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Multimodal Fingerprints of Resting 
State Networks as assessed by 
Simultaneous Trimodal MR-PET-
EEG Imaging
N. J. Shah1,2,4,6,7, J. Arrubla1,3, R. Rajkumar   1,3, E. Farrher1, J. Mauler1, E. Rota Kops1,  
L. Tellmann1, J. Scheins1, F. Boers1, J. Dammers   1, P. Sripad1, C. Lerche1, K. J. Langen1,4,5,  
H. Herzog1 & I. Neuner1,3,4

Simultaneous MR-PET-EEG (magnetic resonance imaging - positron emission tomography – 
electroencephalography), a new tool for the investigation of neuronal networks in the human brain, is 
presented here for the first time. It enables the assessment of molecular metabolic information with 
high spatial and temporal resolution in a given brain simultaneously. Here, we characterize the brain’s 
default mode network (DMN) in healthy male subjects using multimodal fingerprinting by quantifying 
energy metabolism via 2- [18F]fluoro-2-desoxy-D-glucose PET (FDG-PET), the inhibition – excitation 
balance of neuronal activation via magnetic resonance spectroscopy (MRS), its functional connectivity 
via fMRI and its electrophysiological signature via EEG. The trimodal approach reveals a complementary 
fingerprint. Neuronal activation within the DMN as assessed with fMRI is positively correlated with the 
mean standard uptake value of FDG. Electrical source localization of EEG signals shows a significant 
difference between the dorsal DMN and sensorimotor network in the frequency range of δ, θ, α and 
β–1, but not with β–2 and β–3. In addition to basic neuroscience questions addressing neurovascular-
metabolic coupling, this new methodology lays the foundation for individual physiological and 
pathological fingerprints for a wide research field addressing healthy aging, gender effects, plasticity 
and different psychiatric and neurological diseases.

The human brain is a very efficient, fast-acting and complex network. A large number of neuronal subnet-
works have their own dedicated task and function but continuously share information with each other on a 
millisecond-by-millisecond basis. One of the most robust neuronal networks is the so-called default mode net-
work (DMN). The canonical DMN comprises precuneus, anterior cingulate cortex (ACC), posterior cingulate 
cortex (PCC), medial prefrontal cortex (MPfC) and lateral parietal inferior gyri (LPIG)1–3. It is thought to charac-
terize basal neural activity4, 5 and has been linked to self-referential thought, introspection and integration of cog-
nitive and emotional processing2. The DMN shows strong activity during rest, as well as rapid deactivation during 
externally directed tasks6. The DMN is also believed to represent an introspectively oriented mode of the mind, 
which provides readiness and alertness to changes in the external and internal environment1. Functional connec-
tivity within the nodes of the default mode network has a high impact on task performance7. However, the energy 
metabolism of the DMN and its relationship to excitatory and inhibitory neurotransmitters is an open and impor-
tant question. This is a salient point that needs to be urgently addressed since in disease the hubs of the DMN 
are most vulnerable8 and their energy metabolism might serve as a key biomarker for early disease detection and 
treatment monitoring. For this diagnostic approach the coupling between neuronal activity, energy consumption, 
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excitatory/inhibitory neurotransmitters and oscillations needs to be investigated. Thus far, such investigations 
have only been feasible in sequential measurement procedures and are therefore significantly confounded by the 
fact that data from each modality are recorded under different physiological conditions. For clinical routine, three 
different procedures at separate timepoints on compromised patients requiring urgent treatment are unlikely to 
gain traction in order to bridge the gap between research in basic neuroscience and clinical requirements.

Although fMRI is well-suited for the investigation of functional networks with high spatial resolution, it suf-
fers from limitations in the temporal domain. In order to record temporal patterns of neuronal activity, MRI is not 
the optimal tool. Neurophysiological measures such as electroencephalography (EEG) measure neuronal activity 
on a millisecond-by-millisecond basis. A simultaneous MR-EEG approach is technically feasible and unites the 
high spatial resolution of MRI with the high temporal resolution of EEG. The two main artefacts arising from 
EEG recordings in an MR-environment, the gradient artefact and the cardioballistic artefact or pulse artefact, can 
be removed by a combination of different algorithms and ultimately provide EEG data of sufficient quality for 
further analysis. One of the most salient features of cortical activity is the rhythmic fluctuation of large neuronal 
assemblies in synchrony9, 10. Such oscillations occur over a wide range of frequencies, depending on the behav-
ioural state of the individual11, 12. The “basic” activity of the resting state networks consumes up to 80% of the 
cerebral glucose13 and the corresponding glucose consumption can be assessed by FDG PET14. According to the 
work of Riedl and colleagues, increased local activity as measured by FDG-PET is accompanied by higher resting 
state connectivity as assessed by resting state fMRI14. However, Tomasi and colleagues have discussed whether 
brain regions demonstrating a high degree of functional connectivity are energy efficient and therefore reduce 
their consumption of glucose considerably as a result of this efficiency15. In order to investigate its metabolic pro-
file we studied the default mode network in comparison to the whole brain (this might be confounded by the mix 
of gray and white matter) and for replication on the network level to another, very stable resting state network, to 
the sensorimotor network.

