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Aquaporins are integral membrane proteins some of which form high capacity

water-selective channels, promoting water permeation across cell membranes. In this

study, we isolated the aquaporin transcript (CsDrip1) of Chilo suppressalis, one of

the important rice pests. CsDrip1 included two variants, CsDrip1_v1 and CsDrip1_v2.

Although CsDrip1_v2 sequence (>409 bp) was longer than CsDrip1_v1, they possessed

the same open reading frame (ORF). Protein structure and topology of CsDrip1

was analyzed using a predicted model, and the results demonstrated the conserved

properties of insect water-specific aquaporins, including 6 transmembrane domains,

2 NPA motifs, ar/R constriction region (Phe69, His194, Ser203, and Arg209) and the

C-terminal peptide sequence ending in “SYDF.” Our data revealed that the Xenopus

oocytes expressing CsDrip1 indicated CsDrip1 could transport water instead of glycerol,

trehalose and urea. Further, the transcript of CsDrip1 expressed ubiquitously but

differentially in different tissues or organs and developmental stages of C. suppressalis.

CsDrip1 mRNA exhibited the highest level of expression within hindgut and the third

instar larvae. Regardless of pupae and adults, there were significantly different expression

levels of CsDrip1 gene between male and female. Different from at low temperature, the

transcript of CsDrip1 in larvae exposed to high temperature was increased significantly.

Moreover, the mRNA levels of CsDrip1 in the third instar larvae, the fifth instar larvae,

pupae (male and female), and adults (male and female) under different humidities were

investigated. However, the mRNA levels of CsDrip1 of only female and male adults were

changed remarkably. In conclusions, CsDrip1 plays important roles in maintaining water

homeostasis in this important rice pest.

Keywords: Drosophila integral protein (Drip), Chilo suppressalis, structure, expression, functional assay

INTRODUCTION

Obviously, water is one of the most fundamental molecules for all living organisms. Scientists have
confirmed that in addition to simple diffusion, there were high capacity water-selective channels
to account for the high water permeability in certain tissues of the animals (Preston et al., 1992;
Shakesby et al., 2009). Aquaporins (AQPs), often known as water channels, are integral membrane
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proteins that regulate the flow of water driven by osmotic
gradients (Campbell et al., 2008; Benga, 2009). AQPs exist as
tetramers in the cell membrane with each monomer functioning
as a water channel (Agre et al., 1987; van Hoek et al., 1991). These
AQPs are present in both prokaryotes and eukaryotes species and
play an important role in the water transport system (Heymann
and Engel, 1999; Agre, 2006; Campbell et al., 2008). Some
AQPs can also transport a number of small solutes, typically
glycerol or urea (Rojek et al., 2008). Current research on AQPs
primarily focuses on plants and vertebrates (Verkman, 2005;
Campbell et al., 2008; Maurel et al., 2008). To date, 13 AQP
types have been isolated from mammals, named AQP0-AQP12
(Yasui, 2004; Ishibashi, 2006), However, only a few AQP genes
were identified and characterized from insects, among which just
four species come from Lepidoptera, Bombyx mori, Grapholita
molesta, Spodoptera litura, and Ectropis obliqua (Dow et al.,
1995; LeCahérec et al., 1996a,b; Echevarria et al., 2001; Yanochko
and Yool, 2002; Duchesne et al., 2003; Kaufmann et al., 2005;
Kikawada et al., 2008; Kambara et al., 2009; Kataoka et al.,
2009a,b; Shakesby et al., 2009; Goto et al., 2011; Herraiz et al.,
2011; Mathew et al., 2011; Philip et al., 2011; Azuma et al.,
2012; Liu et al., 2013; Fabrick et al., 2014; Ibanez et al., 2014;
Li et al., 2016; Van Ekert et al., 2016; Liu and Piermarini,
2017). The phylogenetic analyses of insect AQPs had revealed
the existence of five major subfamilies, including the Drip,
Prip, Bib, Eglps, and AQP12L, and members of the Drip and
Prip subfamilies typically were water selective channels (Chawn
and Nicolson, 2004; Kambara et al., 2009; Herraiz et al., 2011;
Mathew et al., 2011; Drake et al., 2015; Finn and Cerda, 2015;
Van Ekert et al., 2016). Meantime, according to the database
of genome and transcriptome, the only one AQP in Chilo
suppressalis, two AQPs in Bombyx mori, three AQPs in Danaus
plexippus and Manduca sexta, and five AQPs in Manduca sexta
was identified (http://www.insect-genome.com/data/detail.php?
id=7) (Yin et al., 2014), and basing on the homology of AQPs,
the above species all could possess the water-selective AQPs.
Therefore, Drip and Prip are very important to maintain the
balance of water in insect.

Otherwise, some studies suggested that AQPs played an
important role in the physiological functions of insect (Goto
et al., 2011; Benoit et al., 2014b; Fabrick et al., 2014; Drake et al.,
2015). For example, freeze tolerance of insects was related to the
ability to remove water from cells by AQPs (Philip et al., 2011).
The removal of water from the cells could suspend metabolic
processes or avoid damaging ice crystal formation (Spring et al.,
2009). Freeze tolerance also needed to accumulate glycerol in the
cells, a role admirably suited to the aquaglyceroporins (Spring
et al., 2009). Down regulation of AQPs in Aedes aegypti enhanced
mosquito desiccation resistance (Drake et al., 2015). The female
tsetse flies of Glossina morsitans morsitans have been studied
to elucidate the role of AQPs in heat tolerance (Benoit et al.,
2014a,b).

