the same cells showed
little sensitivity to added glycine.

AlaRS is the most conserved tRNA synthetase
through evolution [10]. The protein has three major
domains that are arranged in a linear fashion along the
polypeptide sequence. Starting from the N-terminus,
there is a domain for aminoacylation (AD), another for
editing (ED), and a third at the C-terminus that is
designated as C-Ala (figure 2). The sti mutation is a
single Ala!Glu substitution in the ED [10]. The
mutation is mild—for example, the activity for deacyla-
tion of Ser-tRNAAla is reduced only twofold. Although
the mutation is recessive, it is likely that a stronger
mutation would be dominant and lethal. By analogy, in
mammalian cells that were induced to express an
editing-defective ValRS transgene, small amounts of
Val-tRNAThr were accumulated and resulted in a
dominant phenotype of cell pathology and apoptosis [9].
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Figure 3. Active site of AlaRS with bound adenylate analogues (Ala-SA and Ser-SA). A universally conserved Asp carboxylate

pins down the a-amino group of the bound adenylate. This same carboxylate makes a serendipitous H-bond with the sidechain
-OH of bound serine.
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5. UNDERSTANDING THE DEEPLY ROOTED
SERINE PARADOX
The aminoacylation reaction proceeds through an
amino acid activation step in which the amino acid is
condensed with ATP to form the tightly bound ami-
noacyl adenylate (AA-AMP). The bound adenylate is
then reacted with the 30-end of the cognate tRNA to
give AA-tRNA. To understand the root of the serine
paradox, nine co-crystal structures were solved, with
AlaRS bound to alanine, serine, an ATP analogue
and stable aminoacyl adenylate analogues 50-O-
(N-(L-alanyl)-sulphamoyl adenosine) (Ala-SA) and
Ser-SA. Collectively, these structures provided a snap-
shot of the amino acid activation step, and of the
reason behind the activation of serine [23].

The a-amino group of the bound amino acid is
pinned down by the side chain carboxyl of a univer-
sally conserved active site aspartate. At the same
time, this design creates a serendipitous interaction
with the side chain -OH of serine, thereby enabling
it to be bound and condensed with ATP (figure 3).
This architecture dates back 3 billion years and appar-
ently reflects the inability of nature to find an
alternative solution that avoids the serendipitous
interaction with the Ser -OH [23].

To further investigate the constraints that resulted
in this design, we used site-directed mutagenesis to
change the conserved Asp to Glu, Asn and Gln.
None of the three mutations improved the wild-type
enzyme’s discrimination (about 1/300) between Ala
and Ser, and at the same time made the enzyme
much less efficient with alanine. For example, the
Asp! Asn substitution reduced the discrimination
between Ala and Ser from about 1/300 to 1/5. The
same mutation also reduced the discrimination
between Ala and Gly (from 1/170 to 1/3). In another
vein, shrinking the binding pocket to squeeze out
serine was also attempted. This shrinkage was accom-
plished by replacement of a Gly in the binding cavity
with the more bulky Ala. This substitution did not
greatly affect the Km for Ser, but raised the Km for
Phil. Trans. R. Soc. B (2011)
Ala by 1500-fold. Co-crystal structures of the mutant
enzyme with each of the bound amino acids clearly
showed the crowding of alanine by the shrunken
pocket of the Gly! Ala mutant protein, whereas
serine still retained the serendipitous interaction with
its bound -OH [23].

