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Abstract

Cluster-wise inference is widely used in fMRI analysis. The cluster-level statistic is

often obtained by counting the number of intra-cluster voxels which surpass a voxel-

level statistical significance threshold. This measure can be sub-optimal regarding the

power and false-positive error rate because the suprathreshold voxel count neglects

the voxel-wise significance levels and ignores the dependence between voxels. This

article aims to provide a new Integrated Cluster-wise significance Measure (ICM) for

cluster-level significance determination in cluster-wise fMRI analysis by integrating

cluster extent, voxel-level significance (e.g., p values), and activation dependence

between within-cluster voxels. We develop a computationally efficient strategy for

ICM based on probabilistic approximation theories. Consequently, the computational

load for ICM-based cluster-wise inference (e.g., permutation tests) is affordable. We

validate the proposed method via extensive simulations and then apply it to two

fMRI data sets. The results demonstrate that ICM can improve the power with well-

controlled family-wise error (FWE).
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1 | INTRODUCTION

In high-dimensional inference, handling multiple comparison problems

remains a popular topic due to its wide applications in scientific fields.

Cluster-wise inference is among the most commonly used multiplicity

correction approaches for functional magnetic resonance imagining

(fMRI) data analysis (Lindquist & Mejia, 2015). This method is a two-

step inference procedure including a voxel-level thresholding step to

binarize all voxels, and cluster-extent-based inference to decide the

cluster-level activation while controlling the family-wise error rate

(FWER; Eklund, Nichols, & Knutsson, 2016; Nichols & Holmes, 2002;

Poline & Mazoyer, 1993). Generally, inference is used to support the

claims of associations between covariates of interest and brain imag-

ing clusters (Bowman, Guo, & Derado, 2007; Lindquist, 2008). In prac-

tice, however, the cluster-wise FWER correction approach may lead

to inflated FWE (Eklund et al., 2016) due to the violation of model

assumptions. To mitigate the inflated error, several adjustment

methods have been developed (Eklund, Knutsson, & Nichols, 2019),

for example, the parametric voxel-wise inference, and Gaussian ran-

dom field theory based cluster-wise inference with corrected long

residual tail (Cox, Chen, Glen, Reynolds, & Taylor, 2017; Gopinath,

Krishnamurthy, Lacey, & Sathian, 2018).

In cluster-wise inference, the selection of both primary threshold

and cluster-wise threshold plays a critical role (Ge et al., 2021). In the
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traditional approach, the cluster-wise threshold is usually decided by

the cluster-extent, which is calculated by tallying the number of voxels

within the cluster (Lindquist & Mejia, 2015; Zhang, Nichols, &

Johnson, 2009). This computationally convenient criterion, however,

ignores the variation of p values beyond the predetermined threshold

and the dependence structure of voxels within the cluster. Due to the

information loss, the cluster-wise inference can be suboptimal regard-

ing the sensitivity and false-positive error rate (Eklund et al., 2016;

Woo, Krishnan, & Wager, 2014). To address this challenge, we

develop a new approach to calculate the cluster-wise significance by

integrating p values of voxels and cluster extent, while accounting for

the dependence structure between voxels.

The first step of our proposed method is built on statistical tech-

niques that combine the inference results of multiple hypothesis tests

(Heard & Rubin-Delanchy, 2018; Westberg, 1985; Zaykin,

Zhivotovsky, Czika, Shao, & Wolfinger, 2007). Various combining

methods, such as Fisher’s combined probability test (Fisher, 1992),

Stouffer’s statistic (Stouffer, 1949), Tippett’s method (Tippett, 1931),

and recent approaches with a Cauchy distribution (Liu & Xie, 2020) or

a harmonic mean p-value (Wilson, 2019), have been developed and

commonly used due to their good properties on consistency and accu-

racy (Alves & Yu, 2014; Brown, 1975; Chen et al., 2014; Liu &

Xie, 2020). Among the combining methods, Fisher’s method is the

earliest and the most popular one. It allows both independent and

dependent multiple tests because the summation of the log-

transformed p values can be established by an asymptotic Chi-sqaure

distribution (Hayasaka & Nichols, 2004; Lazar, Luna, Sweeney, &

Eddy, 2002; Winkler et al., 2016; Zhang et al., 2009), and numerical

methods with high accuracy are available to approximate its parame-

ters (Brown, 1975; Kost & McDermott, 2002).

In practice, combining methods are not directly applicable to our

application due to two major limitations. First, the dependence structure

in brain imaging data is spatially constrained (Derado, Bowman, &

Kilts, 2010). The existing combining methods do not fully address the

spatial dependence in brain imaging data. Even though the permutation

framework maintains the spatial structure and allows the unknown distri-

bution of the combining methods, (Hayasaka & Nichols, 2004;

Lindquist & Mejia, 2015) the accuracy of the combined statistics that rely

on parametric distributions for a given cluster can be compromised if the

correlations between voxels are high (Efron, 2007). The biased estima-

tion can make it hard to distinguish the noise and the signal of interest

(Leek & Storey, 2008). A second major limitation is that, in cluster-wise

inference, voxel-wise p values are restricted by their floating-point repre-

sentation; that is voxel-wise p values are often thresholded by a small

value no greater than .001 (Woo et al., 2014). Therefore, the cluster-wise

p values can be extremely small (<10�100) and thus we are unable to dis-

tinguish two clusters with similarly combined p values but carrying much

different information (e.g., sizes, voxel-wise p values, spatial dependence).

This is incompatible with the permutation test for controlling family-wise

error (FWE) and limits the overall utility.

To address the issues of information loss and computation com-

patibility, we developed a tailored method to incorporate the spatially

constrained dependence structure between voxels into combining

dependent p values of intra-cluster voxels. Additionally, we propose a

new strategy to substitute the exact cluster-wise p values with com-

putationally efficient probability bound. We further prove the log-

transformed probability bound has a monotonic relationship with the

exact cluster-wise p-value, and therefore can conveniently be adopted

by the permutation tests to accurately rank the significance levels of

clusters. Our method is also compatible with the Threshold-Free Clus-

ter Enhancement (TFCE) method (Smith & Nichols, 2009) because our

enriched significant level is a suitable substitute for the cluster extent.

Therefore, it can become a general tool for cluster-wise analysis.

We further organize the paper as follows. In Section 2, we intro-

duce our method with technical details. We provide a task-based

fMRI data example and a resting-state fMRI data example to demon-

strate the effectiveness of our statistic in Section 3. We then evaluate

the performance of our method through simulation studies in

Section 4. In the last section, we discuss and summarize the new

approach. Additional proofs, parameter derivations, and simulation

results are provided in the Appendix.

2 | METHODS

2.1 | Background

In fMRI analysis, our interest is to investigate the association between

clinical or experimental covariates and localized brain activation or

connectivity (to seed voxels). Conventionally, statistical analysis is

conducted on each voxel in the whole brain or in specified spaces. In

a simple case, it can be written in a general linear regression model

(GLM) framework. Consider a sample of i = 1,…, N subjects. There are

j = 1,…, V voxels in an fMRI scan for one subject, and each voxel con-

tains the localized measurement of brain activity as the outcome

YN�V. The subject-level covariates are denoted by XN�q, where

q represents the covariates, such as clinical status or demographic var-

iables. The corresponding parameters are given by βq�V. Consider one

specific covariate of interest. For i-th subject, Yi = Xiβ + ϵi, i = 1,…, N,

where β = (β1,…, βV)
0
and the error term is ϵi �N 0,Σð Þ. We wish to

simultaneously test the hypothesis

H0j : βj ¼0 versus HAj : βj ≠0

to search for the voxels that are correlated with the task/behavior.