By utilising a novel, simultaneous trimodal imaging approach, the fundamental pillars of neuronal activity 
such as glucose consumption, balance of inhibition/excitation and oscillations can be investigated simultaneously 
in humans; this is the first such report. In this pilot study we focus our investigation on the following research 
questions:

	 a)	 What is the relationship of the BOLD effect - assessed by resting state fMRI - and the metabolic activity 
measured with FDG-PET in the DMN in comparison to the sensorimotor network?

	 b)	 Given the high connectivity/central role of the DMN, is its metabolic activity as assessed via FDG-PET 
higher or lower in comparison to non-DMN regions/another functional network in the brain e.g. the sen-
sorimotor network?

	 c)	 Do biomarkers of microstructural tissue condition, such as mean diffusivity (MD) - measured by diffusion 
weighted imaging - differ between the DMN and the sensorimotor network?

	 d)	 Using single voxel spectroscopy to assess the GABA-to-creatine ratio, how does the most prominent inhib-
itory neurotransmitter, GABA, in the hubs of the DMN relate to i) the BOLD effect in the DMN and ii) to 
the metabolic activity in the DMN assessed via FDG-PET?

	 e)	 Using single voxel MR spectroscopy to assess the glutamate-glutamine to creatine ratio, how does the most 
prominent excitatory neurotransmitter, glutamate, in the hubs of the DMN relate to i) the BOLD effect in 
the DMN and ii) to the metabolic activity in the DMN assessed via FDG-PET.

	 f)	 Is there a significant difference in the source localized EEG data between the DMN and the sensorimotor 
network? Is there a specific relationship between a certain frequency range of the source localized EEG 
data with i) mean BOLD signal intensity ii) the metabolic activity assessed via FDG PET in the DMN.

Methods
Subjects.  In one single session per subject MRI, FDG-PET and EEG data were simultaneously recorded from 
11 healthy male volunteers (mean age = 28.6 years, SD = 3.4) in a 3 T hybrid MR-BrainPET system (Siemens, 
Erlangen, Germany). The study was approved by the Ethics Committee of the Medical Faculty of the RWTH 
Aachen University and the German administrative body for radiation exposure (Bundesamt für Strahlenschutz). 
All the methods were performed in accordance with the relevant guidelines and regulations. Prior written, 
informed consent was obtained from all subjects and the study was conducted according to the Declaration of 
Helsinki.

Trimodal Simultaneous Imaging Approach.  MR data acquisition.  The MR data acquisition protocol 
included the following imaging sequences: magnetization-prepared rapid acquisition gradient-echo (MP-RAGE), 
ultra-short echo time (UTE), single-voxel spectroscopy, EPI resting state, and diffusion tensor imaging. This pro-
tocol was established at the hybrid MR-PET system to optimize simultaneous acquisition efficiency. The detailed 
parameters for each sequence are listed below.

Anatomical images were acquired for every subject by means of an MP-RAGE sequence (TR = 2250 ms, 
TE = 3.03 ms, field-of-view (FOV) 256 × 256 × 176 mm3, voxel size = 1 × 1 × 1 mm3, flip angle = 9°, 176 sagittal 
slices and a GRAPPA factor of 2 with 70 auto-calibration signal lines).

A UTE sequence (TR = 200 ms, TE1 = 0.07 ms, TE2 = 2.46 ms, FOV = 320 × 320 × 320 mm3, voxel 
size = 1.67 × 1.67 × 1.67 mm3, flip angle = 15°) was used for attenuation correction for the PET data.

Single-voxel MR spectra were consecutively measured using the point resolved spectroscopy (PRESS) 
sequence (TR = 2500 ms, TE1 = 14 ms, TE2 = 105 ms, number of averages = 128, 25 × 25 × 25 mm3 voxel size, RF 
pulse centred at 2.4 ppm, 16 step phase cycling) for three areas: PCC, MPfC and precuneus. One extra complete 
phase cycle for each area was measured without the water suppression RF pulse to record a water peak reference 
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for eddy current correction and absolute metabolite concentration calibration. Before the spectroscopy meas-
urements, the B0 field was shimmed by running FASTESTMAP iteratively to ensure the FWHM of the reference 
water peak was below 0.05 ppm. The voxel-of-interest was placed sequentially in the PCC, MPfC and precuneus 
by the same trained operator (JA).

Functional MRI data were acquired using a T2*-weighted EPI sequence (TR = 2200 ms, TE = 30 ms, 
FOV = 200 × 200 × 108 mm3, voxel size = 3.125 × 3.125 × 3.0 mm3 flip angle = 80°, number of slices: 36). The 
functional time series consisted of 165 volumes. The subjects were requested to lie down, close their eyes and 
relax during the six-minute measurement.

