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Abstract 30 

Relapse continues to limit survival for patients with B-cell acute lymphoblastic leukemia (B-ALL). 31 

Previous studies have independently implicated activation of B-cell developmental signaling 32 

pathways and increased glucose consumption with chemo-resistance and relapse risk. Here, we 33 

connect these observations, demonstrating that B-ALL cells with active signaling, defined by high 34 

expression of phosphorylated ribosomal protein S6 (“pS6+ cells”), are metabolically unique and 35 

glucose dependent. Isotope tracing and metabolic flux analysis confirm that pS6+ cells are highly 36 

glycolytic and notably sensitive to glucose deprivation, relying on glucose for de novo nucleotide 37 

synthesis. Uridine, but not purine or pyrimidine, rescues pS6+ cells from glucose deprivation, 38 

highlighting uridine is essential for their survival. Active signaling in pS6+ cells drives uridine 39 

production through activating phosphorylation of carbamoyl phosphate synthetase (CAD), the 40 

enzyme catalyzing the initial steps of uridine synthesis. Inhibition of signaling abolishes glucose 41 

dependency and CAD phosphorylation in pS6+ cells. Primary pS6+ cells demonstrate high 42 

expression of uridine synthesis proteins, including dihydroorotate dehydrogenase (DHODH), the 43 

rate-limiting catalyst of de novo uridine synthesis. Gene expression demonstrates that increased 44 

expression of DHODH is associated with relapse and inferior event-free survival after 45 

chemotherapy. Further, the majority of B-ALL genomic subtypes demonstrate activity of DHODH. 46 

Inhibiting DHODH using BAY2402232 effectively kills pS6+ cells in vitro, with its IC50 47 

correlated with the strength of pS6 signaling across 14 B-ALL cell lines and patient-derived 48 

xenografts (PDX). In vivo DHODH inhibition prolongs survival and decreases leukemia burden in 49 

pS6+ B-ALL cell line and PDX models. These findings link active signaling to uridine dependency 50 

in B-ALL cells and an associated risk of relapse. Targeting uridine synthesis through DHODH 51 

inhibition offers a promising therapeutic strategy for chemo-resistant B-ALL as a novel therapeutic 52 

approach for resistant disease.  53 

 54 
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Main 56 

Metabolic dysregulation is a hallmark of cancer with roles in tumor initiation, progression, 57 

and chemotherapy resistance1-3. Warburg first described cancer cells favoring glucose metabolism 58 

by glycolysis to produce lactate over oxidative phosphorylation even in the presence of sufficient 59 

oxygen4. Since this seminal observation, the understanding of cancer-specific metabolic 60 

adaptations has led to novel understanding of cancer biology and therapeutic opportunities. For 61 

example, both acute myeloid leukemia and glioma are characterized by mutations in isocitrate 62 

dehydrogenase (IDH), now a prominent therapeutic target5-9. Despite the recognition of 63 

dysregulated metabolism in cancer at large, its role in acute lymphoblastic leukemia (ALL) 64 

remains incompletely understood.  65 

ALL is a cancer comprised of immature lymphocytes, most commonly of the B-lineage. 66 

ALL primarily affects children and adolescents as the most common malignancy in this age group, 67 

while approximately 20% of adult acute leukemia is ALL10-12. Prognosis is related to several 68 

factors including underlying genomic subtype, with the incidence of poor prognosis features and 69 

risk of relapse increasing with age such that teenagers and adults are more likely to have ALL with 70 

high-risk features and suffer relapse. In an effort to better understand ALL cells capable of 71 

mediating relapse, we identified a subset of pre-B-like ALL cells characterized by phosphorylation 72 

of several proteins: ribosomal protein S6 (pS6), 4EBP1, CREB, SYK, collectively termed “pS6+ 73 

cells”, whose presence at diagnosis was highly predictive of relapse13. Active signaling in B-cell 74 

developmental pathways, including IL-7 receptor (IL-7R) and pre-B cell receptor (pre-BCR) 75 

pathways, has previously been implicated in the pathogenesis and prognosis of ALL14-17. However, 76 

therapeutic targeting of this active signaling has not yet resulted in improved outcomes for these 77 

patients.  78 

In the present study, we demonstrate that pS6+ cells possess a unique metabolic 79 

dependency on glucose. pS6+ cells utilize glucose carbons along the pentose phosphate and de 80 

novo pyrimidine synthesis pathways to produce uridine. We find that the dependency on glucose 81 

is directly correlated with the strength of pS6 signaling which is reversed when the signaling is 82 

inhibited. pS6+ cells drive uridine synthesis through phosphorylation of CAD, the enzyme 83 

catalyzing the initial steps of uridine synthesis. Evaluation of gene expression data from primary 84 

B-ALL patients demonstrates that higher expression of uridine synthesis genes is associated with 85 

relapse and worse event-free survival, consistent with our published observation relating these 86 
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cells with relapse. Finally, targeting DHODH, the rate-limiting enzyme in de novo uridine 87 

synthesis, demonstrates remarkable efficacy in pS6+ B-ALL models across genetic backgrounds, 88 

including those at high relapse risk. Together, these data provide compelling evidence for a novel 89 

metabolic intervention relevant to patients at high risk of relapse with B-ALL.   90 

Results 91 

pS6+ cells have distinct metabolic gene signatures and energetics 92 

Previously, we identified pS6+ cells in B-ALL patients at the time of diagnosis and found 93 

them to be associated with future relapse after standard chemotherapy13. To identify distinguishing 94 

features of relapse-associated pS6+ cells compared to pS6- cells from patients in continuous 95 

remission, we sorted pre-B cells from six diagnostic patient bone marrow (BM) samples with 96 

known pS6 status from our previously published B-ALL cohort (n = 3 pS6+; n = 3 pS6-; 97 

Supplemental Table 1 and 2) and performed whole transcriptome sequencing (Fig. 1A and 98 

Extended Data Fig. 1A and 1B). Pathway analysis demonstrated enrichment in mTORC1 and 99 

PI3K/Akt/mTOR signaling pathways in pS6+ cells, consistent with our published proteomic 100 

signature13. Additionally, pS6+ cells have higher expression of MYC gene targets and genes related 101 

to several metabolic pathways, including oxidative phosphorylation (OXPHOS), glycolysis, and 102 

fatty acid metabolism (Fig. 1B, Supplemental Table 3). These data confirmed the activation of 103 

PI3K/mTOR signaling we previously observed by proteomic analysis and suggested this signaling 104 

indicates a unique metabolic state.  105 

Using mass cytometry (CyTOF), we assessed the signaling status of nine B-ALL cell lines 106 

and categorized them into pS6+ or pS6- groups based on the frequency and signaling strength of 107 

pS6+ cells (Fig. 1C). Six cell lines are pS6+ (Nalm6, 697, RCH-ACV, Kasumi2, Nalm16, and 108 

REH), while three cell lines are pS6- (Nalm20, RS4;11, and MHH-CALL-4). In addition to pS6 109 

activation (mean 4.7 vs. 2.4 p = 0.002), pS6+ cells have higher expression of pERK (1.5 vs. 0.5; p 110 

= 0.004), pAKT (1.2 vs. 0.9, p = 0.095, ns), p4EBP1 (3.0 vs. 2.4, p = 0.095, ns) and pCREB (p = 111 

2.7 vs. 2.3, p = 0.095, ns, Fig. 1D). These results are in line with our previous observation in 112 

primary patient samples13. 113 

To evaluate if the active signaling in pS6+ cells is associated with differences in 114 

metabolism, we performed metabolic flux assays in the B-ALL cell lines using Seahorse. 115 

Compared to pS6- cells, pS6+ cells are more energetic with significantly higher glycolysis and 116 

OXPHOS activity as indicated by basal extracellular acidification rate (ECAR, p = 0.0039) and 117 
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oxygen consumption rate (OCR, p = 0.0191; Fig. 1E and Extended Data Fig. 2A). Further, both 118 

ECAR and OCR correlated with the frequency of pS6+ cells in B-ALL cell lines (ECAR, R2= 0.56, 119 

p = 0.021, Fig. 1F; and OCR, R2 = 0.67, p = 0.0068, Extended Data Fig. 2B). Thus, as suggested 120 

by the transcriptomic analysis of primary pS6+ cells, pS6+ cells have higher metabolic activity 121 

than pS6- cells, which is directly correlated to the frequency of pS6+ cells.  122 

pS6+ cells utilize glucose to fuel uridine synthesis 123 

Glucose and glutamine serve as the primary carbon sources for glycolysis and OXPHOS 124 

in cancer cells18. To uncover the metabolic dependencies of pS6+ cells, we cultured B-ALL cell 125 

lines under glucose or glutamine deprivation conditions. pS6+ cells were dependent on glucose 126 

for survival, with significant cell death occurring after 48 hours in a glucose-deprived medium 127 

(Nalm6 p = 0.00098; 697 p = 0.0064; Kasumi2 p = 0.0022; Nalm16 p = 0.026; REH p = 0.018; 128 