For other tRNA synthetases, the mechanisms for
pinning down the a-amino group of the bound
amino acid are idiosyncratic. Interestingly, for both
SerRS and ThrRS, the same group (glutamate or
zinc) that binds the a-amino group is also used to
bind the side chain g-OH [23–25]. ThrRS is another
tRNA synthetase known to misactivate a larger amino
acid—hydroxynorvaline. However, hydroxynorvaline
does not occur naturally and, therefore, presents no
dilemma for the architectural design of ThrRS [25].
6. AlaXp AS A SOLUTION TO THE SERINE
PARADOX
AlaRS is apparently unique in having an insurmounta-
ble challenge to prevent the misactivation of a larger
amino acid (serine). Perhaps for this reason, free-
standing AlaXp’s appeared in order to provide a
redundant mechanism for clearance of Ser-tRNAAla

[7,26–30]. (Interestingly, many AlaXps are specific
to Ser-tRNAAla and have little or no activity on Gly-
tRNAAla [31].) The AlaXps encode the editing
domain (ED) of AlaRS and arose contemporaneously
with the first AlaRSs. In most eukaryotes and many
archaea and bacteria, the ED is fused to a homologue
of the C-Ala domain, thus making these AlaXps
similar to the entire C-terminal half of AlaRS (figure 4).
The only other free-standing EDs annotated so far
are ones corresponding to the ED of ThrRS and the
YbaK protein that clears Cys-tRNAPro [32,33]. Unlike
the AlaXps that are distributed through all three
kingdoms of the Tree of Life, the free-standing ED of
ThrRS is limited to certain crenarchaeal species [34],
and the Ybak ED is also limited in its distribution.
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7. DISTINCT AMINOACYLATION AND EDITING
DOMAINS RECOGNIZE THE SAME BASE PAIR
Transfer RNAs are typically 76 nucleotides that fold
into a cloverleaf secondary structure that, in turn,
folds into an L-shaped tertiary structure (figure 5a)
[35]. The amino acid attachment site is a terminal
adenosine at the 30-end of one arm (the ‘acceptor
arm’) of the L, which ends in the sequence
NCCA30OH. The anticodon is at the end of the
other arm of the L, separated by 76 Å from the
amino acid acceptor site. A single G:U base pair,
located proximal to the amino acid attachment site,
marks a tRNA for aminoacylation with alanine.
This G:U base pair is universally distributed in
tRNAAlas and, from bacteria to humans, has been
shown to be the major determinant for aminoacyla-
tion with alanine (figure 5b) [36–40]. The
recognition of this base pair by AlaRSs is so robust
that the transfer of G:U into non-alanine tRNAs con-
verts them into alanine acceptors. In addition,
oligonucleotide substrates that contain only a few
base pairs from the end of the acceptor arm are
robust substrates, provided they encode G:U [41].
Because the G:U base pair is distinct from and
distal to the anticodon triplet of the code, the
relationship between alanine and the nucleotide tri-
plet that corresponds to alanine is indirect. This
observation has been expanded to other examples
where nucleotide determinants for specific aminoacy-
lation are proximal to the amino acid acceptor site
[28,30,42]. Relating nucleotide determinants in the
acceptor arms of tRNAs to specific amino acids has
been proposed as a ‘second genetic code’.

The deacylation of Gly- or Ser-tRNAAla by AlaRS
is also sensitive to the presence of G:U. Remarkably,
there are two acceptor-arm binding sites on AlaRS
that recognize G:U. These sites are entirely distinct
and have no sequence or structural similarity. One is
located in the AD (as part of a 10-helix bundle) and
the other in the ED (associated with a b-hairpin)
[28,30,42]. A recombinant fragment consisting of
just the AD aminoacylates tRNAAla (as well as oligo-
nucleotide substrates encoding a small portion of the
acceptor arm) with the same dependence on G:U as
the native enzyme. A separate recombinant fragment,
consisting of ED–C-Ala, deacylates Gly- or Ser-
tRNAAla in a G:U-sensitive reaction. Similarly,
Phil. Trans. R. Soc. B (2011)
AlaXp, which is homologous to ED–C-Ala, deacylates
Ser-tRNAAla with G:U-sensitivity.

