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General features
As the most common intraocular malignancy, the 
annual incidence rate of uveal melanoma (UM) is 
4.3 cases per million population.1 However, the 
incidence rate varies among countries owing to 
differences in diagnosis and classification criteria, 
as well as risk factors associated with UM, like fair 
skin, light iris color, inability to tan etc.1 The inci-
dence rate of UM in the United States is around 
5.1 cases per million population per year.2 In 
Europe, the incidence rate increases from south-
ern to northern Europe, with two cases per 

million in Spain and southern Italy to up to eight 
cases per million in Norway and Denmark, and 
an annual range of 1.3–8.6 cases per million.3 
The incidence rates of UM in Australia and New 
Zealand are as high as those in the United States 
and European countries, at 9.8 and 9 cases per 
million people per year, respectively.4,5 The inci-
dence rate is relatively low in Asia, including 
South Korea (0.42 cases per million population 
per year6) and Japan (0.64 cases per million pop-
ulation per year7), and in Africa (0.3 cases per 
million population per year8). Incidence increases 
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noticeably up to the age of 55 years, and levels off 
after the age of 75 years.3 It is also higher in males, 
with incidence rate ratio of 1.22 compared with 
that in females.3 Risk factors associated with UM 
include age (50–70 years), fair skin, light iris color 
(blue or gray), and sensitivity to sunburn.9,10

UM arises from melanocytes in the uvea, 90% of 
which involve the choroid, and 6% of which are 
confined to the ciliary body and 4% to the iris.11 
The most common clinical symptoms of UM 
include blurred vision, visual field loss, photopsia, 
or change in iris color; about 30% of UM are 
asymptomatic and detected on routine examina-
tion.12 Primary intraocular tumors can be detected 
using fundoscopy and MRI imaging (Figure 1), 
and are treated effectively using radiation plaque 
therapy, which achieves tumor control in 98% of 
eyes, with 95% globe salvage.13 Enucleation is 
indicated for advanced UMs, with optic nerve 
involvement or orbital invasion.14 However, 
approximately half of the cases will develop 
metastasis, predominantly (90%) to the liver.15,16 
The 10-year metastasis rate varies among UM 
patients depending on the tissue of origin; it is 
33% for ciliary body melanoma, 25% for choroidal 

melanoma, and 7% for iris melanoma.17,18 Once 
metastasis occurs, the median progression-free 
survival (PFS) and overall survival (OS) is 
3.3 months and 10.2 months, respectively.19 
Another systematic review demonstrated that the 
median OS across all treatments for metastatic 
UM is 12.8 months.20

UM is often initiated by a GNAQ or GNA11 
mutation with low tumor mutational burden, 
unlike cutaneous melanoma, which is usually 
triggered by a BRAF or NRAS mutation with 
multiple single-nucleotide polymorphisms.21 The 
classification of UM has been updated recently 
into four molecularly distinct subtypes: (a) poor-
prognosis monosomy 3 (M3) with BRCA1-
associated protein-1 (BAP1) aberration; (b) M3 
without BAP1 aberration; (c) better-prognosis 
disomy 3 (D3) with serine/arginine-rich splicing 
factor 2 (SRSF2)/splicing factor 3B subunit 1 
(SF3B1) mutation; and (d) D3 with eukaryotic 
translation initiation factor 1A, X-linked 
(EIF1AX) mutation.22 BAP1 loss correlates with 
a global deoxyribonucleic acid (DNA) methyla-
tion status, dividing M3-UM into subsets with 
different genomic aberrations, transcriptional 

Figure 1.  Clinical manifestation and imaging examinations of typical UM patients.
(a) A patient has a rounded neoplasm at the posterior pole of his left eye, involving the choroid, which is black and raised via 
retinal camera and ultrasonography examination. (b) A patient has multicenter neoplasms with a wide base involving the 
posterior pole and equator choroid of his left eye.
Images were taken from two UM patients referred to Ninth People’s Hospital, Shanghai Jiao Tong University School of 
Medicine. Written informed consent for publication of their images was obtained from the patient.
UM, uveal melanoma.
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patterns, and clinical outcomes.22 Regarding 
D3-UM, SRSF2/SF3B1-, and EIF1AX- mutants, 
tumors have distinct DNA methylation profiles 
and somatic copy-number alterations, represent-
ing low- and intermediate-risk mutation subtypes, 
respectively.23 Based on new discoveries on the 
pathogenesis of UM, novel therapeutic options 
are emerging, but no effective standard treatment 
is available for advanced and metastatic UM 
patients.