Fig. 1G). By contrast, pS6- cells were tolerant to glucose deprivation (RS4;11 p = 0.61; MHH-129 

CALL-4 p = 0.52; Nalm20 p = 0.08, Fig. 1G). Glutamine deprivation did not increase cell death 130 

in any of the cell lines except for Nalm6 (Extended Data Fig. 2C).  131 

To understand how pS6+ cells utilize glucose, we performed isotype tracing with U-13C-132 

glucose in the absence of glutamine in pS6+ and pS6- cells. pS6+ cells distinctly incorporated 13C-133 

glucose into metabolites in the glycolysis, pentose phosphate pathway (PPP), and the TCA cycle 134 

as illustrated schematically in Fig. 2A. We did not observe significant differences in fractional 13C 135 

labeling of intermediates in glycolysis and TCA cycle between pS6+ and pS6- cells (Extended 136 

Data Fig. 3). The labelling of individual intermediates is shown in Extended Data Fig. 4. In 137 

particular, pS6+ cells had significantly higher fractional 13C labeling in m+5 UDP (p = 0.0233), 138 

UTP (p = 0.002), and ATP (p = 0.0342) compared to pS6- cells (Fig. 2B), suggesting pS6+ cells 139 

are using glucose for PPP and nucleotide production. To understand what metabolites downstream 140 

of PPP and nucleotide production are essential for survival in pS6+ cells, we performed a rescue 141 

experiment where we cultured B-ALL cell lines in a glucose-deprived condition and evaluated cell 142 

survival after supplementing different metabolites (Fig. 2C). Uridine, as the first product of 143 

pyrimidine synthesis, most effectively rescued pS6+ cells from glucose deprivation (Nalm6, p < 144 

0.0001; 697, p < 0.0001; Nalm16, p = 0.0002; and REH, p = 0.0485) while, as expected, there was 145 

no impact in pS6- cells. Pyruvate provided partial rescue against cell death in two cell lines (697, 146 

p = 0.0007; Nalm16, p = 0.016), indicating it can support glycolysis and TCA cycle flux as a key 147 

metabolite but is not sufficient for complete metabolic compensation. Other metabolites, including 148 
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aspartate, pyrimidine and purine failed to rescue cells from death, highlighting glucose-dependent 149 

uridine synthesis as a critical vulnerability in pS6+ B-ALL cells.  150 

PI3K/mTOR pathway activation drives uridine synthesis 151 

S6 kinase (S6K1) is a tyrosine kinase situated downstream of the PI3K/mTOR pathway 152 

that phosphorylates ribosomal protein S6, thus making pS6 a proxy for PI3K/mTOR pathway 153 

activity (Extended Data Fig. 5A). S6 kinase also phosphorylates and activates CAD19,20. CAD 154 

catalyzes the initial steps in de novo pyrimidine synthesis to produce uridine (Fig. 2D). We found 155 

higher phosphorylated CAD (pCAD) in pS6+ cells compared to pS6- cells (Fig. 2D). To study if 156 

the PI3K/mTOR pathway drives de novo uridine synthesis through pCAD, we tested tyrosine 157 

kinase inhibitors (TKIs) targeting kinases in the PI3K/mTOR pathway (S6 kinase, PI3K, mTOR, 158 

SYK). We confirmed inhibition of downstream signaling nodes using mass cytometry (Extended 159 

Data Fig. 5B). We found that CAD phosphorylation is inhibited after treatment with TKIs targeting 160 

several levels of the PI3K/mTOR network in pS6+ cell lines and PDXs (Fig. 2E, Extended Data 161 

Fig. 5C). To understand how kinase inhibition influences glucose utilization and dependency we 162 

evaluated glycolytic activity and glucose sensitivity after TKI treatment in vitro. SYK inhibition, 163 

one of the upstream proteins in the PI3K/mTOR pathway, significantly decreased ECAR in pS6+ 164 

cells, but not in pS6- cells (Extended Data Fig. 5D and 5E). SYK, mTOR, or PI3K inhibition 165 

alleviated the glucose dependency in pS6+ cells (Extended Data Fig. 5F). These findings indicate 166 

that the active PI3K/mTOR signaling that characterizes pS6+ cells governs glucose dependency 167 

driving uridine production by regulation of pCAD. 168 

DHODH is enriched in primary pS6+ cells and pS6+ cell lines 169 

We evaluated cell phenotype, signaling activity, and metabolic protein expression in 31 170 

primary B-ALL patient samples (Fig. 2F, Supplemental Table 4, 5). Leukemia cells were classified 171 

into their developmental state using our developmental classifier13 (see methods and gating 172 

strategy in Extended Data Fig. 6). We observed enrichment of pro-BII, pre-BI, and early progenitor 173 

populations in B-ALL patients compared to healthy BM, (Pro-BII, P = 0.00024; Pre-BI, P= 0.0036; 174 

Early-non-BI, P = 0.000352, Fig. 2G, right panel). We observed higher pS6 expression in the pro-175 

BII (FC 2.96, p = 0.0017) and pre-BI populations (FC 2.17, p = 0.0267), but not in early progenitors 176 

(FC 1.11, p > 0.999) in leukemic cells compared to healthy BM (Fig. 2G and Extended Data Fig. 177 

7A). Expression of glycolysis pathway proteins (GLUT1, PFKFB4, and PKM1) were similar in 178 

healthy and leukemic pro-BII and pre-BI populations (Extended Data Fig. 7B). However, proteins 179 
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in the PPP (phosphogluconate dehydrogenase, PGD) and pyrimidine synthesis (DHODH), were 180 

significantly overexpressed in pro-BII and/or pre-BI B-ALL cells (Fig. 2G and Extended Data Fig. 181 

7B). These results expand our published proteomic signature of pS6+ cells 13 by defining their 182 

metabolic differences from healthy bone marrow.  183 

Next, we compared the protein expression profiles from pS6+ and pS6- pro-BII/pre-BI 184 

cells from primary patient samples. pS6+ pro-BII/pre-BI cells have higher expression of signaling 185 

proteins (pCREB), PPP and pyrimidine synthesis pathway proteins (PGD, DHODH), and 186 

glycolysis proteins (PFKFB4, PKM1/2) (Fig. 2H). Similar analysis in pS6+ vs. pS6- cell lines 187 

showed that pERK, DHODH, and thymidylate synthetase (TS) are significantly higher in pS6+ 188 

cells (Fig. 2I). DHODH was the only protein common in both sample types (Fig. 2J). DHODH is 189 

the rate-limiting enzyme of de novo uridine synthesis. These results suggest DHODH may be a 190 

promising metabolic target in pS6+ cells.  191 

B-ALL exhibits reliance on de novo uridine synthesis  192 

To understand the potential of targeting pyrimidine metabolism in B-ALL, we evaluated 193 

the impact of DHODH knockout in the Cancer Dependency Map (DepMap.org). Compared across 194 

17 types of cancer, B-ALL has the highest dependency on DHODH (B-ALL vs. all other types, p 195 

< 0.001, Fig. 3A) in addition to genes involved in de novo pyrimidine synthesis (UMPS, CAD, 196 

TYMS, and CTPS1; Fig. 3B), when compared to solid tumors.  197 

Uridine can either be de novo synthesized from uridine monophosphate (UMP) or salvaged 198 

from cytidine (Extended Data Fig. 8A). In the uridine salvage pathway, cytidine deaminase (CDA) 199 

catalyzes the deamination of cytidine to uridine. Uridine is phosphorylated by uridine 200 

phosphorylase 1 (UPP1) to fuel PPP and glycolysis. To investigate uridine salvage in B-ALL, we 201 

leveraged gene expression data from Depmap. B-ALL cell lines (n=15) had the lowest gene 202 

expression of UPP1 (ranging from 0.09 to 2.4, median 0.29) and CDA (ranging from -0.03 to 1.2, 203 

median 0.05) among 1,437 cell lines from 31 different cancer subtypes, suggesting that UPP1 and 204 

CDA do not regulate uridine utilization and salvage in B-ALL due to lack of expression (Extended 205 

Data Fig. 8B and 8C). To determine if B-ALL cells use uridine to generate uracil ribose-1-206 

phosphate to support glycolysis, we attempted to rescue pS6+ cells from glucose deprivation by 207 

ribose supplementation. Ribose did not rescue B-ALL cells from cell death in glucose deprived 208 

conditions, suggesting uridine is not used to support PPP and glycolysis, in line with the gene 209 

expression data (Extended Data Fig. 8D). Alternatively, uridine can be utilized for nucleotide 210 
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metabolism through its phosphorylation to UMP by the enzyme uridine cytidine kinase 1, encoded 211 

by the UCK1 gene. B-ALL cells display the highest ratio of UCK1 to UPP1 among all cancer 212 

subtypes, indicating uridine may be preferentially utilized for UMP production (Extended Data 213 