The striped stem borer, Chilo suppressalis (Walker) (Insecta:
Lepidoptera: Pyralidae), an important rice pest widely distributed
in Asia, has caused significant damage to rice crops in China,
especially to hybrid rice varieties in recent years. In the
district of Yangzhou (32.23◦N, 119.26◦E), Jiangsu province,

China, C. suppressalis has two complete and a partial third
generation each year, and the larvae enter facultative diapause
in winter (Lu et al., 2013). According to our studies, in March
of 2010, field-collected larvae could survive at −21oC (Lu
et al., 2012). Overwintering larvae of C. suppressalis could
acquire freeze tolerance (Tsumuki and Hirai, 2007). Some studies
demonstrated AQPs might play very important role in the cold
tolerance of C. suppressalis (Izumi et al., 2006, 2007). However,
they did not further study any aquaporin gene. It is well-known
that C. suppressalis need very high humidity condition in the life
cycle (Shang et al., 1979; Lu et al., 2014), and AQPs may help to
maintain water homeostasis.

Thus, in this paper we firstly described the characteristics
of C. suppressalis Drip1 (CsDrip1), and assayed the abundance
of CsDrip1 in different tissues or organs and developmental
stages. Secondly, in order to understand the CsDrip1 regulation
under different humidities, the CsDrip1 mRNA levels of
different developmental stages and sexes of C. suppressalis were
investigated under different humidities. Moreover, in order to
understand the relationship between CsDrip1 regulation and
temperature, we also studied the expression patterns of CsDrip1
mRNA under various temperatures. Last but not the least, to
further demonstrate the functions of CsDrip1, functional oocyte
swelling assays were executed by water and three kinds of solutes.
These studies will help us understand the role of AQPs in
C. suppressalis, and also may provide insights in developing
strategies for the control of this pest.

MATERIALS AND METHODS

Insects
The population of C. suppressalis was collected from the suburb
of Yangzhou (32.39◦N, 119.42◦E). The rice stem borers were
reared in an environmental chamber at 28± 1◦C, 16:8 (L: D) and
RH= 70± 5% (Shang et al., 1979).

Cloning and RACEs
Total RNA of the fifth instar larva was extracted by the SV Total
RNA Isolation System (Promega Z3100) combined with DNase
digestion to eliminate DNA contamination. Total cDNA was
synthesized by oligo(dT)18 primer (TaKaRa). Degenerate primers
DP-F and DP- R (Table 1) were used to amplify the partial
segments of AQP. The full-length cDNA of the CsDrip1 gene was
determined using 5′- and 3′-RACE (SMART RACE, Clontech).
The primers used (VA and VB) were shown in Table 1. The full
length sequence of CsDrip1 was confirmed by the template of
RACE 5′ cDNA.

Sample Preparation
The rice stem borers were reared successively to the third
generation in the seedlings. Then, the egg masses, the first,
second, third, fourth, fifth instar larvae, pupae (male and female),
and 1-day adults (male and female) were randomly selected for
the experiment. Each experiment was repeated four times. The
fifth instar deep diapausing larvae of C. suppressalis collected
from rice stubble were anesthetized on ice before dissection.
Heads (HE), epidermis (EP), fat body (FB), foregut (FG), midgut
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TABLE 1 | Primers used in this study.

Gene Primer

name

Primer

sequences (5′
→ 3′)

Tm

(◦C)

Length

(bp)

RT-PCR

CsDrip1 F CACATCAAYCCMGCBGTCAC 431

R GGNCCCRCCCARTAMACCCA

RACE PCR

CsDrip1 3′ CCACGAAGACAGCACCAACCGCAAGA 68.0 666

variant A 5′ CCTTCATGCGGCTAACGTACTCCT 68.0 812

CsDrip1 3′ CCTCCATCACCCGTGCTCGTTTT 68.0 757

variant B 5′ TGGCAGCAGCAGTGGGCTCGTTG 68.0 1093

FUNCTIONAL ASSAYS

CsDrip1 F TCAACTAGTGCCACCATGAAAACGGATT

ACGCTGT

774

R TCAGCGGCCGCTTAGAAGTCATAGG

AGCCGC

QPCR

CsDrip1 F GTGGATGAGATGCAGAAAAGGA 59.4 120

R AAGCGATGTCAGCACAAAGGT

H3 F CTGCACCAAGCACTGGTGGA 56.0 184

R TAGCGGCGGACTGGAAACG

EF1 F AAAATGGACTCGACTGAACCCC 56.6 137

R TCTCCGTGCCAACCAGAAATA

18S F GTGATGGGACGAGTGCTTTTATT 62.5 258

R GCTGCCTTCCTTGGATGTGG

ACTIN F AAAGAAACAGCAAAAGTCGGGG 56.0 243

R GTTCAATGGAGGTTCGGTAAGTAAA

TUB F GAGGGCATGGACGAGATGGA 60.4 178

R ACGACGGTACGAGTATGACGGG

UBI F TCACCGACAGCAAACCAGACT 60.2 219

R GGAAGAAAACACCCCCCTCATATA

The qPCR primers used in this study were validated.