Let XN�1 be the covariate of our primary interest, the corresponding

estimated parameter bβ�N β,Σβ
� �

where β = (β1,…, βV)
0

and

Σβ = Σ� (X
0
X)�1. The voxel-wise test statistics are denoted by T =

{t1,…, tV} and P = {p1,…, pV}, respectively.

Based on the voxel-level test statistics, the two-step cluster-wise

inference further extracts findings at the cluster-level, which gains

additional power (Nichols & Hayasaka, 2003). The primary

thresholding step is considered to be a screening step. With a given

threshold pθ (e.g., pθ < .001), the voxels can be written into the sets

V = V0 [ VA, where V0 = {v � V: pv > pθ} and VA = V\V0. At cluster

level, the inference is conducted on the clusters that are consisted of
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contiguous voxels in VA. Specifically, in a 3D volume, we denote the

clusters by c = 1,…, C, where each cluster c is a set of voxels satisfying

Vc = {vj � VA: all voxels in the cluster c with a neighbor}. Denote the

cardinality measure of Vc as nc: = jVcj. We remove the singletons from

VA to obtain all the clusters in V, which is given by V�
A ¼V1[…[VC .

We further conduct inference on the subsets in V�
A.

Each cluster c contains nc voxels with their test statistics

t cð Þ
j , j¼1,…,nc, significance levels p cð Þ

j and dependence structure Σβ
(c). Our

ICM utilizes all of above information and provides a computationally conve-

nient significance level. The general procedure is described in Figure 1.

In particular, each piece of the information is described as below:

1. Cluster-extent: This is the cardinality measure of the set Vc, which

is given by nc.

2. Voxel-wise Statistical Significance Levels: For cluster c, voxels within

Vc have p values Pc ¼ p cð Þ
1 ,…,p cð Þ

nc

n o
. We use the significant level of

each voxel to represent the association strength between a voxel

and the regressor of interest.

3. Dependence Structure: The covariance structure of estimated

parameter bβ in cluster c is denoted by Σβ
(c).

The cluster-extent and the association strength are widely used sta-

tistics in the random field theory based methods, which can efficiently

accommodate either focal or spatially extended signals (Poline, Worsley,

Evans, & Friston, 1997; Worsley, Evans, Marrett, & Neelin, 1992; Zhang

et al., 2009). Here, we provide the cluster-level statistic that incorporates

the spatial dependence in addition to the cluster-extent and the associa-

tion strength from all voxels within the cluster.

2.2 | Cluster-wise statistic combining p values of
voxels with dependence

2.2.1 | A probabilistic model of combining
dependent p values

Given a cluster c with nc voxels, we have a set of dependent p values

Pc ¼ p1, � � �,pnc
� �

. When voxels are independent, Fisher’s method can

be used to compute the sum of log-transformed p values:

Ψc ¼�2
Pnc
j¼1

logpj � χ22nc . However, Pc ¼ p1, � � �,pnc
� �

are dependent in

our application because voxels are correlated in a cluster. Therefore,

Ψc ¼�2
Pnc
j¼1

logpj follows a scaled Chi-square distribution aχ2f , where

a is the scale parameter and f denotes the the degree of freedom (df;

Brown, 1975).

Thus a and f can be calculated based on the first two moments of

Ψc and aχ2f . Specifically, we have

a¼Var Ψcð Þ= 2E Ψcð Þ½ �, f¼2 E Ψcð Þf g2=Var Ψcð Þ:

In the above formula, E(Ψc) = 2nc is determined by the cluster

extent, while Var Ψcð Þ¼P
j,k
cov �2logpj,�2logpk
� �

and each entry

cov �2logpj,�2logpk
� �

can be calculated based on correlation

between j-th and k-th voxels rjk ¼ corr bβj ,bβk� �
(Kost &

McDermott, 2002; Krylov & Stroud, 2006). The rjk can either be calcu-

lated empirically from the data sample or approximated by a paramet-

ric model with spatial information (e.g., Matérn correlation). The

detailed procedure for estimating rjk is provided in the Appendix A.

We denote Rc as the correlation matrix for the estimated parame-

ters of interest β̂ in cluster c. Thus, Rc ¼D�1=2
c Σ cð Þ

β D�1=2
c where

Dc = diag(Σβ
(c)). Let Uc be approximated by

Uc ≈4Icþ3:263Lcþ0:71L
	2
c þ0:027L

	3
c , ð1Þ

where Lc = Rc � Ic, Ic is the identity matrix of size nc, and “∘” is

Hadamard product. Numerically, we have Var(Ψc) ≈ 1c
TUc1c, where 1c

is a nc � 1 vector of ones, and the coefficients are approximated by

polynomial regression models with accuracy 10�4. (Brown, 1975;

Kost & McDermott, 2002).

We further let the cluster-wise statistic of dependent p values be

Tc ¼ Ψc
a , and the corresponding p-value for the cluster c is

pc ¼1�φf Tcð Þ ð2Þ

where φf is the CDF of χ2f . The cluster-wise p-value pc in Equation (2)

integrates the three important features of a cluster because (a) the

test statistic Ψc is the sum of voxel-level significance Pc ¼ p1, � � �,pnc
� �

;

F IGURE 1 An overview of ICM: we first integrate nc, Pc, Σβ
(c) for cluster c to compute a statistic aχ2f asymptotically following a scaled Chi-

square distribution. We use the corresponding p-value Pc instead of the df-based test statistic because p values can be compared between
clusters with different sizes. Lastly, the log-transformable Chernoff bound for Pc is derived to overcome the floating-point limitation for extremely
small values of Pc, which are common for fMRI clusters
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and (b) the scale parameter and df of the reference χ2-distribution reflect a

combination of the cluster extent nc and covariance between voxels Σ(c).

2.2.2 | An approximate bound for cluster-wise pc

In practice, the cluster-wise p-value pc can be extremely small

(e.g., pc < 10�100) for a commonly observed cluster of hundreds of

voxels. However, the cumulative probability function in most software

yields a cluster-wise p-value equal to 0 regardless of the true pc. This

may cause a serious issue for the following multiple testing correction

when controlling the family-wise error rate. For example, in a permu-

tation test, cluster-wise p values for two cluster c and c0 are both

0 based on the software cumulative probability function, although

pc ≠ pc0. The indistinguishable p values in permutation iterations can

prohibit the proper inference of permutation test, and thus limit the

practical utilization of the proposed cluster-wise p-value method. To

address this issue, we use a computationally efficient probabilistic

bound as a valid approximate for the exact pc and provide its mono-

tonic property with pc.