Fig. 8E). 214 

De novo uridine synthesis is associated with poor prognosis in B-ALL  215 

Previously, we reported pS6+ cells to be associated with relapse13. To investigate the 216 

relationship between de novo uridine synthesis and relapse in B-ALL, we analyzed two RNA-seq 217 

datasets comprising diagnostic samples from children with  standard-risk (SR) B-ALL (MP2PRT 218 

cohort; n = 1,735)21 and high-risk (HR) B-ALL (TARGET cohort; n = 181). Pathway enrichment 219 

revealed that diagnostic samples from patients who experienced relapse have higher expression of 220 

genes associated with pyrimidine synthesis compared to patients who are in continuous remission 221 

(p = 3.49e-05, MP2PRT in Fig. 3C and p = 8.08e-08, TARGET in Fig. 3D). Furthermore, consistent 222 

with the gene signatures identified in relapse-predictive pS6+ cells, we observed that expression 223 

of genes involved in mitochondrial function, MYC targets, and glycolysis were also higher in the 224 

diagnostic samples from patients who experienced relapse (Supplemental Table 6). 225 

Looking at individual genes in the de novo uridine pathway, we found that DHODH 226 

expression was higher in patients who experienced relapse within the MP2PRT dataset (p = 0.025, 227 

Fig. 3E). DHODH expression predicted inferior EFS in both datasets (MP2PRT p = 0.002, Fig. 228 

3G; TARGET p = 0.036, Fig. 3H) and OS in MP2PRT dataset (p = 0.015, Extended Data Fig. 9A). 229 

UMPS expression was significantly higher in patients who experienced relapse compared to those 230 

in continuous remission within both the MP2PRT (p = 0.021, Fig. 3E) and TARGET (p = 0.008, 231 

Fig. 3F) datasets. In addition, higher UMPS expression correlated with worse event-free survival 232 

(EFS; p = 0.019) and overall survival (OS; p = 0.00026) outcomes among patients in the TARGET 233 

dataset (Fig. 3H and Extended Data Fig. 9B). These findings suggest that elevated expression of 234 

de novo uridine synthesis genes, particularly DHODH and UMPS, are related to disease prognosis 235 

and clinical outcomes. 236 

Active pS6 signaling predicts sensitivity to DHODH inhibition 237 

To evaluate DHODH activity across different genomic subtypes of B-ALL, we used 238 

NetBID2 (data-driven Network-based Bayesian Inference of Drivers)22,23 to analyze 239 

transcriptomic expression profiles from a published dataset comprising 1,985 B-ALL patients24. 240 

DHODH was predicted to be active in over half the B-ALL genomic subtypes (54%; Fig. 4A). 241 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2025. ; https://doi.org/10.1101/2025.01.27.635108doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.27.635108
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

Encouragingly, we observed high predicted activity of DHODH in several subtypes of high-risk 242 

leukemia (e.g. KMT2A rearranged, MEF2D, PAX5 P80R, BCL2/MYC)24,25. DHODH is also 243 

predicted to be active in more common subtypes like DUX4, ETV6-RUNX1, and TCF3-PBX1, 244 

while less active in hyperdiploid and hypodiploid subtypes. There was high variability in predicted 245 

DHODH activity in Ph-like and Ph+ subtypes, suggesting metabolic heterogeneity in patients 246 

within the same genomic subtype and consistent with our single-cell proteomic data. 247 

To validate these predictions and explore the therapeutic potential of DHODH targeting in 248 

B-ALL, we assessed the half-maximal inhibitory concentration (IC50) values of DHODH inhibitor 249 

BAY-2402234 in B-ALL cell lines of different genomic subtypes (Fig. 4B). Remarkably, DHODH 250 

inhibition was effective in nanomolar concentrations. As predicted by NetBID2 analysis, we 251 

observed the most pronounced response to DHODH inhibition in cell lines harboring DUX4, 252 

TCF3-PBX1, ETV6-RUNX1, and KMT2A rearrangements. Notably, Nalm16, which possesses a 253 

near-haploid karyotype with TP53 mutation, also demonstrated sensitivity to DHODH inhibition. 254 

Furthermore, we observed that pS6+ cell lines were more sensitive to DHODH inhibition, with 5 255 

out of 5 (100%) exhibiting a robust response compared to only 1 out of 3 (33.3%) pS6- cells (Fig. 256 

4B). Uridine supplementation effectively abolished the killing effects of DHODH inhibition, 257 

further confirming that uridine is a critical metabolic dependency for pS6+ cells (Fig. 4C).  258 

We then tested a panel of PDX across several genomic subtypes. As in B-ALL cell lines 259 

(Fig. 1C), we defined the pS6 signaling strength for each PDX (Fig. 4D). Concordantly with 260 

NetBID2 predictions and the cell line results, pS6+ PDXs with MEF2D and TCF3-PBX1 261 

rearrangements had the most pronounced response to DHODH inhibition (Fig. 4E). Notably, we 262 

found a robust correlation between the strength of pS6 signaling (median expression) and 263 

sensitivity to DHODH inhibition in both cell lines and PDXs (p = 0.036, Fig. 4F). Based on their 264 

IC50 values, we categorized cell lines and PDXs as sensitive (IC50 < 1 mM), or resistant (IC50 ³ 265 

1 mM) to DHODH inhibition. We applied our developmental classification and demonstrated that 266 

pro-BII and pre-BI are the most abundant populations in both cell lines and PDXs, in line with 267 

patient samples (Extended Data Fig. 10). To identify cellular features predictive of response to 268 

DHODH inhibition we used XGBoost (eXtreme Gradient Boosting) in binary classification mode 269 
26. We found that pS6 and pCREB expression in pro-BII and pre-BI cells were the most critical 270 

predictors of response to DHODH inhibition (Fig. 4G). We confirmed that DHODH inhibition 271 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2025. ; https://doi.org/10.1101/2025.01.27.635108doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.27.635108
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

selectively targets pS6+ cells over time at the single-cell level (Extended Data Fig. 11). These data 272 

demonstrate pS6 signaling is a surrogate marker for uridine dependency.  273 

DHODH inhibition prolongs survival in pS6+ B-ALL xenograft models 274 

Given that the strength of pS6 signaling predicts the in vitro sensitivity to DHODH 275 

inhibition, we assessed the efficacy of in vivo treatment with DHODH inhibition in two cell lines 276 

and two PDX models with varying pS6 signaling strengths. B-ALL PDX cells (SJ18305, SJ45503) 277 

or cell lines (Nalm6, Nalm16) were engrafted in NSG mice and subsequently treated with vehicle 278 

or BAY-2402234 (5 mg/kg) five times per week over a total of 24 dosing days (Fig. 5A and 279 

Extended Data Fig. 12A). Notably, the 5 mg/kg BAY-2402234 treatment was well-tolerated in vivo, 280 

with no significant weight loss observed (Extended Data Fig. 12B).  281 

DHODH inhibition significantly slowed tumor progression compared to vehicle in pS6+ 282 

samples (SJ18305 p < 0.0001 for both Day 17 and Day 24; Nalm16 p < 0.0001 on Day 31 and Day 283 

34; Nalm6 p < 0.0001 on Day 24 and Day 28; Figs. 5B-E and Extended Data Fig. 12C). By contrast, 284 

DHODH inhibition did not slow disease progression in SJ45503, which possessed low pS6 285 

signaling strength (Fig. 5F). In SJ18305, DHODH inhibition significantly reduced leukemia 286 

burden within the bone marrow (p = 0.0139, Fig. 5G) and spleen (p = 0.007, Fig. 5H). Survival 287 

analysis demonstrated that DHODH inhibition significantly prolonged survival in all pS6+ 288 

xenograft models (SJ18305 p = 0.0016; Nalm16 p = 0.0047; Nalm6 p = 0.0031; Fig. 5I-J and 289 

Extended Data Fig. 12D) and even demonstrated a modest survival benefit in the SJ45503 mice as 290 

compared to vehicle (p = 0.028, Extended Data Fig. 12E). Collectively, these data suggest that 291 

targeting uridine synthesis through DHODH inhibition is most effective in ALL cells exhibiting 292 

pS6+ signaling yet it has potential therapeutic benefit even in cases with modest pS6 activation. 293 

Discussion 294 

Relapsed and refractory B-ALL remains a significant clinical challenge, representing the 295 

second most common cause of pediatric cancer death. Previous studies have independently 296 

associated the activation of B-cell developmental signaling pathways and increased glucose 297 

consumption with chemo-resistance and relapse risk13,27-31. However, these paradigms have not 298 

been previously linked. Here, we demonstrate how activated pS6 signaling leads to a unique 299 

metabolic state that promotes glucose utilization for uridine production, uncovering a novel uridine 300 

dependency in B-ALL cells. Glucose is converted into uridine through the action of several 301 

enzymes in the PPP and de novo uridine synthesis pathway, including CAD and DHODH. Gene 302 
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expression analysis demonstrated the activity of DHODH in most B-ALL genomic subtypes, 303 

including high-risk leukemias. Targeting DHODH by pharmacologic inhibition caused cell death 304 

in vitro, significantly reduced leukemia burden and prolonged survival in vivo. Response to 305 