Molecular pathogenesis

Gene mutations
Dysregulation of G-protein signaling.  Guanine-
nucleotide-binding proteins (G proteins) are a class 
of hydrolases that act as molecular switches to 
transduce signals from extracellular stimuli per-
ceived by G-protein-coupled receptors (GPCRs) 
to the cell interior.24–26 G proteins are grouped into 
two categories: monomeric small GTPases (e.g. 
Ras), and heterotrimeric G protein complexes, 

formed by Gα, Gβ, and Gγ subunits.27 The Gα 
subunit can bind to either guanosine triphosphate 
(GTP) or guanosine diphosphate (GDP). The 
GDP-bound state connects with β and γ subunits 
to form a trimeric complex. When GDP is 
exchanged with GTP, initiated by guanine-nucle-
otide exchange factors (GEFs), the Gα subunit is 
activated, dissociates from the receptor and Gβγ 
subunits, and triggers downstream signaling cas-
cades. The GTPase activity of the Gα subunit 
hydrolyzes GTP to GDP, and signal transduction 
is terminated28 (Figure 2). This inactivation pro-
cess is catalyzed by regulators of G-protein sig-
naling (RGSs), such as GTPase-accelerating 
proteins (GAPs).29 GPCRs and the downstream 
G-protein signaling are both important targets 
for current drug discovery, since GPCRs strongly 
impact a wide range of physiological and patho-
logical conditions.30,31 Pharmacological targeting 
of GPCRs has become increasingly attractive as 
the detailed molecular machinery of GPCRs in 
tumor development is being elucidated. Indeed, 
Degarelix®, which is a gonadotropin-releasing 

Figure 2.  Schematic representation of G-protein movement and the Gα subunit inhibition by YM‑254890 and FR900359.
The Gα subunit can bind to GTP or GDP. The GDP-bound state connects with β and γ subunits to form a trimer. When GDP is exchanged into GTP upon 
agonist stimulating GPCR, the Gα subunit becomes activated, dissociates from the receptor and Gβγ subunits and triggers the downstream signaling 
cascades. With the help of the GTPase domain in Gα subunit, GTP is hydrolyzed into GDP and the signal is terminated. GDP releasing and the 
guanine-nucleotide-free state of Gα subunit is necessary for GTP binding, when the α-helical domain (purple) is separated from the Ras-like domain 
(green). YM-254890 or FR900359 (blue) binds to the hinge region of Gαq/11, preventing the separation of the domains necessary for GDP release.
GDP, guanosine diphosphate; GPCR, G-protein-coupled receptor; GTP, guanosine triphosphate.
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hormone (GnRH) receptor antagonist, has been 
approved for patients with advanced prostate 
cancer.32 Vismodegib and sonidegib, which are 
smoothened (SMO) receptor inhibitors, are 
approved for the treatment of basal cell 
carcinoma.32

There are 20 different kinds of G-protein α-
subunits, divided into four families Gαs, Gαi, Gαq, 
as well as Gα11, Gα12, and Gα13. Each family 
exerts specific functions on the regulation of cer-
tain sets of downstream targets.33 Interestingly, 
most UM cases have mutually exclusive mutations 
in guanine-nucleotide-binding protein G(q) subu-
nit alpha (GNAQ) and guanine-nucleotide-binding 
protein G(11) subunit alpha (GNA11).34,35 GNAQ 
encodes Gαq and GNA11 encodes Gα11. Gαq/11 
plays an important role in regulating cellular func-
tions and pathological processes of diseases, such 
as insulin-stimulated glucose transport, platelet 
aggregation, heart failure, and cancer.36–39 It has 
been reported to couple with certain GPCRs, such 
as the endothelin 1 receptor, angiotensin 2 recep-
tor type I, α-1 adrenergic receptors, and vasopres-
sin type 1A and 1B receptors.40 GNAQ or GNA11 
mutations occur in nearly 80~93% of UM patients, 
each at a proportion of 20~50% and 43~60%.41–44 
The most predominant mutation occurs in exon 5 
(Q209; >70%), which entirely cripples the intrin-
sic GTPase activity of the Gα subunits, resulting in 
a persistent active state.45 Mutations in exon 4 
(R183) have been detected in a small fraction of 
cases (<10%), reported as 40% GTP bound, indi-
cating that it maintains some GTP hydrolysis 
activity.35 Constitutively activated mutants Gαq 
and Gα11 drive abnormal proliferative signaling via 
the extracellular signal-intracellular signaling path-
way, similar to the activating mutations of BRAF 
observed in cutaneous melanoma.46 In particular, 
these mutations could not predict the outcome, 
survival, or risk of metastasis in UM, which indi-
cates oncogenic driver mutations in Gαq and 
Gα11.47 However, the GNA11 Q209 mutation is 
more frequently observed in metastatic UM (57%) 
and tumors involving the ciliary body, or with 
mutations in BAP1, suggesting that compared 
with GNAQ, mutation in GNA11 is correlated 
with a higher risk of metastasis.43,44 Benign blue 
nevi can also harbor GNAQ and GNA11 muta-
tions (83% and 7% respectively), which indicates 
that G-protein mutations are an early event in UM 
tumorigenesis.34,35,48