In the light of pc being a tail-end area of the χ2f distribution, we

apply the Chernoff bound, which is an exponentially decreasing

power-law bound on tail-distributions to approximate pc

(Chernoff, 1952). Obtaining from the moment generating function of

χ2f , the probabilistic bound of φf(Tc) is given by

P χ2f ≥ Tc
� �

≤ Tc
f

� �f=2
exp f�Tc

2

� �
. The RHS of the inequality is the

Chernoff upper bound for the significance level pc, denoted by pChrfc .

Thus, our integrated cluster-wise significance measure (ICM) can be

calculated by

pChrfc ¼ Tc

f

� 	 f
2

exp
f�Tc

2

� 	
ð3Þ

where the calculation details of f, Tc are given in the last

section (Brown, 1975; Kost & McDermott, 2002). Thus, Equation (3)

is a closed-form approximate for the pc. We have the Lemma 1 (proof

in Appendix B.1) to ensure pChrfc is a monotonic function of pc, and

thus can substitute pc by log-transformed pChrfc in the permuta-

tion test.

Lemma 1. Let two clusters c1 and c2 have approximated

df satisfying fc1 ¼ fc2 . If pc1 < pc2 , the Chernoff bound for

pc1 ,pc2 satisfy p
Chrf
c1

< pChrfc2
.

2.2.3 | An integrated measure for cluster-wise
significance

The proposed ICM pChrfc integrates the information of cluster-extent,

voxel-wise statistical significance levels, and spatial dependence

between voxels within the cluster. In particular, we let

ρc = 1c
T(Uc�4Ic)1c, Uc referring to Equation (1), which is the summa-

tion of the off-diagonal elements in the correlation matrix. Note that

we use ρc to represent the spatial dependence so that we can exclude

the cluster-extent effect.

We re-write the ICM pChrfc for cluster c as a function of nc, Pc and

ρc as follows.

Cluster extent : g1 nc,Pc,ρcð Þ¼ nc

Voxel-wise Statistical Significance Levels : g2 nc,Pc,ρcð Þ¼�2
Xnc
j¼1

logpj

Spatial Dependence : g3 nc,Pc,ρcð Þ¼ ρc

Based on g(nc, Pc, ρc) = (g1(nc, Pc, ρc), g2(nc, Pc, ρc), g3(nc, Pc, ρc)),

we have the composite function

pChrfc ¼ p	gð Þ nc,Pc,ρcð Þ¼
�2
Pnc
j¼1

logpj

2nc

0BBB@
1CCCA

4n2c
4ncþρc

exp

2nc 2ncþ2
Pnc
j¼1

logpj

 !
4ncþρc

ð4Þ

where “∘” is the function composition operator and

p gð Þ¼ g2
2g1

� � 4g2
1

4g1þg3exp2g1 2g1�g2ð Þ
4g1þg3

. Through this derivation, the calculation

of pCherfc is fairly straightforward and can be conveniently implemented

in various software packages. As the pCherfc has a complicated form, we

explore some noticeable properties by its statistical parameters in the

next section.

2.3 | Properties of ICM

The ICM is jointly decided by the cluster-extent, voxel-wise statistical

significance levels, and spatial dependence. In this section, we specifi-

cally explore the relationships between ICM and these three factors,

and thus better understand their joint influence on pCherfc instead of nc

alone in classical cluster-wise inference. Based on Lemma 1, we have

Theorem 1 showing that a smaller average intra-cluster voxel-wise p-

value can lead to a lower pCherfc value. Theorem 2 states that a larger df

results in a more significant pCherfc value. Proposition 1 adds a more

restricted condition on Theorem 2, which concludes that the higher

dependence leads to a less signficant pCherfc value. All proofs are pro-

vided in the Appendix B.

We firstly provide a visualized demonstration of pChrfc on a 3D sur-

face in Figure 2. The average p-value is the mean of voxel-wise signifi-

cance levels, while we use the average correlation to represent the

general dependence level of a cluster. The scale is adjusted to loga-

rithm base 10 for the convenience.

To begin with, we consider a fixed df and evaluate the effect of

average intra-cluster voxel-wise p-value, sc ¼ Ψc
nc

on ICM. With a given

df, we have Theorem 1 as follows.

Theorem 1. Let two clusters c1 and c2 have approxi-

mated df satisfying fc1 ¼ fc2 . For their average signal

strength, if sc1 < sc2 , the Chernoff bound for pc1 ,pc2 sat-

isfy pChrfc1
> pChrfc2

.
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We further use a simulation data example to demonstrate this

property in Appendix C.

Since df is jointly determined by the cluster extent and depen-

dence, we evaluate this joint effect with a fixed sc value.

Theorem 2. Let two clusters c1 and c2 have same aver-

age signal strength sc1 ¼ sc2 . If fc1 < fc2, then the

Chernoff bound for pc1 ,pc2 satisfy pChrfc1
> pChrfc2

.

Under fixed sc, the pChrfc tends to be smaller with larger

approximated df.

If we further restrict two clusters to have the same cluster size

based on Theorem 2 condition (i.e., fixed sc), we can conclude Proposi-

tion 1 on the total dependence.

Proposition 1. Given the ratio sc ¼ Ψc
nc

and cluster size nc

fixed, the pChrfc is increasing if the total dependence ρc is

increasing.

The proposition explains the phenomenon that the higher

smoothness level leads to a less significant pChrfc value.

In summary, the ICM pChrfc is more significant for a cluster with

stronger average signal, larger cluster extent, and less dependence

between voxels. In the data example and simulations, we show that

ICM can outperform conventional cluster-wise inference methods.

3 | DATA EXAMPLES

To provide real-data demonstrations of the ICM, we performed

cluster-wise inference on both task-based and resting-state fMRI(rs-

fMRI) data sets. The task-based study involved the collection of brain

and behavioral data related to reinforcement learning, and we aim to

evaluate ICM and the cluster-extent method for sensitivity and repro-

ducibility. We also conduct seed-voxel based Function Connectivity

(rsFC) analysis on rs-fMRI data to explore the FWE-control perfor-

mance of ICM.

3.1 | Dataset 1: Reinforcement learning task-based
fMRI study

We apply ICM to a full task-based fMRI dataset (with all participants

included) as well as a sub-sample determined through random selec-

tion. We intend to see (a) if ICM can potentially detect more biologi-

cally meaningful regions, and (b) if the detected regions from full

sample and sub-sample are consistent.

3.1.1 | Data preparation

Task-based fMRI data on reinforcement learning (RL) were collected

from 26 schizophrenia patients (SZ) and 26 healthy volunteers (HV) at

the University of Maryland Center for Brain Imaging Research. Nine-

teen participants were female. The average age of all participants was

36 ± 12, with no difference between gender groups (p = .71) or

patient-control groups (p = .68). The participants learned three proba-

bilistic discriminations, including the potential gain (gain/miss [GM]),

nonmonetary (correct/incorrect [CI]), and potential loss (loss/avoid

[LA]). Participants performed 240 trials over the course of four runs of

60 trials, and the functional MRI data were acquired simultaneously

with task performance.