Diffusion-weighted data were acquired using a standard double-refocused spin-echo EPI sequence with bipo-
lar gradient pulses (TR = 9100 ms, TE = 87 ms, FOV = 240 × 240 × 136 mm3, voxel-size = 1.9 × 1.9 × 1.9 mm3, flip 
angle = 90°, b-values = 0, 1000 s mm−2, number of slices = 72, number of field gradient directions = 30, number 
of averages = 4).

PET data acquisition.  Subjects were instructed to fast overnight and to skip breakfast on the day of imag-
ing. Fasting glucose blood levels were determined prior to imaging. Approximately 200 MBq of FDG was 
injected via an iv-line at the start of the trimodal imaging experiment, i.e. the volunteer was lying in the hybrid 
MR-PET scanner at the time of injection. PET data were acquired in list mode for 60 min: the data recorded 
from 30 to 60 min were averaged and iteratively reconstructed into 153 slices (matrix size 256 × 256, voxel size 
1.25 × 1.25 × 1.25 mm3 isotropic). The reconstructed images were corrected for attenuation, random and scat-
tered coincidences, dead time and pile up.

EEG data acquisition.  EEG data were recorded with a Brain Vision Recorder (Brain Products, Gilching, 
Germany) using a 32-channel MR compatible EEG system including an MR compatible amplifier and a syn-
chronisation box. The EEG cap (BrainCap MR, EasyCap GmbH, Herrsching, Germany) consisted of 31 scalp 
electrodes distributed according to the 10–20 system and one additional electrode for recording the electro-
cardiogram (ECG). Data were recorded relative to the Fpz reference and a ground electrode that was located at 
AFz (10–5 electrode system). Data were sampled at 5000 Hz, with a bandpass of 0.016–250 Hz. Impedances at all 
recording electrodes were kept below 10 kΩ.

The simultaneous trimodal data acquisition approach is summarized in Fig. 1.

Data analysis.  MRS data analysis.  MR spectra were analysed with LCModel version 6.3–0I 
(http://s-provencher.com/pages/lcmodel.shtml) using a GAMMA simulated basis set16 with metabolite chemical 
shifts and coupling constants taken from the study by Govindaraju et al.17, provided by the software vendor. The 
basis set included 16 metabolites. Fitting was performed over the spectral range from 0.2 to 4.0 ppm. The unsup-
pressed water reference spectrum was used for eddy current correction and water-scaling.

Figure 1.  Trimodal set-up. The diagram displays the connections between the various components of the 
simultaneous MR-PET-EEG setup. The components inside the red dotted rectangular box are inside the RF-
shielded MR room.

http://s-provencher.com/pages/lcmodel.shtml
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The GABA ratio (to Cr + PCr) and glutamate-glutamine ratio (to Cr + PCr) were extracted for each of the 
three investigated voxels (PCC, MPfC and precuneus) and used for posterior analyses. Metabolite concentrations 
with the Cramér-Rao lower bound (CRLB) below 20% were considered to be reliably estimated. Example spectra 
are shown in Fig. 2.

FMRI data analysis.  Analysis of functional data was carried out using probabilistic independent component 
analysis16 as implemented in MELODIC (Multivariate Exploratory Linear Decomposition into Independent 
Components) Version 3.10, part of FSL (FMRIB’s software library, www.fmrib.ox.ac.uk/fsl). Individual 
pre-processing consisted of motion correction using MCFLIRT, brain extraction using BET, spatial smoothing 
using a Gaussian kernel of full-width at half maximum (FWHM) of 6 mm, and high-pass temporal filtering of 
100 s; fMRI volumes were registered to the structural scan of individual and standard space (MNI152) images 
using FLIRT. Temporal concatenation ICA was performed across all functional datasets from each subject and 
the number of components to be calculated was set to 20. The DMN was identified by comparison to previously 
published data3, 18 using a correlation coefficient. A mask of the group DMN was created by selecting the voxels 
with z-scores above 4 and. A grey matter mask created with a group-specific voxel-based morphometry analysis 
performed in FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM) and a non-DMN mask was created by extracting 
the DMN mask from the grey matter mask.

Additionally, in order to compare at the network level, a mask of the dorsal DMN (dDMN) and the senso-
rimotor network (SMN) was obtained from the 90 fROI atlas19 (http://findlab.stanford.edu/functional_ROIs.
html).

All these four masks (DMN, non-DMN, dDMN and SMN) were corrected for grey matter using the grey 
matter mask created. These four masks were used for posterior analyses.

The analysis of the local BOLD signal was carried out as follows: after individual pre-processing and intensity 
normalisation (grand mean scaling), the mean BOLD signal was extracted individually from the masks previ-
ously created.

