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miR-29b contributes to multiple types of
muscle atrophy
Jin Li1,*, Mun Chun Chan2,3,*, Yan Yu4,*, Yihua Bei1, Ping Chen1, Qiulian Zhou1, Liming Cheng4, Lei Chen4,

Olivia Ziegler2, Glenn C. Rowe5, Saumya Das2 & Junjie Xiao1

A number of microRNAs (miRNAs, miRs) have been shown to play a role in skeletal muscle

atrophy, but their role is not completely understood. Here we show that miR-29b promotes

skeletal muscle atrophy in response to different atrophic stimuli in cells and in mouse models.

miR-29b promotes atrophy of myotubes differentiated from C2C12 or primary myoblasts, and

conversely, its inhibition attenuates atrophy induced by dexamethasone (Dex), TNF-a and

H2O2 treatment. Targeting of IGF-1 and PI3K(p85a) by miR-29b is required for induction of

muscle atrophy. In vivo, miR-29b overexpression is sufficient to promote muscle atrophy

while inhibition of miR-29b attenuates atrophy induced by denervation and immobilization.

These data suggest that miR-29b contributes to multiple types of muscle atrophy via

targeting of IGF-1 and PI3K(p85a), and that suppression of miR-29b may represent a

therapeutic approach for muscle atrophy induced by different stimuli.
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M
uscle atrophy is a debilitating systemic response to
denervation, long-term inactivity, excessive fasting,
ageing, and a variety of diseases including excessive

glucocorticoids (as in Cushing syndrome) and cancers1,2. Muscle
atrophy can lead to poor functional status, reduced quality of life,
and increased morbidity and mortality3. The treatment of muscle
atrophy remains an unresolved challenge3. Therefore, there is an
urgent unmet need for the development of novel therapies to
combat loss of skeletal muscle mass1,4,5.

Inhibition of the insulin-like growth factor 1-phosphoinositide
3-kinase-AKT (IGF-1–PI3K–AKT) signalling pathway has been
implicated in the induction of muscle atrophy6–8. Inhibition of
AKT leads to the activation of transcription factor Forkhead Box
O3 (FOXO3). FOXO3A induces increased expression of atrophy-
linked ubiquitin ligases, including muscle-specific RING-finger 1
(MURF-1) and Atrogin-1 (MAFBX)1,6.

MicroRNAs (miRNAs, miRs) constitute a class of highly
conserved, small endogenous noncoding RNA molecules that
negatively regulate gene expression at the posttranscriptional
level9,10. Individual miRNA can target several mRNAs, while
a single mRNA can be regulated by a variety of miRNAs11–13.
Thus, miRNAs have been reported to play fundamental roles in
diverse biological and pathological processes, including muscle
development and regeneration14–16. Different miRNAs, including
miR-1, miR-133 and miR-206 have been shown to participate in
myogenesis and muscle regeneration14–16. In contrast, miRNAs
have also been shown to play a role in different models of muscle
atrophy, including miR-1, miR-133, miR-23a, miR-21, miR-27,
miR-628, miR-431 and miR-206 (refs 17–24). However,
a systematic study to examine the role of miRNAs using
different models of muscle atrophy has not been performed.

In this study, using an miRNA array, we identify miR-29b
induction and activity as a novel pathway contributing to muscle
atrophy. miR-29b expression is significantly increased in multiple
in vivo and in vitro models of muscle atrophy. We also confirm
IGF-1 and PI3K(p85a) as two target genes of miR-29b. Finally,
we demonstrate that miR-29b expression is necessary and
sufficient to induce muscle atrophy in vivo. These data suggest
that inhibition of miR-29b might represent a novel therapeutic
approach for multiple types of muscle atrophy.

Results
miR-29b is increased in multiple types of muscle atrophy. To
identify miRNAs that play a role in muscle atrophy, miRNA
arrays were performed on the gastrocnemius muscles from rats
that have undergone denervation of the right sciatic nerve
(Fig. 1a–e). A relative early time point (day 5) was used here to
identify miRNAs that might function as potential triggers of
muscle atrophy. Expression levels of 15 miRNAs were found to be
changed in denervated muscle compared to control (Fig. 1e and
Supplementary Table 1). A total of eight miRNAs with the largest
inductions were technically validated using quantitative real-time
polymerase chain reactions (qRT–PCRs) (Fig. 1e). Among them,
miR-212, miR-29b, miR-21 and miR-221 were confirmed to be
increased in both rat and mouse denervated gastrocnemius
muscles (Fig. 1e).

To explore whether the identified miRNAs could play a role in
other models of muscle atrophy, their expression levels were
analysed in four additional in vivo models of skeletal muscle
atrophy (Fig. 1f–i and Supplementary Fig. 1a–e), namely muscle
atrophy induced by dexamethasone (Dex), fasting, cancer
cachexia and ageing. Of the four validated miRNAs in denervated
muscles, only miR-29b was found to be elevated in each of the
in vivo atrophy models (Fig. 1f–i). To investigate the time course
of miR-29b expression in denervated muscles, we checked its

expression level at 3, 5, 7 and 14 days after denervation and found
that miR-29b was induced at day 5 and maintained at higher
levels after (Supplementary Fig. 1f). Besides that, to explore
if the upregulation of miR-29b in denervation was specific in
gastrocnemius muscles or it was a more generalized process, we
checked miR-29b expression level in other muscles after
denervation including tibialis anterior (TA), soleus and extensor
digitorum longus (EDL), and found that it was consistently
elevated in all these denervated muscles (Supplementary Fig. 1g).