(MG), hindgut (HG), Malpighian tubules (MT) and haemocytes
(HC) were collected and rinsed with 0.9% NaCl. The samples
were frozen immediately in liquid nitrogen and stored at −70◦C
until the experiment.

Temperature Stress Treatment
The larvae used in experiments were all 5th instars of similar
body size and were assigned randomly to each experimental
group. Each group of larvae was confined individually in glass
tubes (relative humidity, 90 ± 10%) and exposed to a given
temperature (including −11, −9, −3, 0, 27, 36, 39, and 42◦C)
for 2 h in a constant temperature incubator (DC-3010, Jiangnan
equipment). The larvae were recovered at 27 ± 1◦C for 2 h, and
the survived larvae were frozen in liquid nitrogen and then stored
at−70◦C.

Humidity Treatment
The third instar larvae, fifth instar larvae, pupae (male
and female) and adults (male and female) were treated in
humidity chamber (HTC-100, SANTN, Shanghai, China) at
27◦C, respectively under four different relative humidity levels

(RH) (25, 50, 75, and 95%) for 24 h, and additionally the
third instar larvae were treated for 12 h. Each treatment was
replicated 30 times, and each replicate consisted of one insect.
The humidities chosen were based on a prior pilot experiment.
At the same time, survival in each treatment was assessed, and
the survived larvae were treated as above.

Functional Oocyte Swelling Assays
The vector construction followed previously reported protocol
(Chang et al., 2015). Firstly, the entire coding region of CsDrip1
was amplified with a high-fidelity polymerase (PrimeSTAR R©,
HS DNA polymerase. TaKaRa, Tokyo, Japan) using primers
with Kozak sequence and restriction enzyme cutting sites (SpeI
and NotI). And the PCR products were digested with SpeI and
NotI, and subcloned into pT7Ts vector (Invitrogen, Carlsbad,
California, USA), and then plasmids were fully linearized with
SmaI. The cRNAs of CsDrip1 were synthesized in vitro using
mMESSAGE mMACHINE T7 kit (Ambion, Austin, TX, USA).
Purified cRNAs were resuspended in nuclease-free water at a
concentration of 0.2 µg/µl and stored at−80◦C.

Unfertilized stage V and VI oocytes of Xenopus were
defolliculated with 2 mg/ml collagenase I (GIBCO, Carlsbad,
CA) in washing buffer (96mM NaCl, 2mM KCl, 5mM MgCl2,
and 5mM HEPES [pH 7.6]) for about 1 h at room temperature
(26◦C). After being cultured overnight at 18◦C, oocytes were
microinjected with 27.6 nl CsDrip1 cRNA (5.52 ng) and 27.6 nl
nuclease-free water as control. After injection, oocytes were
incubated for 3 days at 18◦C in 1X Ringer’s solution (96mM
NaCl, 2mM KCl, 5mM MgCl2, 0.8mM CaCl2, and 5mM
HEPES [pH= 7.6]) supplemented with 5% dialysed horse serum,
50mg/ml tetracycline, 100mg/ml streptomycin and 550mg/ml
sodium pyruvate.

Osmotic water permeability (Pf) was measured as previously
described (Kataoka et al., 2009a,b). Oocytes was transferred to a
3-fold dilution of 1X Ringer’s solution with distilled water and
images were acquired of the oocyte silhouette every 15 s through
a CCD camera DP-72 (Olympus, Tokyo, Japan) attached to a
Olympus SZX16 stereomicroscope up to 5min. The osmotic
water permeability (Pf) was calculated as in previous reports
(Zhang et al., 1990; Preston et al., 1992; Kataoka et al., 2009a,b) by
the following equation: Pf = V0×d(V/V0)/dt/[S×Vw×(Osmin-
Osmout)] where V0 is the oocyte initial volume (V0 = 9 ×

10−4 cm3), S is the oocyte surface area (S= 0.045 cm2), Vw is the
molecular volume of the water (Vw = 18 cm3/mol) and Osmin

is 202 mmol·kg−1 and Osmout is 59 mmol·kg−1. Relative oocyte
volume (V/V0) was calculated from the relative area (A/A0) in
the focal plane, V/V0 = (A/A0)3/2.