A Wilcoxon-Mann-Whitney test was performed in the SAS software (version 9.4) to compare a) the mean 
BOLD signal within the DMN and non-DMN and b) within the dDMN and the SMN. Additionally, bivari-
ate correlation tests were performed using the Spearman rank-order correlation coefficient in the SAS soft-
ware. Here, the mean BOLD in the DMN mask was tested for correlations with glutamate and GABA ratios the 
volume-of-interest in the PCC, MLPC and precuneus.

Diffusion Weighted Imaging.  Pre-processing of the DWI data was performed in FSL (FMRIB’s software library, 
www.fmrib.ox.ac.uk/fsl). The diffusion data were initially corrected for eddy-current and motion distortions. DTI 
fitting was performed using FDT (FMRIB’s Diffusion Toolbox) available in FSL. The MD maps were estimated 
as shown elsewhere20 for further analysis. In order to obtain the average MD over the previously created region 
of interest (ROI) masks (DMN, non-DMN, dDMN and SMN), MD maps as well as the masks were coregistered 
to the anatomical space of each subject using the toolkit FLIRT. Tissue segmentation was carried out using the 
MP-RAGE data with the help of the FAST toolkit21 available in FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). The GM 
masks were extracted individually for each subject for further analysis taking voxels for which the GM probability 
was grater than 0.95. Only voxels within both GM mask and ROI masks were used to calculate the average MD 
for each individual subject.

Figure 2.  MRS spectra of DMN regions. Positioning of voxels in DMN regions (upper row) and respective 
MRS spectra (lower row).

http://www.fmrib.ox.ac.uk/fsl
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM
http://findlab.stanford.edu/functional_ROIs.html
http://findlab.stanford.edu/functional_ROIs.html
http://www.fmrib.ox.ac.uk/fsl
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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A Wilcoxon-Mann-Whitney test was performed using the SAS software (version 9.4) to compare the mean 
MD in DMN and non-DMN as well as dDMN and SMN.Additionally, bivariate correlation tests were performed 
using the Spearman rank-order correlation coefficient using the SAS software. Here, the mean MD within the 
DMN mask was tested for correlations with glutamate and GABA ratios in the PCC, MLPC and precuneus

PET data analysis.  Evaluation of the PET data was based on the reconstructed images showing the cerebral 
uptake of FDG averaged from 30 to 60 min after injection. The PET images were converted to standard uptake 
value (SUV) maps accounting for the injected dose and body weight of every subject. The mean SUV was 
extracted from a) the DMN and non-DMN masks and b) in addition, at the network level, from the dDMN and 
SMN individually. In order to carry out the normalisation, the mean SUV in the whole brain grey matter mask 
was also calculated. The grey matter mask was created with a group-specific voxel-based morphometry analysis 
performed in FSL software. The extracted mean SUVs were normalised to whole-brain grey matter SUV using 
formula (mean SUV in ROI mask/mean SUV in whole-brain grey matter mask) and exported for further sta-
tistical analysis. A Wilcoxon-Mann-Whitney exact test was performed using the SAS software (version 9.4) to 
compare the mean SUV in the DMN and the non-DMN as well as in the dDMN and the SMN.

Additionally, bivariate correlation tests were performed using the Spearman rank-order correlation coefficient 
using the SAS software. Here, the mean SUV of FDG in the DMN was tested for correlations with glutamate and 
GABA ratios in the PCC, MLPC and precuneus.

EEG data analysis.  EEG data were processed using Brain Vision Analyzer (Version 2.0. Brain Products, Munich, 
Germany). Gradient artefact correction was performed using the method proposed by Allen et al. and included 
in Brain Vision Analyzer22. Data were down-sampled to 250 Hz and a low-pass filter with a cut-off frequency of 
40 Hz was applied. Detection of the heartbeat event in the ECG signal was performed in Brain Vision Analyzer. 
Data were exported to EEGLAB23 where optimal basis set (OBS)24 analysis was performed using the toolbox 
available in this software; the number of principal components to use was set to 3. The markers of heartbeat events 
were used for pulse artefact correction. The data were later exported back to Brain Vision Analyzer for further 
analysis. Re-referencing of the data was carried out including all EEG channels as a new reference. For further 
de-noising of the data, independent component analysis was applied to the data using the extended Infomax algo-
rithm. The entire-length EEG data were used for the calculation of the independent components. The selection of 
artefactual components was based on the spectral information provided by wavelet analysis of each IC according 
to Maggioni et al. 25 where the ICs having a peak time locked to the R peak between the delta and alpha band were 
selected and removed. For calculation of the wavelets, the following parameters were used: complex morlet family 
of wavelets (minimal frequency = 0.5 Hz, maximal frequency = 30 Hz, frequency steps = 300, morlet parameter 
c = 10, linear steps).