To further explore the regulation of miR-29b in muscle
atrophy, we examined its expression level in myotubes
differentiated from C2C12 or primary myoblasts treated with
Dex. Notably, miR-29b was increased in both models (Fig. 2). In
addition, we determined miR-29b expression level in two other
in vitro models of muscle atrophy, including treatment of
myotubes differentiated from C2C12 with TNF-a and H2O2, in
which miR-29b was increased (Supplementary Fig. 2). Together,
these data suggest that miR-29b is ubiquitously upregulated in
muscle atrophy models both in vitro and in vivo, indicative of
a potential functional role of miR-29b in this process.

miR-29b controls muscle atrophy in vitro. In fully differentiated
C2C12 myotubes, miR-29b mimic was used to determine its role
in promoting muscle atrophy. miR-29b mimic increased miR-29b
expression level by 157-fold, without affecting miR-29a and
miR-29c expressions (Fig. 3a), which confirms that the miR-29b
mimic used in this study is specific to miR-29b. miR-29b
overexpression reduced myotube diameter, elevated Atrogin-1
and Murf-1, decreased MHC and induced expressions of
some autophagy-related genes (Map1-lc3b, Atg7, Atg12, Bnip3,
Gabarapl1, Cathepsinl, Bnip3l and Vps34) and other ubiquitin
ligases-related genes (Mul1, Traf6, Znf216, Cblb and Nedd4)
(Fig. 3b–e). In addition, in myotubes differentiated from primary
myoblasts, miR-29b overexpression also elevated Atrogin-1 and
Murf-1, and decreased myotube diameter (Fig. 3f–h). To exclude
the possibility that the above results achieved by miR-29b mimic
might not be physiologically relevant, we also used miR-29b
overexpression plasmid that increased miR-29b expression by
3.39-fold, and found that myotube diameter was reduced while
Atrogin-1 and Murf-1 were elevated (Supplementary Fig. 3).
Thus, miR-29b appears to be sufficient to promote muscle
atrophy in vitro.

In fully differentiated C2C12 myotubes, miR-29b inhibitor was
used to determine its role in regulating muscle size. miR-29b
inhibitor decreased miR-29b expression level without affecting
miR-29a and miR-29c expressions (Fig. 4a), which suggests that
the miR-29b inhibitor used in this study is specific to miR-29b.
Inhibition of miR-29b was not able to promote muscle
hypertrophy in basal conditions, while it could abrogate the
pro-atrophy effect of Dex stimulation (Fig. 4b,c). Similarly,
miR-29b inhibitor also attenuated Dex-induced atrophy in
myotubes differentiated from primary myoblasts (Fig. 4d). In
addition, in myotubes differentiated from C2C12, treatment with
TNF-a or H2O2 neither decreased myotube diameter or creatine
kinase activity, nor induced the expression of Atrogin-1 and
Murf-1, when miR-29b expression was inhibited (Supplementary
Fig. 4). These results support the hypothesis that miR-29b is
necessary for muscle atrophy.

Collectively, our findings illustrate that miR-29b is both
necessary and sufficient for muscle atrophy in vitro.

IGF-1 and PI3K(p85a) are target genes of miR-29b. To
investigate the mechanism by which miR-29b promotes muscle
atrophy, we used the bioinformatic tool TargetScan to identify
putative targets of miR-29b. Two potential targets identified were
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Figure 1 | miR-29b is increased in multiple types of muscle atrophy in vivo. (a) A time course of mass loss in the rat medial gastrocnemius muscle was

examined in denervation model (n¼ 5 per group). (b) Denervation-induced marked muscle atrophy as determined by gastrocnemius muscle morphology

(scale bar, 1 cm) and haematoxylin–eosin (HE) staining for muscle fibres (n¼ 5 per group, scale bar, 100mm). (c) Gastrocnemius muscle weight (GW) and

gastrocnemius muscle weight/body weight (GW/BW) ratio were both reduced in denervation rats (n¼ 5 per group). (d) qRT–PCR analysis showed

increased Atrogin-1 and Murf-1 expressions in gastrocnemius muscle from denervation rats compared to controls (n¼ 5 per group). (e) miRNA arrays

showed dysregulated miRNAs in gastrocnemius muscle from denervation rat model and qRT–PCR analysis of miRNA expressions in both rat and mouse

models of denervation-induced muscle atrophy (n¼4 per group). (f–i) qRT–PCR analysis of miRNA expressions showed increased miR-29b in

gastrocnemius muscle from dexamethasone (Dex)-, fasting-, cancer cachexia- and ageing-induced mouse muscle atrophy models (n¼ 5 for Dex, 5 for

fasting, 5 for cancer cachexia and 4 for ageing). Con, Control. Den, Denervation. Error bars, s.e.m. An unpaired, two-tailed Student’s t-test was used for

comparisons between two groups. *Po0.05, **Po0.01.
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IGF-1 and PI3K(p85a), which are key proteins involved in the
PI3K–AKT–mammalian target of rapamycin (mTOR) signalling
pathway25,26. In non-dividing muscle cells, activation of this
pathway stimulates protein synthesis and inhibits protein
degradation. In atrophic cells, the PI3K–AKT–mTOR signalling
is decreased27.

We cloned the 30untranslated region (UTR) of IGF-1 and
PI3K(p85a) in separate plasmids. Luciferase assays showed that
exogenous miR-29b led to the reduction of luciferase activity in
cells transfected with either the construct with 30UTR of IGF-1 or
PI3K(p85a), but had no effect when the putative miR-29b-binding
site in either IGF-1 or PI3K(p85a) 30UTR was mutated (Fig. 5a).
This suggests that IGF-1 and PI3K(p85a) are both direct targets
of miR-29b.

The expressions of IGF-1 and PI3K(p85a) were decreased
in differentiated C2C12 cells treated with Dex, TNF-a and
H2O2: in vitro models of muscle atrophy (Supplementary Fig. 5a).
In a parallel manner, transfection of miR-29b mimic into C2C12
myotubes resulted in decreased protein levels of IGF-1 and
PI3K(p85a) (Fig. 5b). Conversely, transfection with miR-29b
inhibitor resulted in increased expression of IGF-1 and
PI3K(p85a) (Fig. 5b). These results suggest that miR-29b can
regulate endogenous IGF-1 and PI3K(p85a) expression levels
in skeletal muscle cells. Besides that, the downstream effectors
(from IGF-1) were determined and we found that the
phosphorylations of AKT (Ser-473), FOXO3A (Ser-253), mTOR
and P70S6K were decreased by miR-29b mimic while all these
phosphorylations were increased by miR-29b inhibitor, though
the phosphorylations of AKT (Thr-308), FOXO3A (Thr-32) and
4EBP1 were not modulated (Fig. 5c,d).