Oocytes were transferred in an isotonic solution which
containing 140mM of solutes (glycerol, trehalose or urea) for
solutes transport assays. To maintain the osmotic equilibrium,
the increase in oocyte volume corresponds to the water influx
accompanying the solute uptake. The volume changes were
recorded for 5min in the same way as described above. Apparent
solute permeability was calculated from the equation: Psol =
[d(V/V0)/dt] × (V0/S) (LeCahérec et al., 1996a,b; Duchesne
et al., 2003). Water and solute permeabilities were performed at
least for nine different Xenopus oocytes.
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Quantitative Real-Time PCR (qPCR)
Analysis
Total RNA was extracted by the SV Total RNA Isolation
System (Promega Z3100), followed by DNase treatment to
eliminate DNA contamination. The integrity of the RNA in
all samples was verified by comparing the ribosomal RNA
bands in ethidium bromide-stained gels. RNA sample purity
was estimated using spectrophotometric measurements at 260
and 280 nm (Eppendorf BioPhotometer plus). Total RNA (500
ng) was reverse-transcribed into first-strand cDNA using the
SuperScript II reverse transcription (RT)-PCR kit (Bio-Rad). The
volume of reaction mixture was 20 µl. Each reaction mixture
contained 10 µl of iTaq Universal SYBR Green supermix (2x)
(Bio-Rad), 1 µl of each of gene specific primers (Table 1),
2 µl of cDNA templates, and 6 µl ddH2O. Reactions were
carried out on a CFX-96 real-time PCR system (Bio-Rad).
The amplification efficiencies of the target and reference genes
were similar in this study. Therefore, the quantity of CsDrip1
mRNA was calculated using the 2−11Ct method (Nolan et al.,
2006; Schmittgen and Livak, 2008; Bustin et al., 2009). Relative
expression levels of CsDrip1 in different tissue or organs were
normalized with histone 3 (H3), elongation factor 1 (EF1)
for different developmental stages and temperature stress (Xu
et al., 2017). And previous tests of stability of the reference
gene demonstrated 18S rRNA for the third larvae, ACTIN
for the fifth larvae, TUB for the male pupae, UBI for the
female pupae and male adults, and EF1 for the female adults
under different humidity was most suitable respectively, and
corresponding reference genes were selected to normalize (data
not shown). Following qPCR, the homogeneity of the PCR
products was confirmed by melting curve analysis, which was
read 5 s per 0.5◦C, increment from 65◦C to 95◦C. Every treatment
included four biological replicates, and every repeat was run in
triplicate.

Bioinformatic Analysis
The open reading frames (ORFs) were identified with the
aid of the ORF Finder software (http://www.ncbi.nlm.nih.
gov/gorf/gorf.html). The deduced amino acid sequences were
aligned using ClustalX software. Sequence analysis tools of
the ExPASy Molecular Biology Server of Swiss Institute of
Bioinformatics, including Translate, Compute pI/MW, Blast
and TMHMM, were used to analyze the deduced CsDrip1
protein sequence. Phosphorylation and kinases sites were
predicted using NetPhos 2.0 and NetPhosK 1.0, respectively
(Blom et al., 1999, 2004). Amino acid sequences were used
to estimate phylogeny with the neighbor-joining, minimum
evolution, maximum likelihood and maximum parsimony
methods. Phylogenetic trees were constructed with 1000
bootstrap replicates using MEGA version 7.0 (Kumar et al.,
2016).

Computational Molecular Modeling
Homology models were generated using Protein
Homology/analogy recognition engine V 2.0 (http://www.
sbg.bio.ic.ac.uk/~phyre2/html) (Kelley and Sternberg, 2009).
Briefly, the CsDrip1 amino acid sequence was aligned by the

Phyre2, and the best model of bovine AQP1 X-ray A∗ structure
(PDB ID: 1J4N) was used for modeling analyses (Sui et al., 2001).
The Chimera Tool was used to visualize the three-dimensional
coordinates for the atoms of the model (Pettersen et al., 2004).

Statistical Analysis
The data were tested for normality using the Shapiro-Wilk’s
test. Homogeneity of variances among different groups was
evaluated by the Levene test. All the data was log-transformed
when necessary. Then, the significance of differences between
treatments was identified with either a Tukey’s test (Homogeneity
of variances) or Dunnett’s T3 test (Non-homogeneous) for
multiple comparisons. In the experiments with two groups,
significant differences were determined by Student’s t-test. The
data were analyzed using SPSS16.0 software, and denoted as
means± SE (standard error) (Pallant, 2005).

RESULTS

Isolation, Cloning, Sequencing, and
Structure of CsDrip1
Degenerate primers based on conserved regions from several
insect aquaporins were used to amplify a 431 bp partial fragment
from C. suppressalis cDNA. The cloned fragment was sequenced,
and a BLAST analysis of its deduced amino acid fragment
revealed apparent sequence homology with insect Drip1 (data
not shown). The 1,416 and 1,825 bp full-length of variant A
and variant B, including the UTRs was obtained, respectively
through 5′and 3′ RACE (GenBank accession no. JQ011314 and
JQ011315). Two Drip1 types of C. suppressalis (CsDrip1_v1 and
CsDrip1_v2) were obtained in the present study. Variant A
and variant B possessed the same open reading frame (ORF)
of 258 amino acids with a predicted molecular weight of 26.9
kDa and an isoelectric point of 6.5. The protein sequence
that we referred to as CsDrip1 possessed the hallmarks of the
aquaporin family, including the classical “NPA” boxes (residue
89–91; residue 206–208) and 6 putative transmembrane regions
(Figures 1A,B). According to the hydropathy analysis, CsDrip1
contained cytoplasmic N- and C-terminal domains and the C-
terminus ended with “SYDF”. In the amino acid sequence, seven
potential phosphorylation sites (Tyr5, Ser15, Ser16, Ser176, Ser210,
Ser250, and Ser253) and three potential protein kinase C-specific
sites (Thr3, Ser21, Ser255) were also identified (Figures 1A,B).
To investigate the potential structure-function relationship of
CsDrip1, we generated its homology model with Phyre using
bovine aquaporin-1 (1J4N) as a template (Sui et al., 2001). The
structure of CsDrip1model was very similar to that of aquaporin-
1 (confidence, 100% statistically and identity, 36% based on
sequence alignment). CsDrip1 models showed two tandem
structural repeats, each consisting of three transmembrane
helices (TM1-3 and TM4-6) and a short α-helix in loops B and
E, each containing an NPAmotif predicted to line one side of the
pore (Figure 1C), which was called the “aquaporin fold” (Murata
et al., 2000). Conserved NPAs formed the canonical structure
in the center of the pore (Fu et al., 2000), and the structural
model provided the defining force that orients water as it passed
through the midpoint of the channel (Hoa et al., 2009). Residues
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FIGURE 1 | Sequence analysis, predicted topology and structure of CsDrip1. (A,B) Nucleotide and deduced amino acid sequence of CsDrip1 variant A (JQ011314)