Apart from mutations in G proteins, variations of 
the GPCR itself and its effectors can also alter 

G-protein signaling and are related to UM patho-
genesis. The cysteinyl leukotriene receptor 2 
(CYSLTR2) gene, which encodes a GPCR that 
activates Gαq, has been found to have a substitu-
tion (p.Leu129Gln) in 3% of UM samples.49 
Whether CysLT2R binds to Gα11 is unknown; 
however, the p.Leu129Gln mutation mediates 
activation of signaling pathways that are conver-
gent with those activated by GNAQ and GNA11 
oncogenic mutations.49 This hotspot mutation 
drives aberrant cell growth in vitro and promotes 
tumorigenesis in vivo.49 Apart from UM, the 
same hotspot mutation in CYSLTR2 has also 
been identified in blue nevi.50 A whole-genome 
sequencing study on 28 UM tumors or primary 
cell lines revealed the presence of the mutation 
p.D630Y in phospholipase-C beta 4 (PLCB4) in 
two samples (4%).51 In addition, 4% of UM sam-
ples have the p.K898N mutation in phospholi-
pase-C beta 3 (PLCB3), which is localized in the 
C-terminal domain linker and plays a vital role in 
GNAQ activation.51 PLCB4 and PLCB3 are both 
downstream effectors of GNAQ/GNA11.51 
Notably, all the CYSLTR2, PLCB4, and PLCB3 
mutations exclusively exist with GNAQ and 
GNA11 mutation, occur within the same path-
way, and provide the possibility of using novel 
drugs to target different mutant forms.

As G-protein signaling plays a crucial role in UM, 
it is important to understand the downstream 
pathways of Gαq and Gα11 in order to develop 
effective treatments for UM patients. The down-
stream effectors include phospholipase-C beta 
(PLCβ), PKC, Rho/Ras-related C3 botulinum 
toxin substrate 1 (Rac1), ARF6, phosphoinositide 
3-kinase (PI3K), and β-catenin.

The best-known downstream signaling cascade 
initiated by Gαq/11 involves the activation of PLCβ 
and the consequent increase in levels of inositol 
1,4,5-trisphosphate (IP3) and diacylglycerol 
(DAG).52 IP3 leads to a rapid increase in cyto-
plasmic Ca2+ levels, hence modifying a series of 
calcium-regulated events. DAG stimulates the 
phosphorylation of PKC and guanyl-releasing 
protein 3 (RasGRP3) at the plasma membrane.53 
Phosphorylated PKC and RasGRP3 activate 
RAF/MEK/ extracellular signal-related kinase 
(ERK), a type of mitogen-activated protein 
kinase (MAPK) cascade, to regulate several cel-
lular processes, including differentiation, prolif-
eration, survival and apoptosis.54 The ERK1/2 
pathway is reported to be upregulated in 45–86% 
of primary UM tumors.55,56 It is worth noting 
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that continuous activation of the MAPK cascade 
may not require mutant Gαq/11, since silencing 
of GNAQ expression did not suppress ERK 
activity in GNAQ-mutant UM cells. The activa-
tion of the MAPK cascade in UM can be caused 
by secondary genetic alterations during disease 
progression.57

Although PLCβ is considered the canonical 
downstream effector of Gαq/11, additional effec-
tors of Gαq/11 have been discovered. Particularly 
relevant to UM, Gαq stimulates RhoA and Rac1 
small GTPase-induced signaling via binding to 
p63RhoGEF and Trio, members of the large Rho 
guanine-nucleotide exchange factor family.58,59 
The signaling of the Rho family regulates cytoskel-
eton-dependent processes and transitions for a 
particular type of invasiveness during cell migra-
tion.60 Pathways downstream of RhoA/Rac1 are 
likely to deliver the mitogenic signals from Trio in 
the cytoplasm and then to the nucleus. Trio acti-
vates other signaling nodes of MAPKs, JNK, and 
p38, to influence the transcription factor activator 
protein 1 (AP1), which controls the expression 
of several growth-promoting genes.61 Moreover, 
Gαq/11 stimulates nuclear translocation of Yes-
associated protein (YAP), a critical component 
of the Hippo signaling pathway, promoting actin 
polymerization. Gαq/11 mutations promote YAP-
associated growth of UM cells.62–64 Recently, it 
has been reported that YAP is required for tumor 
lymph node metastasis through the upregulation 
of genes in the fatty-acid oxidation (FAO)-
related signaling pathway. Overexpression of 
YAP results in cytoskeletal rearrangement and 
induces tumor migration via regulating F-actin/
G-actin turnover.65,66