DHODH inhibition correlated with the strength of pS6 signaling, suggesting it as a biomarker of 306 

uridine dependency in B-ALL. These findings suggest targeting DHODH is a promising 307 

therapeutic approach for chemo-resistant B-ALL.  308 

In normal B-cell development, pro-B cell proliferation and survival are primarily driven 309 

by IL-7R signaling through the PI3K and JAK-STAT pathways. As development progresses to pre-310 

B cells, IL-7R signaling partners with the pre-BCR, activating RAS and mTOR pathways14. 311 

Several lines of evidence suggest that sustained signaling of these pathways is associated with 312 

chemo-resistance and relapse in B-ALL. Genetic alterations resulting in constitutive signaling in 313 

PI3K, mTOR, and RAS pathways characterize high-risk genomic subtypes such as Ph-like and 314 

Ph+ ALL15-17. Further, activation of SYK, a proximal member of the pre-BCR and PI3K signaling 315 

pathways, is thought to contribute to chemo-resistance and relapse in TCF3-PBX1 and KMT2A-316 

rearranged B-ALL32-34. We previously described the activation of these signaling pathways as 317 

predictive of relapse after chemotherapy13. We have also demonstrated that glucocorticoid-318 

resistant B-ALL cells activate these pathways, suggesting that these signaling axes support chemo-319 

resistance13,30. However, direct therapeutic targeting of active RAS, PI3K, and mTOR pathways 320 

using TKIs has not resulted in significant improvements in disease control, with the exception of 321 

BCR-ABL rearranged (Ph+) B-ALL35. Multiple mechanisms of resistance to TKIs have been 322 

observed, including activation of parallel signaling pathways to bypass inhibition of a single 323 

target36-38. mTORC1 and S6 kinases are common downstream molecules in several of these 324 

pathways and drive de novo uridine synthesis via CAD phosphorylation19,20. Our results show that 325 

pS6+ cells have higher activated phosphorylated CAD and that TKIs targeting various levels of 326 

the pathway abolish CAD phosphorylation. CAD catalyzes the initial steps in the de novo uridine 327 

synthesis pathway, followed by DHODH, which catalyzes the rate-limiting step. Thus, we propose 328 

that directly targeting de novo uridine synthesis through DHODH inhibition overcomes the 329 

challenges of TKI resistance by hitting the convergence of several signaling pathways.  330 

 Oncogenic signaling and transcription factor dysregulation in B-cell progenitors induce 331 

metabolic changes influencing their transformation39. For example, PAX5 and IKAROS exert 332 

tumor suppressor functions in B-cell progenitors through transcriptional regulation of glucose 333 
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transport, glycolysis, and glucose metabolism40,41. In addition, increased access to glucose has 334 

been associated with chemo-resistance and poor patient outcomes in B-ALL, with inhibition of 335 

glycolysis shown to sensitize chemo-resistant cells28. Obesity, elevated body mass index or 336 

hyperglycemia requiring insulin are associated with higher risk of relapse42-47. Further, in line with 337 

our data, Xiao et al. determined that B-ALL cells divert glucose-derived carbons toward the PPP48. 338 

Here, we demonstrate that pS6+ B-ALL cells preferentially utilize glucose for de novo uridine 339 

synthesis. Primary patient cells with active pS6 signaling have higher expression of DHODH. 340 

Further, the expression of DHODH is higher in primary patients who experienced relapse, and 341 

DHODH expression alone predicts inferior outcomes in gene expression data from over 1500 342 

patients. 343 

Since Sidney Farber introduced anti-folates in childhood leukemia treatment over 70 years 344 

ago49, anti-metabolites targeting purine synthesis have been part of therapeutic backbones. 345 

However, pyrimidines have not been specifically targeted. While DHODH inhibitors have been 346 

approved for use as immunomodulatory agents, their therapeutic potential in cancer is emerging. 347 

In solid tumors, DHODH is identified as a target in KRAS-mutant pancreatic adenocarcinoma, 348 

IDH-mutant high-grade glioma, MYC-amplified medulloblastoma and neuroblastoma50-54. In 349 

hematologic malignancies, it has been explored in preclinical settings in AML55-59, B-cell 350 

lymphoma60,61, and T-ALL62,63, but clinical trials in AML have not progressed due to lack of 351 

efficacy (NCT03404726). Questions remain whether this lack of clinical efficacy was due to 352 

suboptimal dosing regimens resulting in a lack of sustained DHODH inhibition or to failure to 353 

enrich for patients with subtypes most likely to respond. Our data suggest DHODH is a more 354 

promising target for lymphoid malignancies like B-ALL, which exhibit greater dependence on 355 

DHODH compared to AML. Analysis of DepMap data highlights B-ALL as the most dependent 356 

cancer type on DHODH among 31 cancers. Unlike pancreatic cancer and AML, in which uridine 357 

salvage fuels PPP and glycolysis64,65, B-ALL demonstrates minimal uridine salvage activity, as 358 

indicated by very low expression of UPP1 and CDA. This renders B-ALL more susceptible to 359 

DHODH inhibition. Gene expression analysis of 1,985 B-ALL patients showed uridine 360 

dependency in most B-ALL genetic subtypes, including high-risk leukemias patients with 361 

KMT2A-rearranged, PAX5 P80R, BCL2/MYC24,25,66. Consistent with this, DHODH inhibition 362 

was detrimental in several in vitro and in vivo standard-risk and high-risk leukemia models. In cell 363 

culture, there is no source for uridine salvage, while in vivo, mice and humans can scavenge uridine 364 
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from dietary sources theoretically inducing resistance against DHODH inhibition over time. Future 365 

work will interrogate these mechanisms of resistance and identify agents that enhance response 366 

and sensitivity to DHODH inhibition. Given uridine’s critical role in protein glycosylation and 367 

phospholipid production, future studies are needed to understand how uridine metabolism 368 

contributes to chemo-resistance in B-ALL and how to leverage this metabolic vulnerability for 369 

therapeutic advance. 370 

In conclusion, we report a novel vulnerability of chemo-resistant B-ALL cells to uridine. 371 

We link activated pS6 signaling in chemo-resistant B-ALL cells with higher activity of de novo 372 

uridine synthesis. Notably, we found a correlation between the strength of pS6 signaling and 373 

sensitivity to DHODH inhibition, highlighting a potential prognostic role for pS6 signaling. This 374 

work lays the foundation for future studies to explore DHODH inhibition as a therapeutic approach 375 

to relapsed or resistant B-ALL. 376 

  377 
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Methods 378 

Cell culture 379 

697, Nalm6, Nalm16, Nalm20, REH, RS4;11 cell lines were purchased from ATCC 380 

(Manassas, VI, USA). RCH-ACV, Kasumi-2 and MHH-CALL-4 were purchased from DSMZ396 381 

(Braunschweig, Germany). 697, Nalm6, Nalm16, REH, RS4;11, RCH-ACV and Kasumi-2 were 382 

cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS). MHH-CALL-383 

4 and Nalm20 were cultured in RPMI-1640 medium supplemented with 20% FBS. For all cell 384 

lines, the medium was additionally supplemented with 2mM L-glutamine (Invitrogen) and 1x 385 

penicillin/streptomycin (Invitrogen), and cells were maintained at 37 °C and 5% CO2. 386 

 387 

Bone marrow samples from patients and healthy donors 388 

Bone marrow samples from healthy donors were purchased from AllCells, Alameda, CA, 389 

USA (n = 3; median age was 21 years (range, 19 – 22 years); 2 males and 1 female). De-identified 390 

primary patient samples were obtained from the Bass Center Tissue Bank from the Bass Center 391 

for Childhood Cancer and Blood Diseases at Lucile Packard Children’s Hospital at Stanford. 392 

Thirty-one samples were collected at the time of diagnosis under informed consent. The Stanford 393 

University Institutional Review Boards approved the use of these samples. Clinical metadata is 394 

available in Supplemental Table 5.  395 

 396 

Patient derived xenograft (PDX) samples 397 

Twelve PDX samples were obtained from the Public Repository of Patient-Derived and 398 

Expanded Leukemias (PROPEL; propel.stjude.cloud). Details regarding these PDX samples are 399 

available in Supplemental Table 7. Six of twelve PDX samples were able to be cultured without 400 

significant cell death in vitro in StemSpan™ SFEM (StemCell technologies) for a week. 401 

 402 

Definition of pS6+ and pS6- cell lines and PDXs 403 

The pS6 signaling strength was defined as the arcsinh-transformed median expression 404 

value of pS6 profiled by CyTOF (see Supplemental Methods). As a cutoff, we defined cell lines 405 

and PDXs with pS6 median values greater than 3 as pS6+ and the ones no greater than 3 as pS6-.  406 

 407 

Extracellular flux analysis 408 
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To profile the glycolytic and mitochondrial activity in cell lines, the oxygen consumption 409 

rate (OCR) and extracellular acidification rate (ECAR) were measured using a Seahorse XFe24 410 

analyzer (Agilent). Briefly, a sensor cartridge (102342-100, Agilent) was hydrated in a Seahorse 411 