and variant B (JQ011315). Six transmembrane domains (TMs) are also shown by the red underline and C-terminal “SYDF” sequence found in insect AQPs with dark

underline. The NPA boxes are shown with gray highlight. Orange indicates amino acids residues constituting the ar/R constriction region. Blue dots and green dots,

respectively are potential phosphorylation sites and protein kinase C-specific sites. (C) Homology modeling of the CsDrip1 is compared with bovine aquaporin-1 (PDB

ID: 1J4N) as template using Phyre2. Intracellular (B,D) and extracellular (A,C,E) loops and transmembrane helices are shown (TM1 in blue, TM2 in red, TM3 in yellow,

TM4 in green, TM5 in purple, TM6 in orange). (D) The structure depicted is from the extracellular side of the membrane. The classical NPA motifs are shown in gray

sphere, and Ar/R selectivity residues regions (Phe-69, His-194, Ser-203, and Arg-209) are shown in gray stick.

that comprised the Ar/R constriction (Phe69, His194, Ser203, and
Arg209) were found in CsDrip1 and predicted to establish water
selectivity (Figures 1C,D).

Phylogenetic Analysis
We used CLUSTALX and MEGA 7.0 phylogenetic analysis
to compare CsDrip1 with other insect aquaporins. Because
neighbor-joining, minimum evolution, maximum likelihood,
and maximum parsimony methods constructed the similar
phylogenetic tree, Figure 2 only illustrated the phylogenetic tree
constructed by the neighbor joining method. The result exhibited
the phylogenetic tree include two clusters: Drip1 and Prip.
And CsDrip1 (C. suppressalis Drip1) was most closely related
to BmDrip1 (B. mori Drip1) and DpDrip1 (Danaus plexippus
Drip1), to which they were 79% identical at the amino acid

level. Our phylogenetic tree showed BmDrip1, DpDrip1, and
CsDrip1 belonged to the same group, which was water-specific
Drip subfamily. All the Lepidoptera except BmPrip (B. mori Prip)
fell into the well-supported cluster, which was consistent with
a previous publication about BmPrip classification in the Prip
subfamily (Azuma et al., 2012).

Functional Assay
In order to confirm further that CsDrip1 was a water-selective
aquaporin, the permeability of CsDrip1 to water, glycerol,
trehalose and urea transport was performed using the Xenopus
oocyte expression system, respectively. Compared to control
oocytes, oocytes expressing CsDrip1 showed an 11-fold increase
in the osmotic water permeability coefficient (Pf) (N = 10)
(Figure 3A), and as a result of continuous uptake, even some
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FIGURE 2 | Neighbour-joining phylogenetic tree showing the Chilo suppressalis Drip1 (JQ011314 and JQ011315) with respect to other insect AQPs. BmDrip1

(Bombyx mori, AB178640), CmDrip1 (Cydia molesta, AB469882), AaDrip1 (Aedes aegypti, AF218314), PhDrip1 (Pediculus humanus, DS235154), TcDrip1 (Tribolium

castaneum, CM000285), LlDrip1 (Lutzomyia longipalpis, EU124628), AgDrip1 (Anopheles gambiae, AAAB01008984), CfDrip1 (Coptotermes formosanus,

AB433197), HieDrip1 (Haematobia irritans exigua, U51638), CvDrip1 (Cicadella viridis, X97159), DpDrip1 (Drosophila pseudoobscura, CM000071), BtDrip1 (Bemisia

tabaci, EU127479), GmDrip1 (Glossina morsitans, EZ422826), CqDrip1 (Culex quinquefasciatus, DS232465), ApDrip1 (Acyrthosiphon pisum, EU925136), D.

plexippusDrip1 (Danaus plexippus, EHJ75085), EoDrip1 (Ectropis oblique, AMO02270.1), SlDrip1 (Spodoptera litura, AGT50942.1), ObDrip1 (Operophtera brumata,

KOB73271.1), PrDrip1 (Phormia regina, BAM26200.1), MdDrip1 (Musca domestica, AIB09141.1), LhDrip1 (Lygus hesperus, AHI85743.1), EsPrip (Eurosta solidaginis,