A 3T Siemens Trio scanner (Erlangen, Germany) was used to mea-

sure T2*-weighted blood oxygen level-dependent (BOLD) effects with

the following parameters: 81 2-mm axial slices, 128 � 128 matrix,

FOV = 22 � 22 cm, TR = 2 s, 1.5 � 1.5 � 1.5 mm voxel size. A

whole-brain T1-weighted structural image was also acquired in each

session for anatomical reference. Voxel time series were normalized

with the AFNI software package. The subject-specific beta coeffi-

cients were obtained from two sets of regression analyses. One set

contains binary regressors corresponding to three probabilistic dis-

criminations (GM, CI, and LA) and two possible outcomes (gain/neu-

tral, neutral/loss, and correct/incorrect); the other set has parametric

regressors that are derived from the results of individual behavior for

estimation of reward prediction errors (RPEs), which signal mis-

matches between expected and obtained outcomes. In addition,

head-motion vectors were included in each regression model as

regressors of no interest (Waltz et al., 2018).

3.1.2 | Data analysis

The Aberrant Salience Inventory (ASI) is a measure of unusual experi-

ences of salience in the environment, as well as general psychosis

F IGURE 2 Relationship between pChrfc and cluster extent (x-axis),
average p-value (y-axis), average correlation within-cluster (z-axis).
Cluster extent ranges from 1 to 200; average p-value ranges from
0.0005 to 0.01; average correlation within-cluster ranges from 0.4 to
0.9. pChrfc scale is adjusted to logarithm base 10
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proneness among clinical and nonclinical participants (Cicero, Kerns, &

McCarthy, 2010). We perform a voxel-wise regression analysis across

all participants with ASI total score as our primary regressor of inter-

est, and age, gender, group, and educational level as nuisance regres-

sors. We aimed to identify regions whose activity modulates the

relationship between psychosis proneness and evoked responses to

RPEs. For more rigorous FWE-control, we applied a voxel-level pri-

mary threshold of p < .0001, before performing permutation testing

(controlled at FWE < 0.05) on supra-threshold voxels to generate the

cluster-extent threshold and ICM threshold. We also applied other

combining p methods that do not specifically account for the spatial

dependence, such as combined p approximated by Cauchy distribu-

tion (denoted by pCauchy), and uncorrected Fisher’s combined

p (denoted by pFisher).

To validate the reproducibility of ICM, we randomly sampled

36 subjects from the full sample (18 SZs and 18 HCs). The primary

regressor of interest and adjusted covariates remain the same, as well

as the primary threshold p < .0001 and the entire cluster-wise infer-

ence procedure. We aim to compare the findings from the sub-sample

with those from the full sample.

3.1.3 | Results

We identified associations between individual ASI scores and neural

responses evoked by RPEs in two regions: (1) right middle temporal

gyrus and (2) right inferior temporal gyrus. Cluster (1) had 238 voxels,

and the peak voxel is at (64, �50, �4). Cluster (2) had 116 voxels, and

the peak voxel is at (51, �18, �37). Detailed information of the clus-

ters are summarized in Table 1. A demonstration of the above regions

on a 3D surface model (Kochunov et al., 2001; Lancaster et al., 2010,

2012) is given in Figure 3.

We then compared the findings using ICM threshold with those

using the cluster-extent threshold and other combining p methods

pCauchy and pFisher, controlling the FWE at α = .05. The cluster-extent

threshold is 135, which excludes the cluster (2) at inferior temporal

gyrus. The pCauchy and pFisher thresholds tend to be so stringent that

no cluster can pass their threshold.

In the sub-sample, the ICM detects one activated region with

cluster size 167, locating at right inferior temporal gyrus. Refer to

Table 1 and Figure 4 for details of the finding. This cluster overlapped

to a large degree with the Cluster (2) in the full sample. We computed

the Jaccard index of this activated cluster in the sub-sample and Clus-

ter (2) in the full sample at 0.44. No cluster passes the cluster-extent

threshold in this sub-sample.

3.1.4 | Remarks

We further explored the biological features of the regions

detected in the full sample and sub-sample. The two regions dis-

covered in the full sample are involved in various cognitive pro-

cesses, including the multi-modal sensory integration on two

regions together, language and semantic memory processing on

middle temporal gyrus, and visual perception on inferior temporal

gyrus (Cabeza & Nyberg, 2000; Chao, Haxby, & Martin, 1999;

Herath, Kinomura, & Roland, 2001; Ishai, Ungerleider, Martin,

Schouten, & Haxby, 1999; Mesulam, 1998; Onitsuka et al., 2004;

Tranel, Damasio, & Damasio, 1997). It has been established that

patients with a history of psychosis have elevated ASI (Cicero

et al., 2010; Raballo et al., 2019). Similar studies on functional def-

icits that are associated with abnormal RPE are often reported

among schizophrenia patients in those regions (Boehme

et al., 2015; Murray et al., 2008; Roiser, Howes, Chaddock,

Joyce, & McGuire, 2013; Takemura, Samejima, Vogels, Sakagami, &

Okuda, 2011).

3.2 | Dataset 2: rs-fMRI data with noninformative
covairates

In this experiment, our goal is to empirically measure the capability of

controlling FWER when no true signal presents. The rsFC analysis was

performed, where a 10 mm spherical seed was placed centering on

the posterior cingulate cortex (PCC) at (�5, �49, 40), and the correla-

tions were calculated and normalized (with Fisher’s Z transformation)

between the rest of voxels and the seed. The treatment was chlor-

promazine (CPZ) equivalent daily dose (Ge et al., 2021; Hare

et al., 2017, 2021). We randomly shuffled the treatment covariate to

generate false-positive clusters.

TABLE 1 Significant clusters information detected by ICM: (a) when sample size is full (n = 52) and (b) when sample size is two third of the
full sample (n = 36)

Sample size Clusters Size
MNI: Peak voxel
(x, y, z) BA Label Function

n = 52 Cluster 1 238 65, �51, �7 R21 Right middle temporal gyrus Cluster 1&2 together subserve language

and semantic memory

Cluster 2 116 51, �17, �45 R20 Right inferior temporal gyrus Processing, visual perception, and

multimodal sensory integration.

n = 36 Cluster 1 167 62, �59, �8 R37&R20 Right inferior temporal gyrus Processes visual stimuli and memory recall

Abbreviations: BA, Brodmann Area; MNI, Montreal Neurological Institute; R, right.
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3.2.1 | Data preparation

We collected resting-state fMRI (Rs-fMRI) data of 92 schizophrenia

patients (SZs) at University of Maryland Center for Brain Imaging

Research. The average age of the SZ cohort was 35.5 ± 13.2, including

26 females. The T2*-weighted BOLD effects were measured by a Sie-

mens 3T TRIO MRI (Erlangen, Germany) system equipped with a

32-channel phase array head coil. The imaging parameters were given

as follows: TR = 2 s, TE = 30 ms, flip angle = 90
	
,

FOV = 22 � 22 mm, 128 � 128 matrix, 3 � 3 � 3 mm voxel size.

Rs-fMRI data was preprocessed with the Data Processing & Anal-

ysis for (resting-state) Brain Imaging (DPABI) toolbox (Yan, Wang,

Zuo, & Zang, 2016). The raw data underwent motion correction, slice-

timing correction, and normalization to the MNI space. Regression

models on motion parameters and physiological signals were also

applied to ensure the spurious motion and physiological artifacts did

not drive observed effects in the statistical analyses. Images were

smoothed with an 8 mm FWHM Gaussian kernel. Framewise displace-

ment was calculated for each image to differentiate head realignment

parameters, which generates a six-dimensional time series to repre-

sents the head motion (Power, Barnes, Snyder, Schlaggar, &

Petersen, 2012). All individuals have mean framewise displacement

<0.25 to control the potential confounding from the motion artifacts.