XF Calibrant (100840-000, Agilent) overnight at 37°C in a non-CO2 incubator. On the day of 412 

measurement, cells were collected and washed with PBS. After centrifugation, cells were 413 

resuspended at 2×106 per mL in Seahorse XF RPMI medium (pH 7.4) supplemented with 10mM 414 

glucose, 2mM glutamine and 1mM pyruvate. 100 µl cell suspension was added into each well of 415 

Seahorse XF Cell Culture Microplate (102342-100, Agilent). After centrifugation at 200 × g for 2 416 

min with no brake, the plate was equilibrated for 30 min in a 37°C incubator without CO2. 417 

Additional 500ul medium were added and incubated for 30 min before loading to the machine. 418 

The OCR and ECAR were measured in basal conditions. 419 

 420 

Nutrient deprivation, metabolite rescue and cell viability assay 421 

To test the nutrient dependencies of glucose and glutamine in cell growth and survival, cell 422 

lines were cultured under regular conditions, glucose or glutamine deprivation conditions at 37 °C, 423 

5% CO2 for 48 hours. Cells were stained with Annexin V (Pacific Blue, Biolegend, 640918) and 424 

7AAD viability staining solution (Biolegend, 420404) for 15 min following manufacturer 425 

instructions and directly acquired on CytoFLEX Flow Cytometer (Beckman Coulter). Cells 426 

negative for Annexin V and 7-AAD are defined as viable cells. Biological triplicates of 427 

experiments were performed.  428 

To rescue the effect of glucose deprivation (GD), cells were seeded in 96-well plates at 3-429 

5 x 104 cells in 200 µl of growth medium and supplemented with uridine (1mM), pyruvate (5mM), 430 

aspartate (5mM), pyrimidine (1mM) and purine (1mM) under glucose deprivation condition (10% 431 

dialyzed FBS, 0mM glucose, 2mM glutamine) every 24 hours at 37 °C, 5% CO2. After 48 hours, 432 

cell viability was measured by Annexin V/7AAD staining in FACS as above. The chemical 433 

supplements were purchased from Millipore Sigma with details shown in Supplemental Table 8.  434 

To evaluate the in vitro killing effect of the DHODH inhibitor, cell lines and PDX cells 435 

were seeded in flat bottom 96-well plates at 3-5 x 104 per well in 200 µl of growth medium and 436 

treated with five increasing doses of DHODHi (BAY-2402234) on a logarithmic scale at 37 °C, 437 

5% CO2. After 48 hours, 100ul of cell suspension was transferred to a U-bottom 96-well plate 438 
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followed by centrifugation and PBS supplemented with 5% FBS wash twice. Cell viability was 439 

measured by Annexin V/7AAD staining in FACS as above.  440 

 441 

Stable Isotope Tracing and Metabolic Analyses 442 

B-ALL cell lines (Nalm6, 697, REH, Nalm16, Nalm20 and CALL4 were pretreated with 443 

or without glutamine for 4 hours. Following the procedures as previously published67, the culture 444 

medium was replaced with RPMI1640 with or without L-glutamine (Corning, 25-005-CI) and 445 

supplemented with 10 mmol/L U-13C6-glucose (Cambridge Isotope Laboratories, CLM-1396) and 446 

10% dialyzed FBS (Gibco, 26400044). The cells were incubated for 4 hours under these conditions. 447 

After incubation, the cells were washed twice with warm PBS, followed by the addition of ice-448 

cold 80% methanol. The cells were then vortexed briefly and incubated on ice for 15 min. The 449 

solution was centrifuged at 15,000g for 15 min at 4°C. The resulting supernatant was collected for 450 

LC-MS analysis. Metabolomics and isotope tracing analyses were performed using an Agilent 451 

1290 Infinity Liquid Chromatography (LC) System coupled to a Q-TOF 6545 mass spectrometer 452 

(MS; Agilent). Targeted analysis, isotopologue extraction, and natural isotope abundance 453 

correction were conducted using Agilent Profinder B.10.00 software as previously described67. 454 

Data are presented as mean ± SD across three biological replicates.  455 

 456 

Signaling inhibition using tyrosine kinase inhibitors 457 

Cells were incubated with RPMI1640 medium supplemented with 10mM glucose, 2mM 458 

glutamine and without FBS overnight at 37°C and 5% CO2. After 16 hours of serum starvation, 459 

cells were seeded at the density of 1 x 106 per mL in 10mL of growth medium and treated with 460 

different concentrations of tyrosine kinase inhibitors to target S6K1 (PF-4708671: 10, 20µM) PI3K 461 

(LY294002: 10, 20µM), mTOR (rapamycin: 2.5, 5µM), SYK (PRT062607 HCl: 2.5, 5µM). After 462 

24hrs, cells were washed in PBS and pelleted into two different Eppendorf tubes. One million cells 463 

were analyzed by CyTOF and the remaining cells were used to perform western blot.  464 

 465 

Manual gating 466 

Single cells were gated using Omiq software (https://www.omiq.ai/) based on event length 467 

and 191Ir/193Ir or 103Rh DNA content to filter out debris and doublets, as previously described68. 468 

After gating for single cells, live non-apoptotic cells were identified by gating on cleaved 469 
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poly(ADP-ribose) polymerase (cPARP), cleaved caspase-3 (c-Caspase3), and 195Pt levels69. In 470 

PDX samples, murine cells were excluded by gating for mouse CD45 (mCD45). Platelets and 471 

erythrocytes were removed by gating on CD61 and CD235a, while T cells and myeloid cells were 472 

excluded based on CD3e, CD33, and CD16 expression. CD38high plasma cells were also gated out, 473 

leaving a population defined as lineage-negative blasts (Lin− B+). Unless noted otherwise, further 474 

analysis was performed on this Lin− B+ population. 475 

 476 

B cell developmental classification 477 

We utilized the single-cell developmental classifier previously reported13. In summary, the 478 

Lin−/ B+ fraction from healthy human BMs was manually gated into 15 developmental 479 

populations of normal B lymphopoiesis, mixed progenitors, mature B and non-B cell fractions, as 480 

depicted in Supplemental Fig 6. The classification of each group was determined by the expression 481 

of 10 key B-cell developmental markers: CD19, CD20, CD24, CD34, CD38, CD45, CD179a, 482 

CD179b, intracellular IgM (IgMi), and terminal deoxynucleotidyl transferase (TdT). Using the 483 

tidytof R package70, we first generated healthy-fit objects by calculating the mean and covariance 484 

matrix for all healthy populations. Lin−/ B+ cells from primary leukemia or PDX samples, or live 485 

B-ALL cells from cell lines were assigned to the most similar healthy developmental 486 

subpopulations based on the shortest Mahalanobis distance across all 10 dimensions. Cells were 487 

labeled as 'unclassified' if no Mahalanobis distances fell below the threshold (distance = 10, 488 

determined by the number of dimensions). 489 

 490 

Depmap genome-wide CRISPR screen data analysis 491 

The CRISPR 23Q4 public data from the screens published by Broad Achilles and Sanger 492 

Score projects71 were downloaded from the Depmap portal https://depmap.org/portal/download. 493 

The CRISPR 23Q4 screening was performed for 31 tumor lineages on 1091 cancer cell lines, of 494 

which 12 were annotated as B-ALL. We defined cell lines as solid tumor if they were not annotated 495 

as lymphoid or myeloid or non-cancerous. 975 cell lines were assigned as solid tumors. The gene 496 

effect scores summarizing the guide depletion were determined based on the Chronos algorithm72. 497 

The Chronos dependency score lower than -0.3 indicates inhibition of cell growth or death after 498 

gene knockout (KO). Commonly essential genes exhibit a median Chronos score of −1. To 499 

determine genes that are differentially dependent between B-ALL cell lines and solid tumor lines, 500 
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Chronos scores were compared, and Welch’s t-test was conducted for each gene between the two 501 

groups. Genes are considered significant if their p-value is less than 0.01 (i.e., -log(p-value) > 2). 502 

A mean CRISPR score difference below zero indicates that a gene is specifically dependent on B-503 

ALL, while a mean difference of zero or higher identifies the gene as specifically dependent on 504 

solid tumors. 505 

 506 

Data analysis in published datasets 507 

Molecular Profiling to Predict Responses to Therapy (MP2PRT): We leveraged RNA-508 

seq data from 1,465 diagnostic samples from patients with predominantly SR B-ALL enrolled 509 

across four Children’s Oncology Group (COG) clinical trials as published by Ti-Cheng et al21. 510 

Gene-level summed TPM serve as the metric for GSEA analysis using fsea (version 1.28.0) R 511 

package. The Kolmogorov–Smirnov test was applied to determine whether the rank distributions 512 

of these pathways were statistically different between the two groups. Log2TPM was used to 513 

compare the expression of DHODH and UMPS between relapse (n=426) and non-relapse samples 514 