FJ489680), BgPrip (Blattella germanica, FR744897), CfPrip (Camponotus floridanus, GL435707), BaPrip (Belgica Antarctica, AB602341), PvPrip (Polypedilum

vanderplanki, AB281619), and BmPrip (Bombyx mori, AB458833). Numbers on the branches are the bootstrap values obtained from 1,000 replicates (only bootstrap

values >50 are shown).

tested oocytes broke. For glycerol, trehalose and urea uptake in
X. laevis oocytes expressing CsDrip1, no significant (p > 0.05)
uptakes were observed in oocytes expressing CsDrip1, and these
oocytes showed a slight shrinkage. For example, the Pf ofCsDrip1
oocytes in glycerol, trehalose and urea was 5.031e−6 ± 5.766e−7

cm/s (N = 9), 5.670e−6 ± 6.0758e−7 cm/s (N = 10), and 5.029e−6

± 3.542e−7 cm/s (N = 11), respectively (Figures 3B–D). These

results clearly indicated that CsDrip1 was a specific water-
selective aquaporin.

Expression of CsDRIP1 in Tissues or
Organs of C. Suppressalis Larvae
Real-time PCR verified that CsDrip1 mRNA was expressed
in head, epidermis, fat body, foregut, midgut, hindgut, and
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FIGURE 3 | Functional assay of Chilo suppressalis aquaporin (CsDrip1). (A) Water permeability of CsDrip1. (B) Glycerol permeability of CsDrip1. (C) Trehalose

permeability of CsDrip1. (D) Urea permeability of CsDrip1. The graphs of oocytes assayed in the experiments were indicated above each bar. Error bars represented

SEM (n ≥ 9). Student’s t-test was performed to find means that were significantly (p < 0.05) different from the water-injected control oocytes (indicated with asterisk).

Malpighian tubules [F(6, 14) = 4.441, P = 0.010], but there
were not expression level in haemocytes. The highest level of
CsDrip1 mRNA was observed within hindgut, which was 19.23-
fold higher than that in the foregut. And CsDrip1 mRNA in
Malpighian tubules also exhibited the second high abundance.
Interestingly, the head was one of the organs that expressed a high
level of CsDrip1 mRNA (Figure 4).

Expression of CsDRIP1 in Developmental
Stages of C. suppressalis
We investigated the expression patterns of CsDrip1 transcripts
over the life cycle of C. suppressalis, including eggs, larvae (1st,
2nd, 3rd, 4th, and 5th instars larvae), pupae (male and female)
and adults (male and female). The results demonstrated that the
highest mRNA level of CsDrip1 was observed in the third instar

larvae, which was 117.89-fold higher than that of male pupae,
which followed by the first instar larvae, male adults, and egg
mass. CsDrip1 transcript of the male pupae was the least. In
addition, CsDrip1 mRNA exhibited significantly different level
in male pupae and male adults than those of female pupae
and female adults, respectively [F(9, 19) = 23.954, P < 0.001]
(Figure 5).

Expression of CsDrip1 under Various
Temperatures
Although the survival rate of larvae of C. suppressalis only
reached to 55.56% at −11◦C and100% at 42◦C, respectively
(Lu et al., 2014), CsDrip1 mRNA in larvae exposed to
low temperatures for 2 h was not different significantly
[F(7, 16) =39.957, P = 0.560] (Figure 6). However, CsDrip1
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FIGURE 4 | Relative mRNA expression levels of the CsDrip1 gene in different

tissues (organs) of the Chilo suppressalis. HG, hindgut; MG, midgut; FG,

foregut; HC, haemocytes; MT, Malpighian tubules; EP, epidermis; FB, fat body

and HE, Heads. Values are denoted as the mean ± SE. Significant differences

are indicated as P < 0.05.

FIGURE 5 | Relative mRNA expression levels of the CsDrip1 gene in different

developmental stages of the Chilo suppressalis. E, eggs; L1, the first instar

larvae; L2, the second instar larvae; L3, the third instar larvae; L4, the fourth

instar larvae; L5, the fifth instar larvae; MP, male pupae; FP, female pupae; MA,

male adults; and FA, female adults. Values are denoted as the mean ± SE.

Significant differences are indicated as P < 0.05.

displayed a different expressional pattern under heat stress. For
example, CsDrip1 mRNA reached maximum at 36◦C, which was
3.75-fold of that at control temperature (27◦C) [F(7, 16) =39.957,
P < 0.001]. Subsequently, the abundance of CsDrip1 mRNA in
larvae decreased by the elevated temperature (Figure 6).