To further assess if IGF-1 and PI3K(p85a) mediate the
pro-atrophy effect of miR-29b, either IGF-1 or PI3K(p85a)
overexpression plasmid was used to upregulate IGF-1 or
PI3K(p85a) in the presence of miR-29b mimic. We found
that IGF-1 or PI3K(p85a) overexpression could attenuate the
pro-atrophy effect of miR-29b, as determined by myotube
diameter and the expression levels of Atrogin-1 and Murf-1

(Fig. 6). These results indicate that controlling IGF-1 and
PI3K(p85a) expression is at least partly responsible for how
miR-29b promotes muscle atrophy.

To determine whether these observations were also seen
in vivo, we examined the expression levels of IGF-1, PI3K(p85a)
and downstream effectors (from IGF-1) in our in vivo models.
Consistent with the results above, IGF-1, PI3K(p85a) and the
downstream effectors (from IGF-1) were also decreased in the
gastrocnemius muscles from Den-, Dex- and fasting-induced
atrophy models (Supplementary Figs 5b and 6).

Yin Yang 1 triggers the upregulation of miR-29b. To explore
what triggers the upregulation of miR-29b, we firstly investigated
whether a synergistic pathway that was controlled by the same
IGF-1–AKT signalling was existent in a feed-forward loop to
enhance protein degradation. Knockdown of IGF-1 by siRNAs
did not change the expression level of miR-29b (Fig. 7a),
indicating that the synergistic pathway is unlikely existent. As Yin
Yang 1 (YY1) has been reported to be the upstream of miR-29b in
C2C12 myoblasts28, we were interested in investigating if YY1
regulated miR-29b in C2C12 myotubes. We found that
knockdown of Yy1 by siRNAs increased miR-29b level in
C2C12 myotubes (Fig. 7b). In addition, the expression level of
YY1 was consistently downregulated in muscle atrophy induced
by Den, Dex and fasting at both mRNA and protein levels
(Fig. 7c,d). Importantly, in fully differentiated C2C12 myotubes,
Yy1 siRNAs reduced myotube diameter and elevated Atrogin-1
and Murf-1 expressions (Fig. 7e,f), suggesting its functional role
in regulating muscle atrophy. Thus, YY1 might probably trigger
the upregulation of miR-29b and contribute to muscle atrophy.

miR-29b contributes to muscle atrophy in vivo. To characterize
the in vivo relevance of overexpressing miR-29b, we used
miR-29b agomir to increase the expression level of miR-29b in
mouse gastrocnemius muscles (Fig. 8 and Supplementary Fig. 7).
Using this approach, we could increase miR-29b level by 2.5-fold
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Figure 2 | miR-29b is increased in multiple types of muscle atrophy in vitro. (a) Immunofluorescent staining for C2C12 myotubes showed that Dex

(50mM)-induced muscle atrophy as evidenced by reduced myotube diameter, accompanied with increased Atrogin-1, Murf-1 and miR-29b expressions

(n¼4 per group, scale bar, 100mm). (b) Immunofluorescent staining for myotubes differentiated from primary myoblasts showed that Dex

(50mM)-induced muscle atrophy as evidenced by reduced myotube diameter, accompanied with increased Atrogin-1, Murf-1 and miR-29b expressions

(n¼4 per group, scale bar, 100mm). Dex, dexamethasone. Error bars, s.e.m. An unpaired, two-tailed Student’s t-test was used for comparisons between

two groups. *Po0.05, **Po0.01.
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without affecting miR-29a and miR-29c (Fig. 8a), with corre-
sponding decrease in the targets as noted above (Supplementary
Fig. 7h,i). Muscle atrophy was confirmed as evidenced by the
decrease in gastrocnemius weight, gastrocnemius weight/body
weight ratio, grip strength, myotube diameter (HE staining),
mitochondria and glycogen content (periodic acid-schiff (PAS)
and succinate dehydrogenase (SDH) stainings), MHC level and

mtDNA copy numbers (Fig. 8b–e,j,k,m); and the increase in some
atrogenes including Atrogin-1, Murf-1, Murf-2, Fbxo40, Traf6,
Cblb and Nedd4 expressions, and protein ubiquitination and
autophagy (Fig. 8h,i,l and Supplementary Fig. 7b,c). We further
explored the atrophic fibre-type induced by miR-29b agomir, and
consistently found that all types of fibres underwent atrophy as
determined by SDH staining and qRT–PCR analysis of Myh7,
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Myh2, Myh4, Myh1 encoding myosin isoforms MyHC-I,
MyHC-IIa, MyHC-IIb and MyHC-IIx/d (refs 29,30) (Fig. 8f,g). In
addition, the proportion of type I fibre in fibre-type composition
was decreased while that of type IIB fibre was increased as
determined by immunofluorescent staining with MHC antibodies
(Supplementary Fig. 7a). However, no obvious inflammation or
degeneration/ regeneration events occurred as determined by
qRT–PCRs for Myod, Myog, Myf5, IL-1a, IL-1� and IL-6
(Supplementary Fig. 7d,e). Besides that, although denervation
significantly increased denervation markers including Musk,
Achra, Achre, Achrg, Cpla2, Ncam and Runx1, miR-29b agomir
only slightly elevated Achre and Cpla2 while other denervation
markers were at largely unaffected (Supplementary Fig. 7f,g).
Interestingly, in mice injected with miR-29b agomir, expression
of IGF-1, PI3K(p85a) and the downstream (from IGF-1) effectors
in gastrocnemius muscles were decreased compared to control
(Supplementary Fig. 7h,i). Thus, these data indicate that the
increase of miR-29 is able to induce muscle atrophy in vivo.