(n=939) using Welch’s t-test.  515 

For survival analysis, we categorized the patient samples based DHODH and UMPS 516 

expression levels. The high-expression group comprised 147 samples in the highest 10th percentile, 517 

while the low-expression group included 1318 samples in the lowest 90th percentile. Since relapse 518 

samples were enriched in the datasets, to account for the sample selection probabilities, we 519 

adjusted the Kaplan-Meier curves with inverse probability weights. Specifically, the weights are 520 

2.12 for relapse, MRD negative; 2.26 for relapse, MRD positive; 13.86 for non-relapse, MRD 521 

negative; and 4.99 for non-relapse, MRD positive.  In addition, we used weighted Cox-regression 522 

tests to derive the P values.  523 

 524 

Therapeutically Applicable Research to Generate Effective Treatments (TARGET): 525 

We focused on the primary patient cohort (n = 187) and performed gene set enrichment analysis 526 

(GSEA) to evaluate whether pre-defined gene sets associated with various metabolic pathways—527 

such as signaling, glycolysis, and pyrimidine synthesis—differed significantly between relapse 528 

and non-relapse samples, using the fgsea (version 1.28.0) R package. The Kolmogorov–Smirnov 529 

test was applied to determine whether the rank distributions of these pathways were statistically 530 

different between the two groups. 531 
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In addition, we specifically compared the normalized gene expression levels of DHODH 532 

and UMPS between relapse and non-relapse samples using Welch’s t-test, providing a focused 533 

analysis of genes involved in pyrimidine metabolism. 534 

For survival analysis, we categorized the patient samples based on the expression levels of 535 

DHODH and UMPS. The high-expression group comprised 46 samples in the highest 25th 536 

percentile, while the low-expression group included 135 samples in the lowest 75th percentile. 537 

Kaplan-Meier curves were plotted to compare the probability of event-free survival between the 538 

high- and low-expression groups. To analyze the survival curves, we employed the Cox regression 539 

test, allowing us to assess the impact of gene expression on patient outcomes. 540 

 541 

NetBID2 analysis to query DHODH activity in patients with B-ALL 542 

We utilized the network-based integrative NetBID2 algorithm22,23 to infer DHODH gene 543 

activities using bulk RNA-seq data from a published RNA-seq dataset comprising 1,985 B-ALL 544 

patients24. Briefly, we employed the SJARACNe algorithm to reverse-engineer a B-ALL 545 

interactome (BALLi) from this published RNA-seq dataset24. To ensure robust network quality, 546 

we excluded subtypes with fewer than 15 samples. This analysis targeted 10,843 hub genes, 547 

including 1,937 transcription factors and 8,906 signaling proteins. The parameters for SJARACNe 548 

were configured as follows: 1) Bootstrap p-value threshold: p = 1 × 10^-7; 2) Consensus p-value 549 

threshold: p = 1 × 10^-5; 3) Data Processing Inequality (DPI) tolerance: e = 0; 4) Number of 550 

bootstraps (NB): 100. The resulting data-driven BALLi consisted of 33,237 nodes and 314,914 551 

edges. Subsequently, we used the cal.Activity function with parameters es.method = 552 

"weightedmean" and std = TRUE in NetBID2 to infer the activity of all hub genes, including 553 

DHODH, in each B-ALL patient based on their gene expression profiles. The NetBID2 package 554 

is available online at: https://github.com/jyyulab/NetBID. 555 

 556 

Single cell feature selection 557 

Following DHODHi treatment, IC50 values at 48-hour were calculated in GraphPad Prism 558 

10 using nonlinear regression model with “log(inhibitor) vs response -- variable slope (four 559 

parameters)” function. Cell lines with logIC50 values below 3 (IC50 < 1 µM) are categorized as 560 

sensitive (response to DHODHi), whereas cell lines with logIC50 values equal to or more than 3 561 

(IC50 ³ 1 µM) are grouped as resistant lines. Protein profiles from cell lines and PDX samples 562 
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were acquired by CyTOF. We performed batch effect correction and expression normalization 563 

using the limma R package. After developmental classification of cell line and PDX samples, we 564 

focused on the most dominant subpopulations: pro-BII (n= 139,646) and pre-BI (n= 71,675). Cells 565 

were grouped into sensitive (n=147,245) or resistant (n=64,076) groups and concatenated 566 

respectively. We split this data into training (80%) and test set (20%) and developed XGBoost 567 

(eXtreme Gradient Boosting) binary classification model26 to retrieve the importance score for 568 

each feature as profiled by CyTOF.  569 

 570 

GFP Expression in PDX cells 571 

293GP were used (generously gifted by the laboratory of Dr. Garry Nolan) for retrovirus 572 

production. Briefly, 293GP cells at 70% confluency on 10 cm Poly-D-Lysine coated plates were 573 

co-transfected with 9 μg of luciferase-mNeoGreen vector and 4.5 μg RD114 envelop plasmid 574 

(graciously provided by Dr. Crystal Mackall) with TurboFect (Thermo Fisher Scientific). Viral 575 

supernatants were collected at 48 and 72 hours post transfection by centrifuging to pellet cell debris 576 

and stored at -80°C. Nalm6, Nalm16 and PDX samples (SJ18305, SJ45503) cells were transduced 577 

with retroviral supernatant. Briefly, 5 μg/ml vitronectin in PBS (Takara) was used to coat non-578 

tissue culture treated 12-well plate at 4°C overnight. The next day, wells were washed with PBS 579 

and blocked with PBS supplemented with 2% BSA for 15 min. 1 ml of thawed retroviral 580 

supernatant was added to the well and centrifuged at 3,200 rpm for 1.5 hours, followed by adding 581 

5 x 105 cells in each well. 48 hours later, transduction efficiency was evaluated by GFP expression 582 

in CytoFLEX instrument (Beckman Coulter). Transduced cells were enriched by sorting GFP-583 

positive cells in a BD FACSAria II Cell Sorter (BD Biosciences). Following sorting, cell lines 584 

were cultured in 10% FBS RPMI1640 medium and PDX cells were cultured in StemSpan™ SFEM 585 

media as isogenic cells and tested for Mycoplasma contamination for future use in vivo studies.   586 

 587 

In vivo DHODHi treatment in cell line and PDX models 588 

NOD/SCID/IL2Rg-/- (NSG) mice were purchased from the Jackson Laboratory, housed, 589 

and treated under the Stanford University Committee on Animal Welfare-approved protocol. Six-590 

to-eight week old female mice were engrafted with 5.0 × 105 cells (Nalm6-Luc+, Nalm16-Luc+, 591 

SJ18305-Luc+ or SJ45503-Luc+) via intravenous (I.V.) injection. When engraftment was 592 

detectable by bioluminescence imaging (BLI) (BLI > 1 × 106), mice were randomized in two 593 
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different experimental groups: vehicle (5% DMSO, 40% PEG400, 5% Tween 80, 50% saline) and 594 

DHODHi BAY2402234 (MedChemExpress). Two different in vivo experiments were performed 595 

for PDX xenografted mice and cell line xenografted mice. For PDX xenografted mice, n=5 mice 596 

were in the vehicle group; n=10 mice were in the DHODHi group. Among them, 5 mice were used 597 

to perform the survival analysis and the remaining 5 mice were used to compare the leukemia 598 

progression and sacrificed simultaneously as mice in the vehicle group. For mice xenografted with 599 

cell lines, 5 mice were used for each group to assess engraftment and survival. From 3- or 5-days 600 

until 34- or 38-day post engraftment, mice received 5 mg/kg (5 days per week) of DHODHi or 601 

vehicle via oral gavage (O.G.). Engraftment was monitored once or twice per week by 602 

bioluminescence (BLI) analysis and was assessed as the percentage of hCD19/hCD45+/mCD45.1- 603 

cells in peripheral blood. Mice were sacrificed when clinical signs of leukemia were observed. In 604 

the survival analysis, mice were censored if they were moribund for other reasons, such as 605 

accidental death (n = 1 in the Nalm6 vehicle) or did not develop leukemia (n = 1 in the Nalm16 606 

treatment group). Whensoever suspected leukemia-unrelated deaths occurred, FACS analysis of 607 

bone marrow and spleen was performed to confirm that death was not related to a high burden of 608 

leukemia. 609 

 610 

Statistical analysis 611 

Data were analyzed and visualized using R statistical software (http://www.r-project.org) 612 

or GraphPad Prism 10 software. P values were calculated using the statistical test described in the 613 

relevant figure legend. P < 0.05 was considered statistically significant, and P values are denoted 614 

with asterisks as follows (P > 0.05, not significant, n.s.; *, P < 0.05; **, P < 0.01; ***, P < 0.001; 615 

and ****, P < 0.0001). 616 

 617 

  618 
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Data availability 619 

Mass cytometry data from clinically annotated patient samples, cell lines, and PDX samples are 620 

available in Community Cytobank (https://community.cytobank.org).  621 

Bulk RNA-seq data from primary samples in our previously published patient cohort (n=6) 622 

have been deposited in NCBI Gene Expression Omnibus (GEO) and are accessible through GEO. 623 