Expression of CsDrip1 in Developmental
Stages of C. suppressalis under Different
Humidities
According to prior experiments, C. suppressalis could tolerate
these humidity treatments. The expression levels of CsDrip1

FIGURE 6 | Relative expression levels of CsDrip1 gene in the Chilo

suppressalis under temperature stress. The larvae were exposed for −11◦C,

−9◦C, −3◦C, 0◦C, 27◦C, 36◦C, 39◦C, or 42◦C for 2 h. Values are denoted as

the mean ± SE. Significant differences are indicated as P < 0.05.

mRNA of the third instar larvae, fifth instar larvae, pupae (male
and female) and adults (male and female) of C. suppressalis
under different humidities have been determined. The results
demonstrated that after exposure of the third instar larvae,
fifth instar larvae, pupae (male and female) to 25–95% RH,
CsDrip1 mRNA levels were not significantly different from
each other [F(3, 12) = 1.309, P = 0.317; F(3, 8) = 1.285,
P = 0.324; F(3, 8) =3.453, P = 0.072; F(3, 8) = 0.964, P =

0.455] (Figures 7A–D). However, the CsDrip1 mRNA of female
and male adults exposed to different humidities was changed
significantly, and the CsDrip1 mRNA of female adults was up-
regulated remarkably, which was contrary to male adults [F(3, 8)
= 4.272, P = 0.045; F(3, 10) = 3.816, P = 0.047] (Figures 7E,F).

DISCUSSION

Water-selective aquaporins are integral membrane proteins
belonging to a large family of water channel proteins that assist
in rapid movement of water across cellular membranes. This
report was the first extensive analysis of Drip1 and its functions
in C. suppressalis, an important rice pest of Lepidoptera. We
isolated and characterized the first AQP from the C. suppressalis
(CsDrip1). Deduced amino acid sequence of CsDrip1 resembled
the features of other insect Drip1 (Ibanez et al., 2014). For
example, two inverted hemi-helices on loops B and E that
project opposing NPA motifs, which regulate the conductance
of water (Wree et al., 2011). However, some insect AQPs lacked
the first NPA motif, lost the ability to transport water but
possessed the capacity of the glycerol transporter (Liu et al.,
2016). Additionally, it had seven potential phosphorylation sites
(Tyr5, Ser15, Ser16, Ser176, Ser210, Ser250, and Ser253), and three
potential protein kinase C (PKC) specific sites (Thr3, Ser21, and
Ser255) which somewhat contrasted to those of B. mori Drip1
(BmDrip1) that had only one PKC specific sites (Thr6) and one
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FIGURE 7 | Relative expression levels of CsDrip1 gene in the Chilo suppressalis under humidity treatments. (A) The third instar larvae treated by 25, 50, 75, and 95%

for 12 h, respectively. (B) The fifth instar larvae treated by 25, 50, 75, and 95% for 24 h, respectively. (C) The female pupae treated by 25, 50, 75, and 95% for 24 h,

respectively. (D) The male pupae treated by 25, 50, 75, and 95% for 24 h, respectively. (E) The female adults treated by 25, 50, 75, and 95% for 24 h, respectively.

(F) The male adults treated by 25, 50, 75, and 95% for 24 h, respectively. Values are denoted as the mean ± SE. Significant differences are indicated as P < 0.05.

tyrosine kinase phosphorylation site (Tyr250) (Kataoka et al.,
2009a). Although CsDrip1 variant A and variant B possessed
the same ORF, the full-length sequence of variant A was 409 bp
shorter than variant B (Figures 1A,B). Similar phenomenon was
found in Prip ofAnopheles gambiae, which included two variants,
but two variants encoded different amino acids (Tsujimoto et al.,
2013). It was also found that in Belgica antarctica there were three
types of Prip (variants A-C) derived from the same gene, which
was suggested to be due to alternative splicing (Goto et al., 2011).
Hydrophobicity and structural prediction indicated that CsDrip1
possessed the conserved feature of water-specific AQPs. The pore

of vertebrate AQPs is restricted by four residues (Phe58, His182,
Cys191, and Arg197) that comprise the Ar/R constriction site (Sui
et al., 2001; Horsefield et al., 2008; Hoa et al., 2009). Although
the Ar/R constriction residues are generally conserved, Cys191 in
vertebrate AQP is replaced by serine (Ser203 in TM5) in CsDrip1
(Figures 1C,D). Further comparative analysis of the vertebrate
and insect AQPs revealed that either alanine or serine in all
known insects Drip1 was substituted for Cys191 in vertebrate
AQP1, and all Drip1 from Lepidoptera had a serine residue.

Aquaporins are most highly expressed in tissues where
water movement is frequent and/or physiologically important.
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CsDrip1 transcripts showed specific expression patterns in
various tissues (Figure 4). Water homeostasis in insects is
achieved by a two-part system composed of Malpighian tubules
and hindgut, and Malpighian tubules are the primary excretory
and osmoregulatory organ in insects, analogous to the vertebrate
renal tubules (Chawn and Nicolson, 2004). CsDrip1 mRNA
was expressed abundantly in hindgut and Malpighian tubules,
which was similar to the results observed in several other insects
(Kambara et al., 2009; Kataoka et al., 2009a,b; Drake et al., 2010,
2015; Goto et al., 2011; Liu et al., 2011; Nagae et al., 2013; Fabrick
et al., 2014). Fat body was one of the most cold-resistant tissues
in the C. suppressalis because glycerol was accumulated in the
fat body of cold acclimated and diapause larvae (Izumi et al.,
2006, 2007). And our results revealed that CsDrip1 mRNA in fat
body was high (Figure 4). However, low abundance or absence
of Drip1 in the fat body had also been observed in several insect
species (Kambara et al., 2009; Liu et al., 2011, 2013; Philip et al.,
2011). Fat body was the site of glycerol biosynthesis (Kukal
et al., 1988), which likely requires other kind of aquaporins,
aquaglyceroporins for glycerol transportation as suggested in B.
mori andG. molesta (Kataoka et al., 2009a,b). Therefore, CsDrip1
in the diapausing larvae of C. suppressalis couldn’t contribute its
cold hardiness. In summary, an unexpected diversity of AQPs
was found in insect, and different AQPs contributed various
functions. For example, there were six AQP genes in Ae. Aegypti.
However, AQP 1 and AQP 2 were the strict water channels,
which raised the of water permeability of midgut andMalpighian
tubules. And AQP 5 demonstrated significant solute permeability
for trehalose, which was important for insect temperature and
dehydration tolerance (Drake et al., 2010, 2015; Van Ekert et al.,
2016).