To investigate whether inhibiting miR-29b attenuates muscle
atrophy, we treated mice with intramuscular injection of miR-29b
sponge, followed by denervation of the right sciatic nerve.
miR-29b sponge was able to decrease miR-29b expression level in
the gastrocnemius without affecting miR-29a and miR-29c
expressions (Fig. 9a). All mice were euthanized 5 days later and
miR-29b sponge significantly decreased miR-29b level (Fig. 9b).
In the absence of miR-29b sponge, denervation decreased the
ratio of gastrocnemius weight to body weight by 20.6%. In
comparison, miR-29b sponge injections led to a 44.8% reduction
in denervation-induced muscle atrophy as determined by the
ratio of gastrocnemius weight to body weight (Fig. 9c,d).
Similarly, the decrease in gastrocnemius weight, diameter of
muscle fibres and increase in Atrogin-1 and Murf-1 expression
levels in denervated muscles were also attenuated in mice injected
with miR-29b sponge (Fig. 9c,e,f). Interestingly, in denervation

mice injected with miR-29b sponge, expression levels of IGF-1,
PI3K(p85a) and the downstream (from IGF-1) effectors in
gastrocnemius muscles were increased compared to control
(Supplementary Fig. 8).

As immobilization of limbs is a common clinical procedure for
orthopaedic medicine, we also explored the role of miR-29b
inhibition in muscle atrophy induced by immobilization of limbs.
Muscle atrophy was induced by immobilization of limbs as
evidenced by decreased gastrocnemius weight and gastrocnemius
weight/body weight ratio, and elevated Atrogin-1 and Murf-1,
accompanied with an increase of miR-29b (Supplementary
Fig. 9a–c). Besides that, we also confirmed that the upregulation
of miR-29b in immobilization-induced muscle atrophy was
a generalized process as it was consistently increased in TA,
soleus, and EDL (Supplementary Fig. 9d). A single intramuscular
injection of miR-29b sponge in gastrocnemius muscle signifi-
cantly inhibited miR-29b expression (Supplementary Fig. 9e).
Muscle atrophy was largely attenuated as evidenced by increased
gastrocnemius weight and gastrocnemius weight/body weight
ratio, decreased Atrogin-1 and Murf-1, and increased muscle fibre
diameter, accompanied by upregulated expressions of IGF-1 and
PI3K(p85a) (Supplementary Fig. 9f–i). These data demonstrate
that suppression of miR-29b has anti-atrophy effect and could at
least partly attenuate muscle atrophy.

Discussion
Muscle atrophy can be commonly induced by a variety of stress
and is debilitating31,32. The pathogenesis of skeletal muscle
atrophy is complex and remains incompletely understood31,33.
Muscle atrophy in a variety of conditions such as cancer,
denervation, disuse and fasting shares a common mechanism in
the induction of Atrogin-1 and Murf-1. Interestingly, in aged
skeletal muscle, Atrogin-1 and Murf-1 have been reported
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increased, unchanged or decreased, and these discrepancies might
be caused by difference in the muscles, species and strains and
genders34–38. We here showed that in aged male mice, Atrogin-1
and Murf-1 were increased in gastrocnemius muscles. Aberrant
expression of miRNAs has been reported in muscle atrophy39.

Despite that investigators have demonstrated the presence of
common atrophy genes that are coordinately regulated in several
models of atrophy, few studies have examined the role of
miRNAs that were ubiquitously altered, and perhaps played
a central role in models of atrophy1. Here we report that miR-29b
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is commonly upregulated in multiple types of muscle atrophy.
Interestingly, a study has reported that the soleus and the
gastrocnemius muscle had contrasting regulation of miR-1, which
was decreased in the soleus muscle 1 week post crush injury and
nerve transection, while its expression was significantly increased
in the gastrocnemius muscle40. We thus investigated if miR-29b
upregulation in denervation was specific in gastrocnemius
muscles or it was a more generalized process, and we found
that miR-29b was consistently elevated in all tested muscles

including gastrocnemius, TA, soleus and EDL, further
demonstrating that miR-29b is a common target for muscle
atrophy. As miRNAs are emerging as promising therapeutic
candidates for drug development16, our results identify a novel
target in this important clinical space.

miRNAs participate in multiple regulatory pathways in skeletal
muscle16. A cluster of myomiRs including miR-1, miR-133 and
miR-206 have been found to play important roles in regulating
myogenesis and muscle regeneration16. Many profiling
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experiments have been performed in muscle atrophy.
Fourteen miRNAs have been identified to be dysregulated in
skeletal muscle from old men comparing to that from young
men41. Another study has revealed that 75 miRNAs were
differently expressed between the young and old men groups
(40 upregulated and 35 downregulated)42. In addition,
accumulating evidence suggests that the aberrant expressions of
miRNAs, such as miR-1, miR-133, miR-23a, miR-206, miR-27,
miR-628, miR-431 and miR-21 (refs 17–24), contribute to muscle
atrophy. Most of these miRNAs have been reported to be
upregulated in individual model of muscle atrophy. Akin to the
dysregulation of atrophy-associated proteins such as the ubiquitin
ligases called Atrogin-1 and Murf-1 that are altered in most
models of atrophy39, miRNAs universally dysregulated in diverse
atrophy models have not yet been identified20. Previously,
miRNA profiling of mouse muscles under several wasting
conditions including denervation, fasting, diabetes and cancer
cachexia has been performed and a peculiar pattern of miRNA
expressions for each catabolic condition has been identified20.
Here we used a different strategy namely profiling miRNAs in
denervated muscle and validated them using qRT–PCRs in
several other muscle atrophy models. We provide direct evidence
that miR-29b is commonly upregulated in five different models of
skeletal muscle atrophy, including muscle atrophy induced by
denervation, Dex, fasting, ageing and cancer cachexia, indicating
that upregulation of miR-29b might be a common driver of
muscle atrophy.