In contrast to the aminoacylation reaction, where
G:U-encoding RNA oligonucleotide substrates are
active for aminoacylation, the same constructs (ami-
noacylated with Ser) are not active in the editing
reaction. In the editing reaction, the full tRNA is
required [43]. This requirement reflects the function
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of the elbow, or corner, of the L-shaped tRNA
structure in coordinating the AD with the ED.
8. THE STRUCTURE AND ROLE OF THE
C-Ala DOMAIN
The C-Ala domain is joined to the ED of all AlaRSs
and in many of the AlaXps. This strong conversation
of C-Ala motivated us to determine its three-
dimensional structure [29]. The 1.85 Å structure of
the 110-amino acid fragment revealed a central six-
Phil. Trans. R. Soc. B (2011)
stranded b-sheet with flanking helices, arranged into
a globular shape. The C-terminal 70 amino acids are
closely similar in structure to the DHHA1 domain of
the RecJ exonuclease that binds to single-stranded
DNA. This observation motivated further studies to
investigate the interaction of C-Ala with tRNAAla. In
these investigations, RNA footprint analysis showed
that C-Ala specifically protected the D-loop portion
of tRNAAla, and thus supported the idea that it is
designed to recognize the L-shape. Interestingly, the
Kd for binding of C-Ala to tRNAAla (about 1 mM) is
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approximately the same as that for binding of ED–C-
Ala (about 2 mM). These results show that C-Ala has
an important role in providing stability to the synthe-
tase–tRNA complex.

Strikingly, while ED–C-Ala and C-Ala have
approximately the same affinity for tRNAAla, the
removal of C-Ala from ED reduces the editing activity
approximately 1000-fold compared with the activity of
AlaRS. And fusing C-Ala and its linker (that joins it to
ED) from human AlaRS to E. coli ED gives almost full
activity for deacylation of Ser-tRNAAla. This obser-
vation suggested a strong conservation of function
for C-Ala and its linker. This function is to ‘carry’
the ED to Ser-tRNAAla [29]. An example using
AlaXp is shown in figure 6.

In addition, in electrophoresis gel shift experiments,
ED–C-Ala dramatically stimulated the binding of AD
to tRNA, and thereby sharply raised the aminoacyla-
tion activity encoded by AD. With the addition of
ED alone, binding of AD to AlaRS was significantly
reduced and there was no effect on aminoacylation.
These results showed that C-Ala brings together the
aminoacylation and editing functions on one tRNA
(figure 7) [29]. When AD and ED are brought
together on the same tRNA, computer models—
based on three-dimensional structural determinations
of AD, ED and C-Ala—suggested that AD and ED
approach the acceptor arm of tRNAAla from opposite
sides, where one domain interacts with the major
groove side of the G:U pair, and the other with the
minor groove side.
9. ASSEMBLY OF AlaRS IN EVOLUTION AND
CONCLUSIONS
The aforementioned experiments support the possi-
bility that AlaRS started as an AD that non-covalently
associated with ED–C-Ala. The C-Ala moiety of
ED–C-Ala was specifically designed to bring together
the aminoacylation and editing functions on one
tRNA. Over time, the three domains were joined
together in one protein. Consistent with this interpret-
ation, AlaXp can be traced back to the base of the Tree
of Life, showing that it appeared contemporaneously
with early AlaRSs [29]. However, because of the
extreme sensitivity of cell homeostasis to mistranslation
of serine-for-alanine, AlaXp was retained in all three of
the kingdoms of life. The retention of AlaXp gave an
additional checkpoint for clearance of Ser-tRNAAla.
Thus, any Ser-tRNAAla that escaped the editing activity
of AlaRS was still subjected to editing by AlaXp.