3.2.2 | Data analysis

In our current study, we only randomly shuffled the CPZ dose values

and kept other variables unchanged. Through this step, any activation

would be considered as false positive. We conducted study with pri-

mary threshold p < .005, p < .001, p < .0005, and performed permuta-

tion test with FWE controlled at 5%.

3.2.3 | Results

Among 100 random samples, the ICM and pCauchy yielded to a well-

controlled FWE while the cluster-extent threshold resulted in a much

inflated FWER (Table 2). The FWE-control for pFisher is not applicable

due to the computational restriction of the software. Specifically, the

minimal cluster-wise pFisher p values for most permutation iterations

are 0 and thus not distinguishable from each other.

F IGURE 3 Panels (a) and
(b) together show the two activated
regions discovered by ICM. On 3D
surface model in (a), the regions are
displayed and circled out with
different colors. In (b), three views of
each cluster are displayed, respectively

F IGURE 4 Panels (a) and
(b) together show the activated
regions discovered by ICM. On 3D
surface model in (a), the region is
displayed and circled out with green.
This finding matches the Cluster 2 in
Figure 3
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The ICM identifies consistent significant clusters from a full sam-

ple to its sub-sample. It also strictly controls FWER at its given levels

(e.g., 5%). Therefore, our ICM provides a convenient alternative with

improved sensitivity and well-controlled false positive rate.

4 | SIMULATION

To evaluate the performance of the proposed ICM, we conduct simu-

lation studies with different types of imaging patterns. We further test

ICM on its ability of excluding the FWER. We also evaluate the effect

of primary threshold on the ICM.

We apply a commonly-used two-group (i.e., cases vs. controls)

scenario, which can be easily extended to the regression setting. We

generate two-dimensional images contain 100 � 100 = 10,000

voxels with a common setting that the voxels from null set follow a

normal distribution N(0, 1) in both groups, while the non-null voxels

in case group follow a normal distribution N(μ, 1). The signal-to-

noise ratio (SNR) is the reciprocal of the coefficient of variation,

given by SNR = μ/σ, where the σ = 1 allows the difference of group

means to be the true positive effect size (ES) which is equivalent to

Cohen’s d. All the images are smoothed with a Gaussian filter, with

FWHM equivalent to 4, 6, or 8 mm. These smoothness levels simu-

late the popular smoothing kernels in the real fMRI data. We further

let the number of subjects per group be 30, 60, and 100 to test the

performance on different sample sizes. Major criteria are voxel-wise

true positive rate (TPR), true discovery rate (TDR), and cluster-

wise FWER.

4.1 | General performance under common
distribution patterns

We first test the general performance of ICM on the images with the

commonly seen distribution patterns.

4.1.1 | Pattern I

The underlying truth for Pattern I contains a squared area

N0 = 7 � 7 = 49 voxels in the center, see Figure 5a left. Images are

smoothed with FWHM = 4 mm, ES = 0.4, 0.6, and 0.8; FWHM = 6

or 8 mm, ES = 0.2, 0.4, and 0.6. We compare the results with cluster-

extent threshold results. The primary threshold is p < .001. In this pat-

tern, we calculate the voxel-wise TPR and TDR, and cluster-

wise FWER.

4.1.2 | Pattern II

The Pattern II has irregular-shaped underlying truth. In a three-

dimensional brain space, the sensitivity (TPR) and the precision

(TDR) are both important since the false positive voxels within a

significant cluster can extend the detected region to multiple

brain areas that are correlated with different functions. The

underlying truth consists of four identical Gaussian blobs. Each

blob ends up with irregular shape and the strength of signal

decreases steady from center to margin. They are placed in the

center with equal distance, see Figure 5a, right. The truth con-

tains 121 � 4 = 484, 169 � 4 = 676, and 225 � 4 = 900 voxels

voxels based on the smoothness levels FWHM = 4 mm, 6 mm,

and 8 mm accordingly. We add ES = 0.2 and 0.4 in this pattern,

and further compare our method with TFCE because both

methods provide an output that represents the local spatial sup-

port from nearby neighborhood. We calculate the voxel-wise TPR

and TDR in this pattern.

4.1.3 | Pattern III

In particular, we want to test the performance on images with intense

and focal signal (FWHM = 8 mm) as we find out the TPR goes down

due to the exclusion of small true clusters when cluster extent is the

only selection criteria. We set up the underlying truth to be a squared

area in the center with N0 = 3 � 3 = 9 voxels, which has a very high

chance not passing the cluster-extent threshold. The signal strength is

set to ES = 0.4 and 0.6. We calculate the voxel-wise TPR and TDR,

and cluster-wise FWER in this pattern.

The results are listed in Tables 3–5. In Pattern I, the ICM con-

trols the FDR and FWER significantly better than the cluster-extent

threshold. Sharing the same primary threshold, the sensitivities

given by our ICM and cluster-extent threshold are roughly the same,

though ICM has smaller failure rate on detecting the true signals

when ES and sample size are small, which leads to a slightly higher

TPR in some cases. In Pattern II, the ICM has higher sensitivity when

the smoothness level is low (e.g., FWHM = 4 mm). At medium to

TABLE 2 Performance of FWE-
control

Primary threshold

p < .005 p < .001 p < .0005

FWER

ICM 6% (1%, 11%) 7% (2%, 12%) 5% (1%, 9%)

Cluster extent 20% (12%, 28%) 22% (14%, 30%) 20% (12%, 28%)

pFisher NA NA NA

pCauchy 5% (1%, 11%) 7% (2%, 12%) 7% (2%, 12%)
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high ES, the sensitivity of ICM is increasing as the sample size

increases. Pattern III results are shown in Table 4. The cluster-extent

method shows a high failure rate and FWER while ICM retains high

sensitivity and a well-controlled FWER. In general, all methods dem-

onstrate high sensitivity when the ES is high in both Pattern I and

Pattern II. The FDR increases when the ES is higher in Pattern II

because the smoothed true signal can influence more neighboring

voxels. The ICM outperforms popular existing methods on control-

ling the voxel-wise FDR and cluster-wise FWER, and can maintain a

fairly well sensitivity when the smoothness level and ES are

both low.

4.2 | Examining FWER when βv = 0 for all v’s

We further generate images with zero ES (the underlying truth is null)

to assess the capability of controlling FWE. The voxels in the original

image follow a normal distribution N(0, 1), and then we apply the

Gaussian filter on each image using FWHM = 4, 6, and 8 mm. The

FWER is controlled at α = .05.

From the results in Table 6, the ICM controls FWER well around

5% in most situations, while the cluster-extent threshold has a much

inflated FWER than the α-level.

4.3 | Evaluating the impact from various primary
thresholds

Since the performance of ICM in previous analysis can be affected

by the selection of primary threshold, we further evaluate ICMs per-

formance under various primary thresholds. In the meantime, we

compare the results given by cluster-extent threshold and TFCE.