miR-29 has been reported to function as a positive regulator
of myogenesis through feedback inhibition of the transcription
factor YY1 (ref. 28). Similarly, decreased miR-29 was reported
to suppress myogenesis in chronic kidney disease by targeting
YY1 (ref. 43). miR-29 has also been demonstrated to impair
muscle progenitor cell proliferation, increase cell cycle
arrest protein levels, and induce cellular senescence in ageing
muscle by targeting PI3K(p85a), IGF-1 and B-myb44. Here we
observed that miR-29b was necessary and sufficient to promote
muscle atrophy in in vitro models of muscle atrophy, including
myotubes differentiated from C2C12 treated with Dex, TNF-a
and H2O2 and from primary myoblasts treated with Dex.
Most importantly, miR-29b was able to induce muscle
atrophy in vivo while inhibition of miR-29b attenuated
denervation- and immobilization-induced muscle atrophy.
It is interesting that miR-29b can induce senescence and
atrophy. However, the effects of miR-29b in inducing cellular
senescence are explored in muscle progenitor cell while its effect
in inducing atrophy is investigated in myotubes, respectively,
supporting the cellular-specific effects of miR-29b (ref. 44).
Of note, miR-29b decreased phosphorylation of FOXO3A
at serine-253 and thus induced Atrogin-1 and Murf-1

expressions, leading to muscle atrophy. Interestingly, we
showed that the proportion of type I fibre in fibre-type
composition was decreased while that of type IIB fibre
was increased, and also observed a decrease in strength
phenotype. We think this result could be explained as follows.
First, all types of fibres underwent atrophy. Second, qRT–PCR
analysis for Myh7, Myh2, Myh4, Myh1 encoding myosin
isoforms MyHC-I, MyHC-IIa, MyHC-IIb and MyHC-IIx/d
showed that all myosin isoforms were decreased and the
decrease of Myh7 was most significant, making the relative
increase of type IIB fibre. Collectively, our data suggest that
miR-29b is sufficient and necessary for multiple types of muscle
atrophy.

The IGF-1–PI3K–AKT signalling is critical for controlling the
balance between protein synthesis and degradation45,46.
Deactivation of this signalling will result in decreased protein
synthesis and increased protein degradation, which may lead to
muscle atrophy8,46,47. Based on bioinformatics analysis
and further experimental validation, IGF-1 and PI3K(p85a)
were identified as two target genes of miR-29b in myotubes.
IGF-1 has previously been recognized as a critical factor for
coordinating muscle growth and increasing muscle mass7,8.
IGF-1 has been reported to inversely regulate atrophy-induced
genes via the PI3K/AKT/mTOR pathway, and the IGF-1/PI3K/
AKT pathway can prevent expressions of muscle atrophy-induced
ubiquitin ligases by inhibiting FOXO transcription factors7,8.
PI3K(p85a) is the regulatory subunit of PI3K and the loss of class
IA PI3K signalling in muscle has been reported to induce
impaired muscle growth48. Our functional experiments in
myotubes confirmed that suppression of IGF-1 and PI3K(p85a)
was responsible for the pro-atrophy effect of miR-29b in
myotubes. In addition, we found that the phosphorylations of
AKT (Ser-473), FOXO3A (Ser-253), mTOR and P70S6K were
decreased by miR-29b mimic while all these phosphorylations
were increased by miR-29b inhibitor. Importantly, we found that
IGF-1, PI3K(p85a) and the downstream (from IGF-1) effectors
were all decreased in the in vitro muscle atrophy models and
miR-29b agomir could decrease them in vivo, providing some
insights of their potential roles in muscle atrophy in vivo.
Nevertheless, it would be highly interesting to investigate in vivo
therapeutic roles for miR-29b targets individually or together
based on gain-of-function and loss-of-function experiments.
Moreover, the other relevant targets of miR-29b in regulating
atrogenes, fibre type and autophagy pathways should also be
identified in the future.

In conclusion, miR-29b contributes to multiple types of muscle
atrophy via targeting of IGF-1 and PI3K(p85a), and that
suppression of miR-29b may represent a therapeutic approach
for muscle atrophy induced by different stimuli.

Figure 8 | miR-29b is sufficient to induce muscle atrophy in vivo. (a) qRT–PCR analysis showed increased miR-29b, but not miR-29a or miR-29c

expressions, in mice treated with miR-29b agomir compared to negative control (NC agomir) (n¼ 5 per group). (b) miR-29b agomir induced muscle

atrophy, as determined by gastrocnemius muscle morphology, gastrocnemius weight (GW) and gastrocnemius weight/body weight (GW/BW) ratio

(n¼ 5 per group, scale bar, 1 cm). (c) The grip strength of right hind limb was reduced in miR-29b agomir-treated mice (n¼ 5 per group). (d) miR-29b

agomir-induced muscle atrophy was also evidenced by haematoxylin–eosin (HE) staining, periodic acid-schiff (PAS) staining and succinate dehydrogenase

(SDH) staining (n¼ 5 per group, scale bar, 50mm). (e) Quantification of muscle fibre diameter distribution confirmed that miR-29b agomir induced muscle

atrophy (n¼ 5 per group). (f) Quantification of diameter of different myofibre types showed that all types of fibres underwent atrophy in miR-29b

agomir-treated mice (n¼ 5 per group). (g) qRT–PCR analysis showed decreased Myh1, Myh2, Myh4 and Myh7 expressions in mice treated with miR-29b

agomir (n¼ 5 per group). (h) qRT–PCR analysis showed upregulated Atrogin-1 and Murf-1 expressions in mice treated with miR-29b agomir (n¼ 5 per

group). (i) Western blot analysis showed upregulation of Ubiquitin protein expressions in mice treated with miR-29b agomir (n¼ 3 per group). (j) qRT–PCR

analysis showed downregulated MHC in mice treated with miR-29b agomir (n¼ 5 per group). (k) Western blot analysis showed reduced MHC protein level

in mice treated with miR-29b agomir (n¼ 3 per group). (l) Western blot analysis showed downregulated P62 but up-regulated LC3-II protein levels in mice

treated with miR-29b agomir (n¼ 3 per group). (m) qRT–PCR analysis showed that mtDNA copy number was decreased in miR-29b agomir-treated mice