The TARGET dataset used for this study is accessible through the TARGET website 624 

at  https://ocg.cancer.gov/programs/target/data-matrix. TARGET BAM and FASTQ sequence 625 

files are accessible through the database of genotypes and phenotypes (dbGaP; 626 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000218.v24.p8) under 627 

accession no. phs000218 (TARGET) and at NCI’s Genomic Data Commons 628 

(http://gdc.cancer.gov) under project TARGET. Transcriptomic data in MP2PRT dataset are 629 

accessible in dbGaP: Project ID: MP2PRT-ALL; accession number: phs002005.v1.p1 630 

(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/dataset.cgi?study_id=phs002005.v1.p1).  631 
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 863 
Fig. 1: pS6+ cells have distinct metabolic gene signatures and are glucose dependent 864 
A. Whole transcriptome sequencing was performed in primary diagnostic bone marrow (BM) 865 
samples from known pS6+ patients who would go on relapse (n=3) and pS6- patients who remain 866 
in continued remission (n=3).  867 
B. Differential expression analysis between primary pS6+ and pS6- cells. Gene set enrichment 868 
analysis (GSEA) was performed with the Hallmark database (FDR < 0.05). Diagnostic pS6+ cells 869 
are enriched for genes in PI3K and mTOR pathways (blue) as well as several metabolic pathways 870 
(red).  871 
C. Z-score based on frequency of cells positive for phosphorylated S6, AKT, ERK, 4EBP1 and 872 
CREB in B-ALL cell lines in basal state defines pS6+ lines (n=6, Nalm6, RCH-ACV, 697, 873 
Kasumi2, Nalm16 and REH) and pS6- lines (n=3, RS4;11, Nalm20, MHH-CALL-4). 874 
D. Expression (arcsinh transformed mean) of pS6 (S235/236), pAKT (S273), pERK (T202/Y204) 875 
and pCREB (S133) in pS6+ and pS6- cell lines (pS6, P = 0.002; pERK, P=0.004; pAKT, p= 0.095, 876 
ns; p4EBP1, p=0.095, ns; pCREB, p = 0.095, ns).  877 
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E. Extracellular acidification rate (ECAR) indicating glycolytic activity in pS6+ cell lines (red) 878 
compared to pS6- cell lines (black; p = 0.0039). 879 
F. Correlation between the frequency of pS6+ cells and the glycolytic activity (measured by ECAR) 880 
in B-ALL cell lines (n=9, p = 0.021, R2 = 0.56). Each dot represents individual cell line colored by 881 
pS6 relative expression level (z-score of arcsinh transformed mean value) measured by mass 882 
cytometry.  883 
G. Cell viability after culture in medium with or without glucose (open bar) for 48 hours in pS6+ 884 
cells (red, n = 5) and pS6- cells (gray, n = 3). Cell death is measured by annexin V and PI staining 885 
by flow cytometry. Nalm6 p = 0.00098; 697 p = 0.0064; Kasumi2 p = 0.0022; Nalm16 p = 0.026; 886 
REH p = 0.0183; RS4;11, p = 0.614; MHH-CALL-4 p = 0.523; Nalm20 p = 0.081. Three or four 887 
biological replicates of experiments were performed.  888 
All data in dot plots and bar graphs are mean ± SD. Statistical tests used were Welch’s t test 889 
followed by Holm-Sidak multiple comparison test (D); Welch’s t test (E, I); and multiple paired t 890 
test followed using Šídák-Bonferroni method (G). ns, not significant, *p < 0.05, **p < 0.01, ***p < 891 
0.001.   892 
   893 
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Fig. 2: PI3K/mTOR signaling drives glucose-dependent uridine synthesis in B-ALL cells  895 
A. Schematic of ¹³C₆ glucose tracing to illustrate glucose flow through glycolysis, pentose 896 
phosphate pathway, and purine/pyrimidine synthesis. De novo synthesis converts phosphoribosyl 897 
pyrophosphate (PRPP) into uridine monophosphate (UMP) or inosine monophosphate (IMP), 898 
while the salvage pathway recycles nucleosides and nucleobases into nucleoside 5′-899 
monophosphates (NMPs) or deoxy NMPs in one adenosine triphosphate (ATP)- or PRPP-900 
dependent step. Pyrimidine synthesis pathways are highlighted: red for de novo, blue for salvage. 901 
Key enzymes include CAD (carbamoyl phosphate synthetase II, aspartate transcarbamoylase and 902 
dihydroorotase), CTPS1 (CTP synthase 1), DHODH (dihydroorotate dehydrogenase), TS 903 
(thymidylate synthase), UCK1/2 (uridine–cytidine kinases 1 and 2), UMPS (UMP synthase); 904 
UPP1 (uridine phosphorylase 1). 905 
B. Fractional labeling of m+5 glucose carbons in pentose phosphate pathway products: UDP 906 
(uridine diphosphate, p = 0.0233); UTP (uridine triphosphate, p =0.002) and ATP (adenosine 907 
triphosphate, p =0.0342) in glutamine deprived conditions in pS6+ and pS6- cell lines. 908 
C. Cell viability after glucose deprivation (GD) for 48 hours with and without supplementation of 909 
various metabolites: uridine (1mM), pyruvate (5mM), aspartate (5mM), pyrimidine (1mM) and 910 
purine (1mM).  911 
D. Pathway of carbamoyl phosphate synthetase (CAD) phosphorylation (left panel). Western blot 912 
of pCAD (S1859), pS6 (S235/S236), total CAD, total ribosomal protein S6 and GAPDH (as 913 
loading control) in pS6+ (Nalm6, 697, Nalm16, in red) and pS6- (RS4;11, Nalm20, MHH-CALL4, 914 
in black) cell lines. Band intensities were analyzed by Image J software and normalized to first 915 
lane and loading control as indicated under each lane.  916 
E, Western blot of pCAD (S1859), pS6 (S235/S236), total CAD, total ribosomal protein S6 and 917 
GAPDH (as loading control) in B-ALL cell line Nalm6 and PDX sample (SJ18305) in the presence 918 
or absence of tyrosine kinase inhibitors targeting kinases in the PI3K/mTOR pathway. S6K1 (PF-919 
4708671: 10, 20µM) PI3K (LY294002: 10, 20µM), mTOR (rapamycin: 2.5, 5µM), SYK 920 
(PRT062607 HCl: 2.5, 5µM) for 24 hours.  921 
F. Mass cytometry panel utilized to evaluate expression of glycolysis, PPP, and pyrimidine 922 
synthesis proteins along with signaling molecules in primary cells. Measured proteins are in color, 923 
non-measured proteins are in gray. 924 
G. Expression of metabolic proteins between healthy bone marrow (n = 5) cell populations and 925 
primary B-ALL bone marrow cells from diagnosis (n = 31). Bubbles colored by fold change of 926 
median expression (arsinh transformed) and size indicates P value of the difference. The frequency 927 
of each classified subpopulation is indicated to the right. Frequencies summarized as mean ± SEM 928 
(B-ALL in purple; healthy control in gray). Pro-BII, P = 0.00024; Pre-BI, P= 0.0036; Early-non-929 
BI, P = 0.000352.  930 
H. Differential expression of proteins in primary cells gated based on pS6 expression. Proteins in 931 
purple are significantly increased in pS6+ cells compared to pS6- cells within Pro-BII and Pre-BI 932 
cells from primary patient samples.  933 
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I. Differential expression of proteins in pS6+ (n = 6) compared to pS6- cell lines (n = 3). Proteins 934 
in blue are significantly increased in pS6+ cells.  935 
J. Proteins upregulated in pS6+ cells from primary B-ALL samples (n=31) or B-ALL cell lines 936 
(n=9). DHODH is the sole shared protein from both cohorts.  937 
Data is displayed as mean ± SD. Statistical test used to compare 13C labelling fraction between 938 
pS6+ and pS6- cells is Welch t test (B). Statistical test used to compare the rescue effect of 939 
metabolites from glucose deprivation (C) and compare pS6+ and pS6- cells (H and I) and compare 940 
protein expression in different subpopulations between B-ALL and healthy BM (G, left panel) are 941 
two-way ANOVA followed by Šidák’s multiple comparisons test. Statistical test used to compare 942 
and to compare the frequency of subpopulations in leukemia samples and healthy bone marrows 943 
is Welch’s t test followed by Holm-Šidák method for multiple comparison correction (G, right 944 
panel). *p < 0.05, **p < 0.01, ***p < 0.001. 945 
  946 
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Fig. 3: De novo uridine synthesis is a metabolic vulnerability in B-ALL 948 

A. Effect of DHODH KO in cell lines across cancer subtypes in the genome-wide CRISPR screen 949 
(DepMap 22Q2 Public+Score, Chronos). B-ALL (in red) is the most dependent on DHODH 950 
for growth and survival among 17 cancer subtypes. The x-axis shows cancer subtypes of cell 951 
lines. The y-axis shows the DHODH dependency score (gene effect) per cell line. Commonly 952 
essential genes exhibit a median Chronos score of −1 as indicated (dashed line).  953 