The underlying truth is a combination of Pattern I through Pattern

III: a cluster of 7 � 7 = 49 voxels and a cluster of 3 � 3 = 9 voxels

F IGURE 5 Underlying truth is displayed in (a). An example of corresponding smoothed image for simulation studies is displayed in (b). Each
column corresponds to one setting
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with Pattern I distribution, a cluster of 9 � 9 = 81 voxels, and a clus-

ter of 3 � 3 = 9 voxels with Pattern II distribution. The ES is set to

0.4, and we present the result of smoothness level at

FWHM = 6 mm.

The FDR, TPR, and FWER for ICM and cluster-extent threshold

at different primary threshold values are displayed in Figure 6. In gen-

eral, the ICM controls the cluster-wise FWER better than cluster-

extent threshold. At voxel level, the ICM has a higher sensitivity and a

TABLE 3 Simulation result for Pattern I: general performance under a common distribution pattern: A squared area with N0 = 7 � 7 = 49
voxels in the center is set as underlying truth

30 per arm 60 per arm 100 per arm

pChrfc Cluster extent pChrfc Cluster extent pChrfc Cluster extent

FWHM = 4 mm

ES = 0.4

TPR 0.890 ± 0.089 0.890 ± 0.089 0.998 ± 0.009 0.998 ± 0.009 1 1

FDR 0.009 ± 0.026 0.020 ± 0.041 0.004 ± 0.017 0.012 ± 0.030 0.005 ± 0.021 0.017 ± 0.034

FWER 8% 18% 2% 11% 2% 17%

ES = 0.6

TPR 0.999 ± 0.002 0.999 ± 0.002 1 1 1 1

FDR 0.004 ± 0.017 0.008 ± 0.024 0 0.001 ± 0.009 0.007 ± 0.026 0.017 ± 0.039

FWER 4% 9% 0 1% 6% 17%

ES = 0.8

TPR 1 1 1 1 1 1

FDR 0.003 ± 0.014 0.010 ± 0.027 0.002 ± 0.011 0.007 ± 0.023 0.001 ± 0.010 0.002 ± 0.013

FWER 3% 11% 3% 8% 0 1%

FWHM = 6 mm

ES = 0.2

TPR 0.560 ± 0.173 0.540 ± 0.182 0.929 ± 0.101 0.928 ± 0.106 0.998 ± 0.009 0.998 ± 0.009

FDR 0.021 ± 0.066 0.022 ± 0.065 0.006 ± 0.032 0.017 ± 0.054 0.005 ± 0.022 0.011 ± 0.037

FWER 9% 10% 4% 6% 2% 6%

ES = 0.4

TPR 0.999 ± 0.005 0.999 ± 0.005 1 1 1 1

FDR 0.001 ± 0.004 0.005 ± 0.026 0.005 ± 0.023 0.006 ± 0.027 0.008 ± 0.033 0.011 ± 0.039

FWER 0 3% 2% 3% 4% 6%

ES = 0.6

TPR 1 1 1 1 1 1

FDR 0 0.006 ± 0.030 0.004 ± 0.023 0.012 ± 0.043 0.002 ± 0.014 0.008 ± 0.035

FWER 0 4% 1% 6% 1% 5%

FWHM = 8 mm

ES = 0.2

TPR 0.847 ± 0.187 0.856 ± 0.170 0.999 ± 0.008 0.999 ± 0.008 1 1

FDR 0.006 ± 0.038 0.006 ± 0.040 0.005 ± 0.028 0.017 ± 0.060 0.007 ± 0.043 0.015 ± 0.061

FWER 2% 2% 2% 7% 2% 6%

ES = 0.4

TPR 1 1 1 1 1 1

FDR 0.013 ± 0.055 0.029 ± 0.075 0.006 ± 0.033 0.018 ± 0.057 0.008 ± 0.042 0.012 ± 0.052

FWER 5% 13% 2% 8% 2% 4%

ES = 0.6

TPR 1 1 1 1 1 1

FDR 0.008 ± 0.043 0.021 ± 0.065 0.009 ± 0.043 0.026 ± 0.073 0.007 ± 0.035 0.009 ± 0.043

FWER 3% 9% 4% 11% 2% 3%
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lower FDR. For TFCE, the sensitivity is 0.966, the FDR equals 0.122,

and the FWER is 4%. Our ICM has a consistently well control on FDR

and FWER, and improved sensitivity when the primary threshold is

slightly loosen.

5 | DISCUSSION

Cluster-wise inference is one of the most common approaches in

fMRI analysis in recent years. We report on the development of a

TABLE 4 Simulation result for Pattern II: general performance under a common distribution pattern: Four identical Gaussian blobs with
121 � 4 = 484 (FWHM = 4 mm), 169 � 4 = 676 (FWHM = 6 mm), and 225 � 4 = 900 (FWHM = 8 mm) voxels are set as underlying truth