The levels of CsDrip1 transcript are high at early stages of
development, and the expression of CsDrip1 was quite dynamic
throughout development (Figure 5).CsDrip1mRNAwas highest
in the third larvae of C. suppressalis, which just entered into the
guzzled stage. The eggs of insect generally require high moist
environment condition for hatching. High abundance ofCsDrip1
mRNA in eggs of C. suppressalis was propitious to maintain the
water balance of the embryonic development. However, BtDrip1
transcripts were most highly expressed in 2nd instar nymphs and
least present in eggs (Mathew et al., 2011). AgDrip1 mRNA was
higher in female adults than that in male adults (Liu et al., 2011),
whereas CsDrip1 mRNA in male adults was significantly higher
than in female adults. In addition, CsDrip1 mRNA was also
greater in adults than that in pupae (Figure 5). We speculated
that CsDrip1 expression might be related to reproduction.

When exposed to extreme temperatures, insects may respond
in different ways: they can adopt behaviors to avoid or escape
extreme temperatures, or they may regulate various proteins
in response to adverse temperatures (Tursman et al., 1994;
Rinehart and Denlinger, 2000; Tyshenko et al., 2005; Huang
et al., 2007; Cui et al., 2010). In E. solidaginis by increasing
the number of AQPs, cells likely improved their ability to
rapidly redistribute water, better protecting themselves against
the build-up of osmotic pressures across the membrane during
freezing in winter (Philip et al., 2008, 2011). In Megaphorura
arctica, up- or down-regulation of AQPs were contributed to

exploit cryoprotective dehydration to enhance its cold tolerance
(Clark et al., 2009). The AQPs of B. Antarctica also play very
important roles in its freeze tolerance (Yi et al., 2011). And the
studies suggested that the aquaporin might contribute to the
cold tolerance of C. suppressalis (Izumi et al., 2006, 2007). The
CsDrip1 might play the important role in the cold hardiness and
diapause initiation of C. suppressalis (Lu et al., 2013). However,
the CsDrip1 transcript in our studies was not up-regulated
significantly under low temperature stress, but the CsDrip1
transcript increased significantly under high temperature stress
(Figure 6). At the same time, our results confirm that CsDrip1 is
a strict water channel. Therefore, C. suppressalis could utilize the
up-regulation of CsDrip1 to exchange water in order to escape
heat stress, but survival at low temperature they might largely
depend on the ability of cells to accumulate the cryoprotectants
among cellular compartments. Maybe, other AQPs existing in C.
suppressalis could be coordinated to resist to the low stress.

Although the Xenopus oocyte expression system clearly
demonstrated that CsDrip1 allowed water, but not glycerol,
trehalose or urea, to pass through the cell, CsDrip1 mRNA
of the third instar larvae, fifth instar larvae, and pupae (male
and female) of C. suppressalis after exposure to 25–95% RH
was not significantly regulated. However, CsDrip1 mRNA in
female adults was greatly induced while expression of CsDrip1
mRNA in male adults was suppressed (Figure 7). Our data are
inconsistent with that from a previous study in C. pipiens, which
found that Prip mRNA level was significantly down-regulated in
response to a low relative humidity (Liu and Piermarini, 2017).
In the ovary of B. antarctica under water stress, no significant
differences were observed in the levels of BaPrip mRNA (Goto
et al., 2011). In response to dehydration, expression of PvDrip1 of
Polypedilum vanderplanki larvae was greatly induced (Kikawada
et al., 2008). Therefore, when confronted with water stress,
different kinds of insects could possess different strategies by
regulating different AQPs.

It is widely known that most insects possess multiple AQP
genes. At least seven putative AQPs in A. gambia, six in Ae.
Aegypti, eight in Drosophila, five in Lygus hesperus, eight in
Bemisia tabaci, and seven in Triboleum castaneum had been
identified (Adams et al., 2000; Holt et al., 2002; Drake et al., 2010;
Fabrick et al., 2014; Van Ekert et al., 2016). And three AQPs in
B. mori and two in G. molesta from Lepidoptera also had been
isolated (Kataoka et al., 2009a,b; Azuma et al., 2012). The fat
body of C. suppressalis could contain aquaglyceroporins related
to the diapause and cold hardness (Izumi et al., 2006, 2007).
Therefore, it’s significant to identify and further analyse the other
AQPs in C. suppressalis. We expect that the research of CsAQPs
will be key in revealing the plot underlying mechanism of
development, temperature tolerance, diapause and distribution
of C. suppressalis in the future.
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