In the sti mouse, a twofold reduction in the editing
activity of AlaRS resulted in a severe neurological
pathology that comes from serine-for-alanine mistran-
slation. Because the sti mouse encodes wild-type
AlaXp, this severe phenotype emphasizes the need
for functional redundancy of the activity for removing
Ser-tRNAAla. Indeed, in a converse experiment that
further supported the need for functional redundancy,
RNAi suppression of AlaXp levels in mammalian cells
triggered the unfolded protein response that is charac-
teristic of cells approaching apoptosis [44].
This work was supported by grants GM 15539 and
23562 from the National Institutes of Health, and by a
Phil. Trans. R. Soc. B (2011)
fellowship from the National Foundation for Cancer
Research. Some of the figures were kindly provided by
Prof. Min Guo (Scripps Florida).
REFERENCES
1 Carter Jr, C. W. 1993 Cognition, mechanism, and evol-

utionary relationships in aminoacyl-tRNA synthetases.
Annu. Rev. Biochem. 62, 715–748. (doi:10.1146/
annurev.bi.62.070193.003435)

2 Giege, R. 2006 The early history of tRNA recognition by

aminoacyl-tRNA synthetases. J. Biosci. 31, 477–488.
(doi:10.1007/BF02705187)

3 Ribas de Pouplana, L. & Schimmel, P. 2001 Two classes
of tRNA synthetases suggested by sterically compatible
dockings on tRNA acceptor stem. Cell 104, 191–193.

(doi:10.1016/S0092-8674(01)00204-5)
4 Santos, M. A., Moura, G., Massey, S. E. & Tuite, M. F.

2004 Driving change: the evolution of alternative genetic
codes. Trends Genet. 20, 95–102. (doi:10.1016/j.tig.
2003.12.009)

5 Pezo, V., Metzgar, D., Hendrickson, T. L., Waas, W. F.,
Hazebrouck, S., Doring, V., Marliere, P., Schimmel, P.
& De Crecy-Lagard, V. 2004 Artificially ambiguous gen-
etic code confers growth yield advantage. Proc. Natl
Acad. Sci. USA 101, 8593–8597. (doi:10.1073/pnas.

0402893101)
6 Beebe, K., Ribas De Pouplana, L. & Schimmel, P. 2003

Elucidation of tRNA-dependent editing by a class II
tRNA synthetase and significance for cell viability.

EMBO J. 22, 668–675. (doi:10.1093/emboj/cdg065)
7 Chong, Y. E., Yang, X. L. & Schimmel, P. 2008 Natural

homolog of tRNA synthetase editing domain rescues
conditional lethality caused by mistranslation. J. Biol.
Chem. 283, 30 073–30 078. (doi:10.1074/jbc.M8059

43200)
8 Nangle, L. A., De Crecy Lagard, V., Doring, V. &

Schimmel, P. 2002 Genetic code ambiguity. Cell viability
related to the severity of editing defects in mutant tRNA
synthetases. J. Biol. Chem. 277, 45 729–45 733. (doi:10.

1074/jbc.M208093200)
9 Nangle, L. A., Motta, C. M. & Schimmel, P. 2006

Global effects of mistranslation from an editing defect
in mammalian cells. Chem. Biol. 13, 1091–1100.
(doi:10.1016/j.chembiol.2006.08.011)

10 Lee, J. W. et al. 2006 Editing-defective tRNA synthetase
causes protein misfolding and neurodegeneration. Nature
443, 50–55. (doi:10.1038/nature05096)

11 Bacher, J. M. & Schimmel, P. 2007 An editing-defective

aminoacyl-tRNA synthetase is mutagenic in aging bac-
teria via the SOS response. Proc. Natl Acad. Sci. USA
104, 1907–1912. (doi:10.1073/pnas.0610835104)

12 Fersht, A. R. 1977 Editing mechanisms in protein
synthesis. Rejection of valine by the isoleucyl-tRNA

synthetase. Biochemistry 16, 1025–1030. (doi:10.1021/
bi00624a034)

13 Ibba, M. & Soll, D. 1999 Quality control mechanisms
during translation. Science 286, 1893–1897. (doi:10.
1126/science.286.5446.1893)

14 Jakubowski, H. & Goldman, E. 1992 Editing of errors in
selection of amino acids for protein synthesis. Microbiol.
Rev. 56, 412–429.

15 Schmidt, E. & Schimmel, P. 1994 Mutational isolation of
a sieve for editing in a transfer RNA synthetase. Science
264, 265–267. (doi:10.1126/science.8146659)

16 Boniecki, M. T., Vu, M. T., Betha, A. K. & Martinis,
S. A. 2008 CP1-dependent partitioning of pretransfer
and posttransfer editing in leucyl-tRNA synthetase.