The de-noised data were later exported to the LORETA-KEY software (http://www.uzh.ch/keyinst/loreta.
htm), where cross-spectra of the EEG signals were computed for each subject. A 3D cortical distribution of the 
neuro-electrical generators was computed using eLORETA. The frequency bands were δ (1.5–6 Hz), θ (6.5–8 Hz), 
α (8.5–12 Hz), β–1 (12.5–18 Hz), β–2 (18.5–21 Hz) and β–3 (21.5–30 Hz). For solving the forward problem, eLO-
RETA used a three-shell spherical head model registered to a standardized stereotactic space available as digi-
tized MRI data from the Brain Imaging Centre (Montreal Neurological Institute, MNI305). Registration between 
spherical and realistic head geometry was performed using the EEG electrode coordinates as implemented in the 
LORETA-KEY software26. Individual maps for each subject for each frequency range were Z-score normalised 
(relative to the global mean and standard deviation), exported, and the mean activity of the electrical generators 
within the dDMN mask was extracted, as well as within the SMN mask. Wilcoxon signed-rank tests were per-
formed in the SAS software to compare the mean electrical sources of each frequency inside the dDMN and SMN. 
The Wilcoxon signed-rank test is appropriate because the assumption of a Gaussian distribution was not valid for 
the electrical sources of the EEG frequencies.

Additionally, bivariate correlation tests were performed using Spearman’s rank-order correlation in SAS. Here 
the electrical sources of each frequency were tested for correlations with glutamate and GABA ratios in the PCC, 
MLPC and precuneus.

Data Availability.  The datasets generated and analysed during the current study are not publicly available 
due to restrictions in ethical approval granted by the Ethics Committee of the RWHT Aachen University to the 
Forschungszentrum Juelich but are available from the corresponding author on reasonable request.

Results
MRS data.  The glutamate ratio in the precuneus (GlutPREC), the GABA ratio in the precuneus 
(GABAPREC), the glutamate ratio in the PCC (GlutPCC) and the GABA ratio in the PCC (GABAPCC) 
were successfully measured using single voxel MRS. GlutPREC (mean = 0.903, SD = 0.031) exhibited a nor-
mal distribution according to a Shapiro-Wilk test (significance value = 0.464); GABAPREC (mean = 0.165, 
SD = 0.018) exhibited a normal distribution according to a Shapiro-Wilk test (significance value = 0.265); 
GlutPCC (mean = 0.898, SD = 0.079) exhibited a normal distribution according to a Shapiro-Wilk test (signif-
icance value = 0.134); and GABAPCC (mean = 0.151, SD = 0.031) exhibited a normal distribution according to 
a Shapiro-Wilk test (significance value = 0.835). Glutamate and GABA ratios in the MPfC could not be reliably 
estimated in two volunteers due to poor magnetic field shimming. As such, these parameters were not included 
in the analyses and results.

http://www.uzh.ch/keyinst/loreta.htm
http://www.uzh.ch/keyinst/loreta.htm
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FMRI data.  Decomposition of the data by means of ICA identified the DMN in accordance with the study by 
Smith et al.18. The correlation coefficient for comparison between the DMN in our sample and in the sample by 
Smith et al.18 was r = 0.47 (p < 0.00001). The Wilcoxon-Mann-Whitney test showed that the mean BOLD signal 
in the DMN mask was higher than outside the DMN mask (Z = 3.94, two sided p < 0.001) (Fig. 3).

This finding was replicated at the network level: the Wilcoxon-Mann-Whitney test showed that the mean 
BOLD signal in the DMN mask was higher than in the SMN mask (Z = 3.94, two sided p < 0.0001) (Fig. 4).

The Spearman rank-order correlation did not show any statistically significant correlation between GlutPREC 
and mean BOLD signal in the DMN (rs = 0.26, n = 11, p = 0.43). This was also the case for GABAPREC 
(rs = −0.26, n = 11, p = 0.44), GlutPCC (rs = 0.30, n = 11, p = 0.35) and GABAPCC (rs = 0.01, n = 11, p = 0.98).

Diffusion weighted imaging data.  The Wilcoxon-Mann-Whitney test did not show any significant dif-
ference between the mean MD in the DMN and in non DMN (Z = 1.44, two sided p = 0.15) as well as in dDMN 
mask and in SMN mask (Z = 0.06, two sided p = 0.95) (Fig. 5).

The Spearman rank-order correlation did not show any statistically significant correlation between GlutPREC 
and mean MD in the DMN (rs = −0.19, n = 11, p = 0.57). This was also the case for GABAPREC (rs = −0.17, 
n = 11, p = 0.61), GlutPCC (rs = 0.004, n = 11, p = 0.99) and GABAPCC (rs = −0.19, n = 11, p = 0.57). This was 
also the case for mean BOLD intensity (rs = 0.32, n = 11, p = 0.34) and normalised mean SUV of FDG (rs = 0.28, 
n = 11, p = 0.40).