(n¼ 5 per group). Age- and sex-matched mice were used for experiments randomly. Error bars, s.e.m. An unpaired, two-tailed Student’s t-test was used for

comparisons between two groups. *Po0.05, **Po0.01.
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Methods
Animal experiments. All animals were purchased from Shanghai Institutes for
Life Science of the Chinese Academy of Sciences (Shanghai, China). The standard
pellet diet and water were provided ad libitum and all animals were maintained on

a 12 h light/12 h dark cycle in a temperature-controlled room at 21–23 �C. All
procedures with animals were in accordance with the guidelines on the use and
care of laboratory animals for biomedical research published by National Institutes
of Health (No. 85-23, revised 1996), and the experimental protocol was reviewed
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Figure 9 | miR-29b is necessary for muscle atrophy in vivo. (a) qRT–PCR analysis showed reduced miR-29b, but not miR-29a or miR-29c expressions, in

mice treated with miR-29b sponge compared to fugw control (n¼ 5 per group). (b) qRT–PCR analysis showed reduced miR-29b expression level in

miR-29b sponge-treated mice in the presence or absence of denervation (Den) (n¼ 5 per group). (c,d) Gastrocnemius weight (GW) and gastrocnemius

weight/body weight (GW/BW) ratio showed that miR-29b sponge at least partly blocked denervation-induced muscle atrophy (n¼ 5 per group).

(e) Haematoxylin–eosin (HE) staining demonstrated increased muscle fibre diameter in denervated mice treated with miR-29b sponge compared to those

treated with fugw control (n¼ 5 per group, scale bar, 50mm). (f) qRT–PCR analysis showed downregulated Atrogin-1 and Murf-1 expressions in denervated

mice treated with miR-29b sponge compared to those treated with fugw control (n¼ 5 per group). Age- and sex-matched mice were used for experiments

randomly. Error bars, s.e.m. An unpaired, two-tailed Student’s t-test was used for comparisons between two groups (a). One-way ANOVA test was

performed to compare multiple groups followed by Bonferroni’s post hoc test (b–f). *Po0.05, **Po0.01.
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and approved by the ethical committees of School of Life Science, Shanghai
University.

Muscle atrophy models. Eight-week-old male C57BL/6 or BALB/c mice and
7–8-week-old male Sprague Dawley rats were used in this study. Multiple muscle
atrophy models were established as follows: (1) the denervation-induced muscle
atrophy was generated in rats or C57BL/6 mice by cutting off the mid-thigh region
of the right sciatic nerve. The sham was generated by the same process but without
cutting off sciatic nerve. Rats or mice were killed at 3, 5, 7 and 14 days after
denervation, respectively. (2) The Dex-induced muscle atrophy model was
induced by treating C57BL/6 mice with either Dex or phosphate-buffered saline
(PBS; control) via intraperitoneal injections at a dose of 25 mg kg� 1 per day.
All mice were killed after 1 week. (3) For fasting-induced muscle atrophy, C57BL/6
mice were maintained for 48 h with no food but free access to water, and the
control mice were fed normally. (4) For ageing-induced muscle atrophy model,
10-week-old C57BL/6 mice were served as control and 23-month-old mice were
collected as the ageing group. (5) For immobilization-induced muscle atrophy, the
right ankle joint of C57BL/6 mice was fixed at 90� of flexion by insertion of a screw
(0.4� 8 mm) through the calcaneus and talus into the shaft of the tibia1. All mice
were killed after 1 week. (6) For cancer cachexia-induced muscle atrophy model,
BALB/c mice were subcutaneously inoculated with 106 of mouse colon cancer
C26 cells. All mice were killed after 2 weeks.

miRNA arrays. Total RNA extracted from the gastrocnemius muscles from
denervation-induced muscle atrophy rat model was used for miRNA arrays.
miRNA profiling was performed with OE Biotech’s (Shanghai, China) miRNA
microarray service based on Affymetrix miRNA 3.0 Array. The MIAME-compliant
data have been submitted to Gene Expression Omnibus (GEO, platform ID:
GSE81914).

Cell culture and transfection. C2C12 cells (mouse skeletal myoblasts) were
obtained from ATCC and were tested and found negative for mycoplasma
contamination before use. C2C12 cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM) containing 4.5 g l� 1 glucose with 10% fetal bovine serum
at 37 �C with 5% CO2. To induce differentiation, cells were planted on culture
plates coated with 0.1% gelatin, and when cell confluence reached 70%, the
medium was switched into differentiation medium (DMEM containing 2% horse
serum). After 4 days, multinuclear myotubes were formed.

To induce different types of muscle atrophy in vitro, cells were incubated
with 50mM Dex (or 100 ng ml� 1 TNF-a or 400 mM H2O2) in 2% horse serum in
DMEM for 24 h. After incubation, cells were harvested or used for morphological
analysis.

Myotube transfection was performed with Lipofectamine2000 Reagent
(Invitrogen) according to the manufacturer’s instructions. The mimic negative
control, miR-29b mimic, inhibitor negative control and miR-29b inhibitor were
bought from RiboBio. The transfection dosages of mimic and inhibitor were 50 and
100 nM, respectively. The transfection dosage of siRNAs for IGF-1 and Yy1 was
100 nM and the sequence was listed in Supplementary Table 2. The transfection
was performed after myotubes formed and 24 h later, Dex (or TNF-a or H2O2) was
added and cells were further cultured for 24 h.

Primary myoblasts isolation and differentiation. Primary myoblasts were iso-
lated from 3-week-old C57BL/6 mice. Briefly, hind limb muscles
were harvested, finely minced and then digested in collagenase solution. Cell
resuspension was pre-plated for 30 min to remove fibroblasts. Unattached cells
were collected in the growth medium for further application. To culture and induce
differentiation, the isolated primary myoblasts were differentiated for four days
with 5% horse serum solution on collagen-coated plates.