Proc. Natl Acad. Sci. USA 105, 19 223–19 228.
(doi:10.1073/pnas.0809336105)

http://dx.doi.org/10.1146/annurev.bi.62.070193.003435
http://dx.doi.org/10.1146/annurev.bi.62.070193.003435
http://dx.doi.org/10.1007/BF02705187
http://dx.doi.org/10.1016/S0092-8674(01)00204-5
http://dx.doi.org/10.1016/j.tig.2003.12.009
http://dx.doi.org/10.1016/j.tig.2003.12.009
http://dx.doi.org/10.1073/pnas.0402893101
http://dx.doi.org/10.1073/pnas.0402893101
http://dx.doi.org/10.1093/emboj/cdg065
http://dx.doi.org/10.1074/jbc.M805943200
http://dx.doi.org/10.1074/jbc.M805943200
http://dx.doi.org/10.1074/jbc.M208093200
http://dx.doi.org/10.1074/jbc.M208093200
http://dx.doi.org/10.1016/j.chembiol.2006.08.011
http://dx.doi.org/10.1038/nature05096
http://dx.doi.org/10.1073/pnas.0610835104
http://dx.doi.org/10.1021/bi00624a034
http://dx.doi.org/10.1021/bi00624a034
http://dx.doi.org/10.1126/science.286.5446.1893
http://dx.doi.org/10.1126/science.286.5446.1893
http://dx.doi.org/10.1126/science.8146659
http://dx.doi.org/10.1073/pnas.0809336105


Review. Control of mistranslation P. Schimmel 2971
17 Eldred, E. W. & Schimmel, P. R. 1972 Rapid deacylation
by isoleucyl transfer ribonucleic acid synthetase of isoleu-
cine-specific transfer ribonucleic acid aminoacylated with

valine. J. Biol. Chem. 247, 2961–2964.
18 Hendrickson, T. L., Nomanbhoy, T. K., de Crecy-

Lagard, V., Fukai, S., Nureki, O., Yokoyama, S. &
Schimmel, P. 2002 Mutational separation of two path-
ways for editing by a class I tRNA synthetase. Mol. Cell
9, 353–362. (doi:10.1016/S1097-2765(02)00449-5)

19 Ling, J., So, B. R., Yadavalli, S. S., Roy, H., Shoji, S.,
Fredrick, K., Musier-Forsyth, K. & Ibba, M. 2009
Resampling and editing of mischarged tRNA prior to

translation elongation. Mol. Cell 33, 654–660. (doi:10.
1016/j.molcel.2009.01.031)

20 Martinis, S. A. & Boniecki, M. T. 2010 The balance
between pre- and post-transfer editing in tRNA synthe-
tases. FEBS Lett. 584, 455–459. (doi:10.1016/j.febslet.

2009.11.071)
21 Schreier, A. A. & Schimmel, P. R. 1972 Transfer ribonu-

cleic acid synthetase catalyzed deacylation of aminoacyl
transfer ribonucleic acid in the absence of adenosine
monophosphate and pyrophosphate. Biochemistry 11,

1582–1589. (doi:10.1021/bi00759a006)
22 Tsui, W. C. & Fersht, A. R. 1981 Probing the principles

of amino acid selection using the alanyl-tRNA synthetase
from Escherichia coli. Nucleic Acids Res. 9, 4627–4637.
(doi:10.1093/nar/9.18.4627)

23 Guo, M., Chong, Y. E., Shapiro, R., Beebe, K., Yang, X. L.
& Schimmel, P. 2009 Paradox of mistranslation of serine for
alanine caused by AlaRS recognition dilemma. Nature 462,
808–812. (doi:10.1038/nature08612)

24 Belrhali, H. et al. 1994 Crystal structures at 2.5 Å resol-
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