PET data.  The Wilcoxon-Mann-Whitney test showed that the SUV in the DMN mask was higher than out-
side the DMN mask (Z = 3.94, p < 0.0001) (Fig. 6).

In analogy, the Wilcoxon-Mann-Whitney test showed a significant difference between the SUV in the dDMN 
mask and in SMN mask (Z = 3.81, two sided p < 0.0001) (Fig. 7).

The Spearman rank-order correlation shows a statistically significant positive correlation between BOLD sig-
nal intensity and normalised SUV of FDG in DMN (rs = 0.77, n = 11, p = 0.0053) and dDMN (rs = 0.71, n = 11, 
p = 0.0146) (Fig. 8).

The Spearman rank-order correlation did not show any statistically significant positive correlation between 
GlutPREC and the normalised SUV in the DMN (rs = 0.09, n = 11, p = 0.79). This was also the case for 
GABAPREC (rs = −0.17, n = 11, p = 0.61), GlutPCC (rs = 0.29, n = 11, p = 0.39) and GABAPCC (rs = −0.11, 
n = 11, p = 0.74).

EEG data.  A 3D cortical distribution of the neuro-electrical generators was successfully computed from 
denoised EEG data for frequency bands δ, θ, α (Fig. 9), β–1, β–2 and β–3 using eLORETA.

Figure 3.  fMRI BOLD signal within the DMN and Non-DMN. (a) Resting state mean BOLD image of an 
exemplary subject with DMN mask identified by ICA overlaid on MNI 152 atlas (upper row). (b) The box 
plot shows the mean BOLD signal in within the DMN and non-DMN mask. During rest the BOLD signal is 
significantly higher in the DMN than outside.
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The Wilcoxon-Mann-Whitney test showed a significant difference in the electrical sources between the 
DMN and SMN in δ (Z = 3.35, two sided p = 0.0003), θ (Z = 3.22, two sided p = 0.0006), α (Z = 3.09, two sided 
p = 0.001) and β–1 (Z = 2.76, two sided p =  < 0.0041). This was not the case for β–2 (Z = 0.2, two sided p = 0.85) 
and β–3 (Z = 0.98, two sided p = 0.33).

Spearman’s rank-order correlation tests did not show any significant correlation between GlutPREC and elec-
trical sources of δ, θ, α, β–1, β–2 and β–3 band EEG frequencies. This was also the case for GABAPREC, GlutPCC, 
GABAPCC, mean BOLD intensity and normalised mean SUV of FDG.

Discussion
An approach for simultaneous trimodal imaging was successfully developed and implemented in humans for the 
first time. This novel methodology revealed significantly higher metabolic activity in the default mode network 
of the brain in comparison to structures outside the DMN. The higher metabolic activity is coupled in our sample 
with higher BOLD amplitudes. This finding is also replicated in the direct comparison between dDMN and SMN 
at the network level. However, there was no significant link between a given EEG frequency band and the meta-
bolic activity as assessed for the comparison between the DMN and non-DMN or the dDMN and SMN. However, 
at the network level there was a significant difference between the dDMN and SMN for the electrical sources of 
frequencies in the range of δ, θ, α and β–1.

Relationship/coupling of metabolic behaviour and neuronal activity in the default mode net-
work of the human brain.  The default mode network has a salient function in the functional network 
architecture of the brain. On one hand it, has been shown in prior studies that regions of elevated topological 
importance in resting state networks also have particularly high metabolic demands13. But on the other hand, 
important hubs such as the default mode network might operate in a specialized, energy-efficient mode15. Based 
on the trimodal imaging approach, our data in healthy male volunteers show that the higher neuronal activation 
- as indicated indirectly via the higher BOLD signal intensity in the dDMN structures - is coupled to a higher 
normalised SUV of FDG. These results are in agreement with a bimodal MR-PET study by Riedl and colleagues14 
showing that metabolic activity as assessed via FDG PET is coupled with the resting state BOLD.

Figure 4.  fMRI BOLD signal within the dDMN and SMN. Resting state mean BOLD image of an exemplary 
subject with masks of the functional regions of the (a) dDMN and (b) SMN overlaid on MNI 152 atlas (upper 
two rows). (c) The boxplot shows the mean BOLD signal in within the dDMN and SMN for 11 subjects. During 
rest the BOLD signal is higher in the dDMN than in the SMN.
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Relationship between microstructure and function in the DNM and in non-DMN 
regions.  Honey and colleagues have reviewed different network modelling studies27 and have addressed the 
question of whether “structure (could) predict function in the human brain”. They concluded that structure and 
function are closely related. Furthermore they emphasize that the relationship is particularly robust for functional 
networks exhibiting low frequencies such as those from resting state fMRI data and when the resting state fMRI 
data are sampled over a period of a few minutes.