Luciferase reporter assays. The 30UTRs of IGF-1 and PI3K (p85a) gene were
amplified by PCR and inserted into the firefly luciferase reporter PGL3-basic
Vector (Promega). The primers used were as follows: IGF-1 30UTR, forward:
50-TCTAGAACAATGGTGCTATTTTGTAGTT TG-30 , reverse: 50-TCTAGAGG
AGGCCTTTGCATCTCCC-30 ; PI3K (p85a) 30UTR, forward: 50-TCTAGAACC
ATGGTGCTTGTTAACGC-30 , reverse: 50-TCTAGAC ACCCAGGCTACA
CCAG-30 (the bold part is the seed sequences). Mutation in the miR-29b target site
was generated by PCR from the plasmid PGL3-30UTR of IGF-1 or PI3K (p85a).
The primer used were as follows: IGF-1 30UTR mutation, forward: 50-TCTAGAA
CAAACCACGATTTTTGTAGTTTG-30 , reverse: 50-TCTAGAGGA GGCCTTT
GCATCTCCC-30 ; PI3K (p85a) 30UTR mutation, forward: 50-TCTAGAACCA
ACCACGATGTTAACGC-30 , reverse: 50-TCTAGACACCCAGG CTACACC
AG-30 (the bold part is the mutation seed sequences) and the underlined sequences
are the digestion sequences of XbaI.

HEK293T were co-transfected with 200 ng PGL3-basic-30UTR (or 30UTR mut),
5 ng Renila (used as an internal control) and 50 nM miR-29b mimic or mimic
negative control using Lipofectamine2000 Reagent in 24-well plates for 48 h. The
activation of firefly and Renila luciferase was analysed by a dual-luciferase reporter
assay Kit (Promega) according to the manufacturer’s instructions.

Plasmids. PI3K (P85a): pBS-p85a was a gift from Lewis Cantley (Addgene
plasmid # 1407). The sequence of an overexpressed IGF-1 was obtained from the
NCBI, and the gene fragment was obtained by PCR. The primers used were as
follows: forward 50-GGGGAATTCATGACCGCACCTGCAATAAAG-30 and
reverse 50-GGGTCTAGACTAGCCCAGTCTTTTTTCTCTG-30 . The CDS
sequences of IGF-1 were ligated into pEGFP-C3. The sequence of pre-miR-29b was
obtained from the NCBI, and the gene fragment was obtained by PCR. The primers
used were as follows: forward 50-GGGGGATCCACTTACTTCAGGGCTGT
ACACTCA-30 and reverse 50-GGGC TCGAGAGGTCAGCATAGGATCGC
CTG-30 . The sequences of pre-miR-29b were ligated into Fugw.

Quantitative real-time polymerase chain reactions. Total RNA extraction from
muscles and cells was performed by RNeasy Mini Kit (Qiagen), according to the
manufacturer’s instructions. The Bulge-Loop miRNA qPCR Primer Set (RiboBio)
was used to determine the expression levels of miRNAs by qRT–PCRs with Takara
SYBR Premix Ex Taq (TliRNaseH Plus) in a BioRad CFX96 Real-Time PCR
Detection System. 5S was used as an internal control. For mRNA analysis, cDNA
was synthesized using Takara PrimeScript 1st Strand cDNA Synthesis Kit and was
subjected to quantitative PCR with Takara SYBR Premix Ex TaqTM. 18S was used
as an internal control. The primer sequences used in this study were listed in
Supplementary Table 3. The relative expression level of gene or miRNA was
calculated using the 2�DDCt method.

Western blot. Protein samples were extracted from muscles or cells by using
RIPA buffer (KeyGEN, China) with a protease inhibitor cocktail (KeyGEN, China).
The concentration of protein sample was determined by the BCA Protein
Assay Kit (TaKaRa). Equal amounts of protein samples were separated by
SDS–polyacrylamide gel electrophoresis gel electrophoresis, and then were
transferred to polyvinylidene difluoride membrane. After that, the membranes
were blocked with 5% bovine serum albumin (BSA) for 1 h at room temperature.
Primary antibodies were incubated and a horseradish peroxidase-conjugated
secondary antibody was followed. The primary antibodies used were as follows:
IGF-1 (1:1,000, Bioworld Technology, Inc.), PI3K (p85a) (1:500, Cell Signaling
Technology, Inc.), YY1 (1:1,000, Proteintech, Inc.), FOXO3A (1:1000, Abclonal
Technology, Inc.), P-AKT (T308) (1:1,000, Cell Signaling Technology, Inc.),
P-AKT (S473) (1:1,000, Cell Signaling Technology, Inc.), AKT (1:1,000,
Proteintech, Inc.), P-FOXO3A (S253) (1:1,000, Cell Signaling Technology, Inc.),
P-FOXO1(T24)/FOXO3A(T32) (1:1,000, Cell Signaling Technology, Inc.),
P-mTOR (1:1,000, Cell Signaling Technology, Inc.), mTOR (1:1,000, Cell Signaling
Technology, Inc.), P-P70S6K (1:1,000, Cell Signaling Technology, Inc.), P70S6K
(1:1,000, Cell Signaling Technology, Inc.), P-4EBP1 (1:1,000, Abclonal Technology,
Inc.), 4EBP1 (1:1,000, Abclonal Technology, Inc.), p62 (1:1,000, Proteintech, Inc.),
LC3 (1:1,000, Sigma, Inc.), MHC (1:1,000, Developmental Studies Hybridoma Bank
(DSHB)), UBC(Ubiquitin) (1:1,000, Abclonal Technology, Inc.) and GAPDH
(1:10,000, Bioworld Technology, Inc.). All proteins were visualized by ECL
Chemiluminescent Kit (Thermo Fisher) and chemical luminescence of membranes
was detected by BioRad luminescent imaging system. Uncropped images of western
blots are available in Supplementary Fig. 10.