30 per arm 60 per arm 100 per arm

pChrfc TFCE pChrfc TFCE pChrfc TFCE

FWHM = 4 mm

ES = 0.2

TPR 0.239 ± 0.056 0.477 ± 0.060 0.603 ± 0.040 0.849 ± 0.027 0.851 ± 0.025 0.966 ± 0.012

FDR 0.030 ± 0.030 0.030 ± 0.015 0.027 ± 0.013 0.039 ± 0.016 0.029 ± 0.014 0.054 ± 0.016

FWER 2% 4% 0 2% (2 miss out) 4% 8%

ES = 0.4

TPR 0.709 ± 0.041 0.975 ± 0.010 0.960 ± 0.013 0.999 ± 0.002 0.996 ± 0.003 1

FDR 0.009 ± 0.006 0.063 ± 0.019 0.019 ± 0.008 0.124 ± 0.019 0.043 ± 0.011 0.187 ± 0.016

FWER 2% 4% 2% 0 (3 miss out) 0 4%

ES = 0.6

TPR 0.970 ± 0.014 0.999 ± 0.001 0.999 ± 0.001 1 1 1

FDR 0.020 ± 0.008 0.127 ± 0.024 0.066 ± 0.014 0.221 ± 0.015 0.141 ± 0.015 0.261 ± 0.008

FWER 0 4% 2% 2% 0 2%

FWHM = 6 mm

ES = 0.2

TPR 0.316 ± 0.079 0.819 ± 0.053 0.745 ± 0.045 0.966 ± 0.013 0.919 ± 0.020 0.995 ± 0.004

FDR 0.007 ± 0.011 0.059 ± 0.03 0.019 ± 0.011 0.107 ± 0.027 0.034 ± 0.013 0.166 ± 0.024

FWER 0 12% (4 miss out) 0 4% 0 4%

ES = 0.4

TPR 0.938 ± 0.012 0.997 ± 0.003 0.995 ± 0.003 0.999 ± 0.001 1 1

FDR 0.040 ± 0.013 0.177 ± 0.027 0.119 ± 0.016 0.254 ± 0.022 0.191 ± 0.012 0.286 ± 0.021

FWER 0 4% 0 2% 2% 2%

ES = 0.6

TPR 0.996 ± 0.003 0.999 ± 0.001 1 1 1 1

FDR 0.128 ± 0.017 0.259 ± 0.020 0.219 ± 0.007 0.302 ± 0.020 0.249 ± 0.007 0.336 ± 0.018

FWER 0 4% 0 0 2% 2%

FWHM = 8 mm

ES = 0.2

TPR 0.626 ± 0.058 0.954 ± 0.021 0.903 ± 0.021 0.996 ± 0.003 0.974 ± 0.007 0.999 ± 0.001

FDR 0.026 ± 0.014 0.145 ± 0.037 0.048 ± 0.016 0.223 ± 0.036 0.099 ± 0.018 0.286 ± 0.028

FWER 0 2% 2% 8% 4% 12%

ES = 0.4

TPR 0.982 ± 0.007 0.999 ± 0.001 0.999 ± 0.001 1 1 1

FDR 0.114 ± 0.017 0.297 ± 0.028 0.210 ± 0.016 0.357 ± 0.018 0.189 ± 0.013 0.284 ± 0.018

FWER 0% 4% 4% 8% 2% 4%

ES = 0.6

TPR 0.999 ± 0.001 0.999 ± 0.001 1 1 1 1

FDR 0.220 ± 0.015 0.362 ± 0.015 0.296 ± 0.012 0.396 ± 0.010 0.346 ± 0.009 0.417 ± 0.011

FWER 5% 10% 0 2% 2% 4%

Note: Miss out counts for the number of samples that fail to detect any cluster.
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cluster-wise statistic to better characterize the overall statistical prop-

erties of a cluster by integrating the cluster extent, voxel-level signifi-

cance, and dependence structure. Our simulation and data example

show that the proposed method is computationally efficient

(MATLAB execution time: ICM = 0.0228 s, cluster-extent

method = 0.008 s, on 2.6 GHz 6-Core Intel Core i7) and can improve

the accuracy for cluster-wise inference.

Our method makes at least two innovative contributions.

First, we account for the spatial dependence of voxels with a para-

metric approach and incorporate this dependence structure into

the Fisher’s combined statistic. This procedure leads to a more

accurate estimation of the combined statistic distribution. Fur-

thermore, the Chernoff bound effectively solves the floating point

problem for extremely small values of the combined statistic

TABLE 5 Simulation result for Pattern III: A squared area with N0 = 3 � 3 = 9 voxels in the center is set as underlying truth. The 95% CI is
provided for FWER because in most settings under this pattern, the Cluster-extent threshold fail to detect any significant regions in some
datasets

30 per arm 60 per arm 100 per arm

pChrfc Cluster extent pChrfc Cluster extent pChrfc Cluster extent

FWHM = 8 mm

ES = 0.4

TPR 1 0 1 0 1 0.01 ± 0.1

FDR 0 NAa 0.025 ± 0.125 NAa 0.033 ± 0.14 0.951 ± 0.131

FWER 0 NAa 4%(0%, 8%) NAa 5%(1%, 9%) 100%(1)b

ES = 0.6

TPR 0.720 ± 0.040 0.976 ± 0.011 0.960 ± 0.012 0.801 ± 0.048 0.996 ± 0.003 0.797 ± 0.045

FDR 0.008 ± 0.005 0.062 ± 0.018 0.017 ± 0.009 0.023 ± 0.019 0.042 ± 0.011 0.036 ± 0.016

FWER 6% (1%, 11%) 91% (59%, 100%) 5% (1%, 9%) 80% (15%, 95%) 7% (2%, 12%) 100% (12)b

aNo significant clusters were detected in any samples.
bNumbers in the parenthesis are the number of datasets that cluster-extent threshold can detect any significant clusters.

TABLE 6 Simulation result for βv = 0

FWHM = 4 mm FWHM = 6 mm FWHM = 8 mm

pChrfc Cluster extent pChrfc Cluster extent pChrfc Cluster extent

30 per arm 0 9% (3%, 15%) 3% (0, 6%) 4% (0, 8%) 5% (1%, 9%) 6% (1%, 11%)

60 per arm 1% (0, 3%) 14% (7%, 21%) 5% (1%, 9%) 9% (3%, 15%) 1% (0, 3%) 8% (3%, 13%)

100 per arm 5% (1%, 9%) 16% (9%, 23%) 7% (2%, 12%) 11% (5%, 17%) 3% (0, 6%) 5% (1%, 9%)

F IGURE 6 The FDR, TPR, and FWER for ICM and cluster-extent threshold at different primary threshold. The primary threshold ranges from
0.001 to 0.021
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significance level. In sum, inference about the clusters have

improved accuracy and interpretability. The simulation results

show that the ICM has a higher sensitivity with well-controlled

FWER among existing methods, and is applicable to a wider range

of signals.

In our example involving task-based data, we identified the

brain regions activated by positive RPEs in the context of an RL

study. The additional activation in inferior temporal gyrus was

observed under the threshold given by ICM in both full sample

(52 participants) and subsample (36 participants), whereas the

cluster-extent threshold or other combining p methods failed to

detect this region in either scenario. As activation of this region is

frequently reported in the context of other task-based studies in

similar settings, it is possibly a biologically meaningful finding. The

rs-fMRI data example with noninformative covariates provides evi-

dence supportive of a more rigorous control by ICM on the false-

positive clusters emerging from the cluster-extent threshold, which

yields to a 70% decrease in the FWER compared to classical

cluster-wise inference methods.

Sharing limitations with cluster-extent based method, our sta-

tistic is largely affected by the selection of the primary threshold.

When an overly-liberal primary threshold is given, our statistic may

generate no significant findings or fewer significant findings. This

is due to the strict control of FWER. If the primary threshold is too

stringent, there will be fewer significant findings, and the total

“information” contains in a cluster will be similar to that of a ran-

dom noise cluster. There are various ways to deal with the primary

thresholding problems. An optimal primary threshold is given by

eBass (Ge et al., 2021) that avoids the oversized or undersized

clusters for cluster-level inference can effectively control the false

discoveries and family-wise errors. The ICM can also incorporate

with the TFCE (Smith & Nichols, 2009) framework, serving as a

more informative replacement of cluster extent e(h) in their formu-

lation. In summary, as the ICM is expressed in a closed form, it is

compatible and can be implemented with a wide range of existing

software platforms. We provide the implementation of ICM in

GitHub at https://github.com/yierge/ICM.
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APPENDIX

(A) Parametric covariance matrix for rjk

The numerical approximation of aχ2f requires the correlations across

all pairs of the voxels within the cluster c. Commonly, a correlation

matrix can be estimated empirically. However, when the matrix is

large, the empirical calculation may become strenuous and inaccurate.

In addition, the Pearson’s correlation may not be suitable to describe

the nonlinear correlation decay with distance in the smoothed fMRI

images (Bowman, 2007; Minasny & McBratney, 2005; Spence

et al., 2007). Here, we provide a parametric approach in estimating

the spatial correlations based on the Σc.