In our data the biomarker for microstructural properties MD did not show a significant difference between 
the dDMN and SMN while the functional networks did exhibit a significant different metabolic profile as indi-
cated by the FDG PET data. In other words also the two different resting state networks have a comparable 
structure its metabolic demands differ as indicated by the higher SUV in the DMN27–31. In most of the diffusion 
MRI investigations, the observed changes in MD are associated with changes in the tissue microstructure, since 
water molecules serve as a probe of the the tissue geometrical microenvironment. Significant correlations of the 
absolute concentration of Glutamate with MD in the PCC have previously been observed during rest in normal 
volunteers32 as well as in long-term Zen meditators33. In Arrubla et al.32, it was hypothesised that this correla-
tion can a priori involve both microstructural and (transient) physiological changes. In particular, the observed 
negative correlation of MD with the glutamate concentration was interpreted as a subtle cell swelling arising as 
a consequence of neuronal activation driven by the increase in the glutamate concentration, given that the PCC 
shows strong activation during rest. In this study, the lack of a negative correlation of MD with glutamate could 
be due to the fact that here MD was observed in the whole DMN network, i.e., not only the PCC as in Arrubla et 
al.32. Moreover, the small subject sample investigated here can also play a role in the observed results. Therefore, 
these observations needs further investigation in the framework of dedicated studies.

Figure 5.  Mean Diffusivity within the dDMN and SMN. (a) dDMN and (b) SMN masks overlaid on a 
representative MD map. (c) The boxplot shows the mean MD in the dDMN and SMN mask for 11 subjects.
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Relationship between GABA/Glutamate as main mutual drivers of the inhibition/excitation 
balance in the human brain and measures of metabolic and neuronal activity.  The amplitude of 
neuronal activity in the human central nervous system is determined by the balance of excitation and inhibition 
by synaptic inputs from the major inhibitory neurotransmitter GABA and the major excitatory neurotransmitter 
glutamate34. This balance between neuronal inhibition and excitation is governed, to a large degree, via a nega-
tive feedback mechanism that results in neuronal inhibition. Here, the key mechanisms in healthy brain tissue 
are inhibitory GABAergic interneurons34 and glutamate release steered by presynaptic metabotropic glutamate 
receptors35.

Relationship of GABA to BOLD amplitude and SUV of FDG PET.  Focusing on GABA and BOLD, 
Donahue and colleagues36 summarized the current status quo: “It is unclear precisely what role GABA may play on 
the hemodynamic constituents of the BOLD signal. One hypothesis is that neuronal firing rates and in turn energy 
utilization will be lower in regions of high GABA. Alternatively, a positive correlation could be possible since inhib-
itory firing could result in increased energy consumption, or, higher baseline inhibition could result in a higher 
level of hemodynamic and metabolic response necessary to overcome the baseline inhibition.” In our trimodal data 
no correlations between GABA and mean BOLD signal intensity within the DMN network were found.

One prior experiment showed a negative correlation between GABA and intrinsic functional connectivity in 
the posterior medial frontal cortex as assessed from resting state fMRI37. In a prior bimodal study (simultaneous 
MRS-EEG) in healthy male volunteers we also saw no correlation of GABA with the BOLD amplitude as measured 
in the PCC in the DMN but we did see a correlation with the BOLD response of the putamen38. Further studies 
exploiting larger sample sizes are needed to determine whether there is really no correlation between the func-
tional connectivity within the DMN or whether there is a small effect of GABA e.g. via the GABA-ergic interneu-
rons and our negative result is a false negative one due to the small sample size of this explorative pilot study.

In our simultaneously acquired data there is no significant relationship between GABA and SUV of FDG. 
This is in line with in vitro studies by Chatton and colleagues39. They reported that GABA uptake into astrocytes 
is not associated with significant metabolic cost, which suggests that GABA may not couple inhibitory neuronal 
activity with glucose utilization and thus not contribute directly to brain imaging signals associated with transient 
glycolytic processing of glucose40.

Relationship of Glutamate to BOLD amplitude and SUV of FDG PET.  Regional metabolic activity 
as determined by 18FDG-PET largly reflects the influence of glial uptake of glucose in response to neuronal glu-
tamate release35, 40. A close link between glutamate and mean glucose consumption has been demonstrated in 
anaesthetized cats41. This finding is in line with the observation that the major part of brain energy consumption 

Figure 6.  SUV of FDG within the DMN mask and Non-DMN. (a) Resting state FDG PET SUV image of an 
exemplary subject with DMN mask identified by ICA (upper row). (b) The box plot shows the normalised SUV 
of FDG within the DMN mask and the non-DMN mask for 11 subjects.
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Figure 7.  FDG SUV in the dDMN and SMN. Resting state FDG PET SUV image of an exemplary subject with 
(a) dDMN and (b) SMN masks (upper two rows). (c) The box plot shows the normalised SUV in dDMN mask 
and SMN mask for 11 subjects.