B. Comparison of dependencies in B-cell leukemia (B-ALL) vs solid tumors. The x-axis displays 954 
the difference in average CRISPR score per gene between B-ALL and solid tumors, while the 955 
y-axis represents significance using -log10(p-value). Purple dots represent “dependency” 956 
genes that are preferentially dependent in B-ALL compared to solid tumors. Their loss is more 957 
detrimental to B-ALL cells than to solid tumor cells. Blue dots show “tolerance” genes that are 958 
not essential in B-ALL. A series of genes involved in pyrimidine synthesis (DHODH, UMPS, 959 
CAD, TYMS and CTPS1, red) are among the most essential genes in B-ALL.  960 

C. GSEA for KEGG_pyrimidine_metabolism signature between relapsed (n=426) vs non-961 
relapsed (n=1039) patients in the MP2PRT dataset. Enrichment score 0.489, Kolmogorov–962 
Smirnov (KS) test of rank distribution p =3.49e-05.  963 

D. GSEA for KEGG pyrimidine metabolism signature between relapsed (n=112) vs non-relapsed 964 
(n=75) patients with B-ALL in the NCI TARGET dataset. Enrichment score 0.354, KS test of 965 
rank distribution p =8.08e-08.  966 

E. DHODH and UMPS relative expression in relapsed (n=426) vs non-relapsed (n=1039) patients 967 
from MP2PRT dataset (DHODH, P=0.025; UMPS, p = 0.021). The line indicates mean value. 968 

F. DHODH and UMPS relative expression in the diagnostic samples from relapsed (n=112) vs 969 
non-relapsed (n=75) patients from NCI TARGET dataset (DHODH p =0.133; UMPS p = 970 
0.008). The line indicates mean value. 971 

G. Event-free survival (EFS) based on DHODH and UMPS expression in MP2PRT dataset when 972 
comparing top 10 percentile (N= 147) versus lowest 90% (n=1,318) MP2PRT, Molecular 973 
Profiling to Predict Responses to Therapy. Significance determined by Cox regression; 974 
DHODH p = 0.002; p = 0.214. 975 

H. EFS based on DHODH and UMPS expression in the NCI TARGET dataset when comparing 976 
the highest quartile (n = 46) to the lowest quartiles (n = 135) Significance determined by Cox 977 
regression; DHODH p = 0.036; UMPS p = 0.019. 978 
Data in box-whisker plot (A) are shown as median value with the range of values from 10th to 979 
90th percentiles. The dots above or below the lines are outliers. The Kolmogorov–Smirnov test 980 
was applied to determine whether the rank distributions of these pathways were statistically 981 
different between diagnostic samples from patients who would relapse and patients who are in 982 
remission (C and D). Statistical test between relapse vs none was Welch t test. *p < 0.05, **p < 983 
0.01, ***p < 0.001.  984 
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 985 
Figure 4. Active pS6 signaling predicts sensitivity to DHODH inhibition 986 

A. DHODH activity in 1985 molecularly defined B-ALL cases. Bold indicates subtypes tested for 987 
DHODH inhibition (DHODHi) sensitivity in vitro.  988 

B. In vitro killing after treatment with DHODHi BAY-2402234 in cell lines (n=9). Cells were 989 
treated with increasing concentrations of BAY-2402234 for 48 hours. Apoptosis was measured 990 
by flow cytometry with Annexin V/7AAD staining. pS6+ magnitude is indicated by color with 991 
red/orange representing highest pS6 magnitude (n=5) while pS6- cells (n=3) are indicated in 992 
gray.   993 
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C. Viability of REH or 697 pS6+ cells treated with increasing concentration of BAY-2402234 994 
with or without the addition of uridine (1mM) to the cultures over 48 hours. Cell apoptosis was 995 
measured by flow cytometry with Annexin V/7AAD staining.  996 

D. Z-score based on the median expression of signaling molecules pS6, pERK, pAKT, p4EBP1 997 
and pCREB in Pro-BII and Pre-BI cells from patient-derived xenograft (PDX) samples (n=12). 998 
Phospho-protein profiles were measured in CyTOF and each cell was classified by 999 
developmental classification. We defined cell lines and PDXs with pS6 median expression 1000 
values (arcsinh transformed) greater than 3 as pS6+ and those no greater than 3 as pS6-. pS6+ 1001 
PDXs are shown in red, while pS6- PDXs are in black. PDXs marked in bold were used for 1002 
DHODHi treatment in panel E.  1003 

E. In vitro killing after treatment with BAY-2402234 in PDX samples (n=6). Cells were treated 1004 
with increasing concentrations of BAY-2402234 for 48 hours. Cell viability was measured by 1005 
flow cytometry with Annexin V/7AAD. pS6+ PDXs = red; pS6- PDXs = black. 1006 

F. Correlation between the strength of pS6 signaling (median expression) and the sensitivity to 1007 
DHODHi (-logIC50) in cell lines and PDXs (p = 0.036, R2 = 0.32). IC50 values were 1008 
determined from panel B and E. pS6 median value (arcsinh transformed) was determined by 1009 
CyTOF.   1010 

G. Cellular features ranked by importance in predicting sensitivity to DHODH inhibition with 1011 
BAY-2402234 as selected by XGBoost. The top 2 features (> 0.1) are highlighted in the purple. 1012 
Data in bar graph (A) are shown as median ± SD. Data in curves (B, C, E) are mean ± SD. 1013 
Linear regression correlation was evaluated in F. The best fit line was shown with 95% 1014 
confidence bands (dashed curves). *p < 0.05, **p < 0.01, ***p < 0.001.  1015 
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Figure 5. DHODH inhibition prolongs survival of pS6+ B-ALL xenograft models 1017 

A. Half million B-ALL cells were injected by tail vein in NSG mice. Starting on day +3 following 1018 
injection, xenografts were treated daily with 5mg/kg BAY-2402234 for 24 dosing days (5 days 1019 
on, 2 days off). The treatment stopped at 34th day after iv injection. Bioluminescence imaging 1020 
(BLI) was performed once a week for 5 weeks. 1021 

B. Bioluminescent images of NSG mice at Day 10, Day 17, and Day 24 post engraftment with 1022 
PDX SJ18305/Luc+ cells. Crossed-out mice indicate experimental mice excluded from the 1023 
analysis due to death unrelated to leukemia (see methods).  1024 

C. Bioluminescent images of NSG mice at Day 24, Day 31, and Day 34 post engraftment with 1025 
Nalm16/Luc+ cells. 1026 

D. Leukemia progression in SJ18305 xenografts by bioluminescence in DHODHi (red curve) 1027 
treated and vehicle (black curve) mice. 1028 

E. Leukemia progression in Nalm16 xenografts by bioluminescence in DHODHi (red curve) 1029 
treated and vehicle (black curve) mice. 1030 

F. Leukemia progression in SJ45503 xenografts by bioluminescence in DHODHi (red curve) 1031 
treated and vehicle (black curve) mice. 1032 

G. Leukemia engraftment in DHODHi or vehicle-treated SJ18305 xenografts.  1033 
H. Spleen weight in SJ18305 PDX xenografts in DHODHi treated and vehicle group.  1034 
I. Survival of SJ18305 xenografts treated with DHODHi (red curve) and vehicle (black curve). 1035 

Gray area indicates the dosing period.  1036 
J. Survival of Nalm16 xenografts treated by DHODHi (red curve) and vehicle mice (black curve). 1037 

Gray area indicates the dosing period.  1038 
K. Model of uridine dependency and sensitivity to DHODH inhibition in B-ALL. B-ALL cells 1039 

characterized by active pS6 signaling (left) are glucose dependent for uridine production. 1040 
Active signaling downstream of PI3K/mTOR pathways activates S6-kinase which 1041 
phosphorylates CAD, driving uridine synthesis. Consequently, these cells are reliant on de 1042 
novo pyrimidine/uridine synthesis, making them susceptible to inhibition by targeting 1043 
DHODH. In contrast, cells lacking pS6 signaling (pS6-) do not depend on uridine synthesis 1044 
and, therefore, show minimal response to DHODHi treatment. Data in primary samples 1045 
suggests patients may contain a mixture of pS6+ and pS6- cells but that pS6+, DHODH active 1046 
cells are associated with chemoresistance.  1047 
Data in (D) and (E) are mean ± SD tested for significance using a two-way ANOVA mixed 1048 
model followed by Sidak’s test for multiple comparisons. Data in box plots (F) and (G) are 1049 
mean ± SD; Welch’s t test was used. Log-rank test was used in Kaplan Meier curves (H). *p < 1050 
0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 1051 

 1052 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2025. ; https://doi.org/10.1101/2025.01.27.635108doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.27.635108
http://creativecommons.org/licenses/by-nc-nd/4.0/