In Equation (1), it contains rjk = corr(xj, xk) to represent the corre-

lation between j-th and k-th voxels in a cluster. To measure the spatial

variation by the relative location of voxels, we use the Matérn covari-

ance to calculate each specific correlation between a pair of voxels

since it only depends on distances between points, though there are

other parametric spatial correlation model available to describe the

functional similarity between voxels (Bowman, 2007). The original

form of the stationary, isotropic (we consider the Euclidean distance

between voxels) Matérn covariance function is given by

Cν dð Þ¼ σ2
21�ν

Γ νð Þ
ffiffiffiffiffi
2ν

p d
ρ

� 	ν

Kν

ffiffiffiffiffi
2ν

p d
ρ

� 	
ðA1Þ

where ρ is the spatial range parameter, d is the Euclidean distance

between two voxels, and Kν(�) is the modified Bessel function of the

second kind. Specifically, Kν xð Þ¼ π I�ν xð Þ�Iν xð Þð Þ
2sin νπð Þ , and Iν xð Þ¼P∞

n¼0

1
n!Γ νþnþ1ð Þ

x
2

� �2nþν
is a particular solutions of the second-order differ-

ential equation x2y00(x)+ xy0(x)� (x2+ ν2)y(x) = 0 (Yang & Chu, 2017).

This covariance function has great flexibility in practice

because when ν = 1/2 + p for p�Nþ, Cν(d) can be simplified to

the product of an exponential and a polynomial of order p. With

this property, one can adjust the parameters for different smooth-

ness levels. In particular, we choose the ν = 3/2 so that the calcula-

tion is less complex while the function is still one time

differentiable.

Let djk denotes the Euclidean distance between voxel j and voxel

k, then the spatial correlation rjk derived from Equation (A1) can be

written into a product of an exponential function and a polynomial of

order one:

rjk ¼ 1þ
ffiffiffi
3

p
djk
ρ

 !
exp �

ffiffiffi
3

p
djk
ρ

 !
ðA2Þ

where ρ is the characteristic length scale that measures the relevance

between two voxels. It can be theoretically calculated through the

spatial autocorrelation (Park, Byeon, & Park, 2019; Wald, Vasilic,

Saha, & Wehrli, 2006; Zhu & Wu, 2010), or be empirically obtained by

simulations. The recommended empirical values for ρ based on the full

width at half maximum (FWHM) are listed in Table A1. In fMRI data

analyses, ρ = 6 or 8 are the most commonly used parameters. We also

provide a function in the GitHub package for users to customize this

parameter.

(B) Proofs

B.1 Proof for Lemma 1

Proof. For cluster c, the Chernoff bound for the p-value of its com-

bined statistic is given by pChrfc ¼ Tc
f

� � f
2
exp f

2 1� Tc
f

� �h i
.

Let tc ¼ Tc
f . Since f is fixed, for pChrfc we only need to consider the

function

h tð Þ¼ texp 1� tð Þ ðA3Þ

The function h(t) is monotone increasing for t � (0, 1) and mono-

tone decreasing for t� 1,∞ð Þ.
Since the statistic Tc is defined by Tc ¼ Ψc

a , then
Tc
f ¼ Ψc

af ¼ Ψc
2nc

, which

is the ratio of sum statistic Ψc and cluster size nc. The uncorrected pri-

mary threshold is 0.05, thus we assume the primary threshold is no

greater than 0.05. Then for all pj’s, � logpj≥3,
min �logpjf g

1 ≥3 which

grantees t>1.

Thus, the domain of h(t) is 3,∞½ Þ. h(t) is always a monotone

decreasing function on its domain.

Suppose the two clusters c1, c2 contain n1, n2 voxles, with sum

statistic Ψc1 ,Ψc2 , accordingly. Their significant level of combined sta-

tistics are p�c1 ,p
�
c2
. The dfs satisfy f1 = f2 = f, where f is a constant.

If p�c1 < p
�
c2
, then by Equation (A3), Tc1 > Tc2 . Thus, for

t1 ¼ T1
f ,t2 ¼ T2

f , we have t1 > t2. Since h(t) is a monotone decreasing

function, the Chernoff bound for the p values of combined statistic

satisfy

T1

f

� 	 f
2

exp
f
2

1�T1

f

� 	� �
<

T2

f

� 	 f
2

exp
f
2

1�T2

f

� 	� �
ðA4Þ

TABLE A1 ρ for calculating the pairwise correlation rjk

Effect size

0.2 0.4 0.6 0.8 1.0

FWHM

4 mm – 2 2.5 3 3.5

6 mm 3 4 4.5 5.5 6

8 mm 4 6 7 8 9
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which is pChrfc1
< pChrfc2

.

B.2 Proof for Theorem 1

Proof. When the dfs are fixed, pChrfc can be written in a function form

as Equation (A3), where t� 3,∞½ Þ. For two clusters c1, c2 with sc1 ,sc2
correspondingly. Let sc1 < sc2 , which leads to tc1 < tc2 . Thus

h tc1ð Þ> h tc2ð Þ) pChrfc1
> pChrfc2

:

B.3 Proof for Theorem 2

Proof. For a cluster c, since the ratio sc ¼ Ψc
nc

is fixed, we treat it as a

constant s, s ≥3. Then the pChrfc can be written in the same form of

Equation (A3) to the power of f
2. That is h tð Þ f2, where t¼ r

2. The

codomain of h(t) is (0, 1).

For two clusters c1 and c2 with fixed s, let y = h(t), y is a constant

in (0, 1). If f1 < f2, we have

yf1 > yf2 ) pChrfc1
> pChrfc2

:

B.4 Proof for Proposition 1

Proof. For two clusters c1, c2 with same ratio s and cluster size n, their

approximated dfs are given by fc1 ¼ 8n2
4nþρc1

, fc2 ¼ 8n2
4nþρc2

. Suppose

ρc1 < ρc2 , then we have fc1 > fc2 . By the property of Equation

(A3), h tð Þ
fc1
2 < h tð Þ

fc2
2 ) pChrfc1

< pChrfc2
.

(C) A simulated example for Theorem 1 conclusion

Consider a 100 � 100 2D image contains a cluster consists of

22 � 22 = 484 ‘true voxels’ with strong signal (Figure A1a).

Another image of same size contains the cluster consists of the

original 484 voxels plus another 484 supra-threshold but noise

voxels with larger p values (Figure A2b). In cluster extent permuta-

tion test, the Figure A1a cluster has lower probability survive the

cluster-extent threshold than Figure A1b cluster. For pChrfc , the aver-

age signal strength of cluster sc in Figure A1a is larger than that in

Figure A1b. When their approximated df are about equivalent, by

Proposition 1, the Figure A1b will yield to a larger pChrfc (less signifi-

cant). To show the average signal strength for approximated same df,

we generate the third image Figure A1c that contains two clusters

with same df and cluster size similar to the clusters in Figure A1a,b,

respectively. This reflect an important feather that if the true acti-

vated region is naturally small, the pChrfc can move up its rank among

all clusters. For example, the activation region toward a stimuli is on

amygdala. The cluster size will be small and has lower chance to sur-

vive the cluster-extent threshold. With moderate signal strength, such

a activated region will have much higher chance to survive the ICM

threshold.

F IGURE A1 Images showing the relationship between average signal strength and pChrfc . (a) contains 22�22 = 484 voxels with p = .001
(b) contains 44�22 = 968 voxels. 484 with p = .001 and 484 with p = .01. (c) is an example of signal strength for different cluster sizes in
achieving the same f. The large cluster contains 102 voxels, while the small cluster contains 36 voxles
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