Figure 8.  Correlation plot between normalised SUV uptake of FDG PET and BOLD signal intensity in DMN 
(right side) and dDMN (left side).



www.nature.com/scientificreports/

1 1ScIeNtIfIc REPOrTS | 7: 6452 | DOI:10.1038/s41598-017-05484-w

is dedicated to excitatory activity41, 42. However, in our human pilot sample, this relationship was not replicated. 
In our small cohort of young healthy volunteers no correlation was detected. This would point in the direction 
that under physiologic conditions during rest the inhbition/exhibition balance is kept42. Larger human cohorts 
are needed in the future to investigate this mutual link with more statistical power.

Oscillatory activity in relation to hemodynamic activity.  Local and large-scale networks commu-
nicate via different frequency ranges. As EEG provides high temporal resolution it allows for the separation and 
extraction of slow and fast oscillatory neuronal activit10. GABAergic interneurons play a key role in the level of 
inhibitory tonus. GABAergic interneurons are critical elementary units, maintaining important spatial and tem-
poral functionality in cortical circuits. Without inhibitory interneurons, networks of excitatory neurons would 
converge on a state of increasing or saturated excitation, incapable of processing information in a meaningful 
ways34, 43.

Dumitriu and colleagues observed an association between different subtypes of GABAergic interneurons and 
frequency bands. It has been observed for example that parvalbumin interneurons are fast-acting on the soma 
and “entrench gamma bursts to optimize coincidence detection”34, 44. In contrast, other interneurons (somatosta-
tin and neuropeptide Y) exhibit slower kinetics and acting at apical dendrites triggering oscillatory activity in the 
form of theta oscillation34, 44.

Prior investigations showed a significant correspondence between BOLD functional connectivity and syn-
chronized neuronal activity in the gamma frequency band (>30-Hz)25. Work in animals (anaesthetised cats sub-
jected to visual stimulation) demonstrated a correlation between the strength of hemodynamic responses and 
the oscillatory power of several frequency bands45. The strongest link was established between oscillatory power 
in the upper part (>60 Hz) of the gamma frequency band and the strength of the hemodynamic response13, 45. 
Another study recorded simultaneously resting state fMRI and intracortical electrophysiological data in the visual 
cortex of anaesthetised monkeys46. fMRI data correlated strongest in the gamma band with some fluctuation in 
neuronal spiking activity as recorded by local field potentials (LFP). Synchronous activity of GABAergic interneu-
rons is supposed to be a key mechanism in the generation of gamma oscillations in local circuits13.

In our human in vivo data with surface electrophysiological recordings no correlation between the power of 
any frequency band and the amplitude of the BOLD effect in the DMN was detectable. However, we detected a 
significant difference when comparing the electrical sources for delta, theta, alpha and beta 1 between the DMN 
and SMN. These frequencies play an important role in the long-range synchronization for the effective coupling 
between more remote brain regions47. However, no frequency band in the DMN correlated to the GABA or glu-
tamate measures.

Oscillatory activity in relation to metabolic activity.  Results from human clinical studies show a high 
metabolic demand associated with gamma oscillations48. In patients suffering from non-lesional focal epilepsy 
cortical glucose metabolic patterns showed a strong correlation with the gamma spectral amplitude13, 48. No cor-
relations between glucose consumption rate and subdural EEG measures in the delta, beta, theta and alpha fre-
quency band were described. Again these data were recorded invasively and are not replicated in our human data 
in healthy volunteers.

This explorative pilot study in humans has some limitations. The sample size is small given the number of 
parameters assessed. However, it demonstrates the successful implementation of the trimodal simultaneous 
approach in general. Findings such as the strong correlation between BOLD and SUV in the DMN are fully in line 
with findings in the literature49 but nevertheless needed to be replicated.

The EEG approach with surface electrodes suffers from the implicit methodological confound of the inverse 
problem. Our approach via eLORETA can only provide estimated sources at low spatial resolution.

The true advantages of the simultaneous approach will come to the fore in studies employing pharmacological 
challenges, where two (or even three) different time points in non-simultaneous measurements suffer always 

Figure 9.  A 3D cortical distribution of the neuro-electrical generators of EEG alpha frequency band of a 
representative subject. The neuro-electrical generators computed using eLORETA is overlaid on a sagittal and 
axial slice of the MNI template.
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from confounding factors. Another domain is the application of trimodal imaging in patients in clinical neuro-
science who are unable to undergo all three different modalities at three different time points and who need quick 
pharmacological intervention with a minimum waiting time resulting from diagnostic procedures (e.g. therapy 
resistant epilepsy, prediction of therapeutic response to medication such as serotonin reuptake inhibitors or atyp-
ical neuroleptics). The trimodal approach holds great promise due to the richness and complexity of the data 
acquired in different dimensions and time scales; this has enormous potential for the development of individual 
biomarkers in form of the multimodal fingerprint for individual prognosis and individualized treatment planning 
e.g. in schizophrenia, depression and in the mid-term, potentially, dementia.
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