Stainings. Gastrocnemius muscle samples were freshly isolated and mounted in
4% paraformaldehyde (PFA). Serial transverse sections of muscle tissues with
10 mm thickness were subjected to haematoxylin–eosin (HE) staining using
commercial kit (KeyGEN, China). For PAS staining, the sections were incubated in
Periodate solution, and then stained with Schiff reagent using a PAS Staining Kit
following a protocol suggested by the manufacturer (Rongbio, China). For SDH
staining, muscle samples were obtained, flash frozen in O.C.T Compound (optimal
cutting temperature compound, Sakura) and cold isopentane, and cut at 10 mm
per section. The sections were dried at room temperature for 30 min, incubated in
0.05% nitroblue tetrazolium and 0.05 M sodium succinate in 0.05 M phosphate
buffer (pH 7.5) for 45 min at 37 �C, according to the instruction of SDH Staining
Kit (Rongbio, China).

To determine the diameter of myotubes in vitro, C2C12 myotubes were fixed by
4% PFA for 30 min at room temperature, permeabilized with 0.5% Triton X-100 in
PBS for 15 min, and then blocked with 5% BSA in PBST for 1 h at room
temperature. Myotubes were incubated with anti-MHC (MF-20, 1:100, DSHB)
diluted in 5% BSA overnight at 4 �C. After, myotubes were incubated with
secondary antibody Cy3-AffiniPure Rabbit Anti-Mouse IgG (Hþ L) (1:500,
Jackson) for 1 h at room temperature. Nuclear staining was performed with DAPI.
Images were captured by fluorescence microscope (Leica) and the diameter of
myotubes was measured by Image J.

For muscle fibre-type determination, gastrocnemius muscle samples were
obtained, flash frozen in OCT and cold isopentane, and cut at 10 mm per section.
The primary antibodies against MHCI (1:50, BA-F8), MHCIIa (1:50, SC-71) and
MHCIIb (1:50, BF-F3) were obtained from DSHB. The corresponding secondary
antibodies were obtained from Molecular Probes Thermo Fisher and listed as
follows: Alexa Fluor 350 anti-mouse IgG2b (A-21140), Alexa Fluor 488 anti-mouse
IgG1 (A-21121) and Alexa Fluor 555 anti-mouse IgM (A-21426). The protocol of
immunofluorescent stainings for MHCI (BA-F8), MHCIIa (SC-71) and MHCIIb
were the same as that for MHC. Images were captured by confocal microscope
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(Zeiss) and the percentage of MHCI-, MHCIIa- and MHCIIb-positive muscle
fibres to total muscle fibres was each calculated to determine muscle fibre type.

Creatine kinase activity assay. The creatine kinase activity in cultured medium
of C2C12 myotubes was measured by ELISA (Mouse Creatine Kinase, CK ELISA
Kit; Xinqidi, Wuhan, China). The culture medium of C2C12 myotubes was
harvested, vortexed and centrifuged at 10,000g for 10 min. The assay was carried
out in 96-well plates on 50ml of 1:50 diluted samples and then the Kit was used
following a standard procedure. Optical density was read at 450 nm by Microplate
reader (Bio-Rad) and a standard curve was obtained with standard sample.

miR-29b agomir injections in mice. miR-29b agomir (20OMEþ 50chol modified)
and negative control agomir (20OMEþ 50chol modified) (RiboBio) were used.
Intramuscular injection (25 nmol per mice) was performed once a day for 3 days.
After 4 days, all mice were killed and gastrocnemius muscles were removed,
weighed, frozen and stored in 4% PFA. The experiments were blindly performed by
the investigator who did not know the group allocation.

Grip-strength test. A digital grip-strength meter (YLS-13A, Yiyan Technology
Co. Ltd, China) was used to measure the grip strength of mice by following
a known protocol49. Mice were acclimatized for 10 min before the grip-strength
test began. Mice were allowed to grab the metal pull bar. The force at the time
of release was recorded as the peak tension. Each mouse was tested five times
with a 30 s break between tests. The experiments were blindly performed by the
investigator who did not know the group allocation.

mtDNA copy number measurement. The ratio of mtDNA to genomic DNA was
calculated by dividing copies of Co1 with copies of GAPDH in each experiment50.
Each 10ml reaction contained 0.5–2.0 ng of DNA extract, 1� SYBR green mix and
300 nM of each primer. Reactions were performed using a real-time PCR system:
95 �C for 10 min, followed by 50 cycles at 95 �C for 10 s, 55 �C for 15 s and 72 �C for
28 s. Fluorescence was measured during the last step of each cycle using the
FAM/SYBR channel. The primers used are as followed: Mt-Co1 forward primer:
50-CAGTCTAATGCTTACTCAGC-30 , reverse primer: 50-GGGCAGTTA
CGATAACATTG-30 ; GAPDH forward primer: 50-GGG AAGCCCATCAC
CATCTTC-30 , reverse primer: 50-AGAGGGGCCATCCACAGT CT-30 .

miR-29b sponge injections in mice. The corresponding base pairs for miR-29b
sponge regions (forward: 50-GATCCAACATGATTTTTTATGGTGCTACCGA
ACATGATTTTTTATGGTGCTAGCGAACATGATTTTTTATGGTGCTAC-30 ;
reverse: 50-TCGAGTAGCACCATAAAA AATCATGTTCGCTAGCACCATAA
AAAATCATGTTCGGTAGCACCATAAAAA ATCATGTTG-30) for miRNA
interference were designed and cloned into the FUGW cloning vector. Lentiviral
particles were generated and packaged using psPAX2 and PMD2.G. A single
intramuscular injection of lentiviral particles was performed at the dose of 108 TU
per mice. Three days after injection, denervation procedure was performed. Finally,
gastrocnemius muscles were removed, weighed, frozen and stored in 4% PFA after
another 5 days. The experiments were blindly performed by the investigator who
did not know the group allocation.

Statistical analysis. Results were presented as mean±s.e.m. An unpaired,
two-tailed Student’s t-test was used for comparisons between two groups. One-way
ANOVA test was performed to compare multiple groups followed by Bonferroni’s
post hoc test. All analyses were performed using GraphPad Prism 6.0. Differences
were considered significant with Po0.05.

Data availability. Data that support the findings of this study have been deposited
in Gene Expression Omnibus with the accession code GSE81914. All other relevant
data are available within the article and its Supplementary Information files and
from the corresponding authors on reasonable request.
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