PI3Ks are regulated by a variety of upstream activa-
tors, including GPCRs (Gβγ) and small GTPases 
from the Ras and Rho families. They catalyze 
the formation of phosphatidylinositol (3,4,5)- 
trisphosphate (PIP3) from phosphatidylinositol 
(4,5)-bisphosphate (PIP2), and PIP3 phospho-
rylates and activates Akt at the plasma membrane 
to promote cell proliferation and survival.67 The 
PI3K/Akt pathway regulates cell growth and sur-
vival in UM, and is abnormally activated in more 
than 50% of patients.68 It is negatively regulated 
by phosphatase and tensin homolog (PTEN), 
which reverses PIP2 conversion to PIP3. Although 
PTEN mutations are not common in UM, 59% 
of UM cases harbor PTEN gene deletion or have 
attenuated gene expression. Importantly, PTEN 

expression loss is associated with shorter disease-
free survival of UM patients.69

The newly identified small GTPase ARF6 is an 
important mediator of endocytosis and recycling 
of membrane receptors such as GPCRs and cad-
herin–catenin complexes.70 In UM cells, it is a 
direct downstream effector of Gαq signaling, 
thus regulating Gαq and β-catenin trafficking.71 
Oncogenic Gαq redistributes into the cytoplasm 
and forms a complex with the guanine-nucleotide 
exchange factor GEP100 and ARF6, which acts 
as a signaling cytoplasmic vesicle. Inhibition of 
ARF6 in UM cells reduced cell proliferation, as 
well as activation of all downstream signaling tar-
gets PLCβ, MAPK, Rho, Rac, and YAP.71 Thus, 
ARF6 provides a novel potential therapeutic tar-
get for UM (Figure 3). The interaction between 
ARF6 and Gα11 remains unknown.

Based on the dysregulation of G-protein signaling 
in UM, a few transgenic animal models have been 
developed. The first model was realized by the 
expression of GNAQQ209L, manifesting as increased 
neoplastic proliferation in choroid, dermal nevi, 
and other melanocytic sites, with 94% lung metas-
tasis.72 Combining GNAQ/11Q209L transgenesis 
with mutant Tp53, animals led to development of 
melanocytic tumors, including UM with near-
complete penetrance.73 Recently, a mouse model 
with melanocyte-specific GNA11Q209L expression 
with or without BAP1 loss has been generated. 
Pigmented neoplasms were developed from mel-
anocytes of the skin, eye, leptomeninges, lymph 
nodes, and lungs.74 These animal models are con-
sidered excellent tools to study molecular and 
genetic characteristics in UM.

Chromosome 3 and BAP1.  Since GNAQ/GNA11 
mutations do not predict patient outcomes, the 
metastasis in class 2 tumors usually involves addi-
tional molecular alterations. Monosomy of chro-
mosome 3 and gains of chromosome arm 8q can 
generally co-occur75 and are largely associated 
with UM metastasis and poor prognosis. Muta-
tions in BAP1, a tumor suppressor gene (TSG) 
located at chromosome 3p21.1, have been identi-
fied in approximately 45–47% of UM lesions and 
in 84% of metastasizing tumors.41,76,77 Notably, 
inactivation mutations of BAP1 occurred in the 
majority of class 2 metastasizing tumors, but not 
in class 1 tumors.77 BAP1 mutations have been 
previously found in a variety of cancers, including 
breast cancer, lung cancer, malignant pleural 
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mesothelioma, cutaneous melanoma, and menin-
gioma.78–81 In UM, BAP1 mutations are accom-
panied by loss of one copy of chromosome 3 in 
somatic cells, which supports the ‘two hit’ model 
that inactivation of BAP1 is associated with 
metastasis in UM.77

BAP1 is a deubiquitylase that forms complexes 
with a variety of proteins and plays important 
roles in cellular pathways, including DNA dam-
age response (DDR), cell cycle, cellular differen-
tiation, and cell death.82 BAP1 protein was initially 
identified in a yeast two‑hybrid screen for its inter-
action with the tumor suppressor protein breast 
cancer type 1 susceptibility protein (BRCA1).78 
BRCA1 forms a heterodimer with the really inter-
esting new gene (RING) domain of BRCA1-
associated RING domain 1 (BARD1) protein, 
and this complex has E3 ubiquitin ligase activity 
that regulates DDR.83 BAP1 modulates the E3 
ligase activity of this complex via binding and deu-
biquitylating BARD1, and thus, regulates the 
DDR process.84 BAP1 is also involved in cell-cycle 
control via host-cell factor-1 (HCF-1).85 In addi-
tion, BAP1 directly deubiquitinates and stabilizes 
Krüppel-like zinc-finger transcription factor 5 

(KLF5) to promote cell-cycle progression.86 
Furthermore, BAP1 binds additional-sex-combs-
like 1 (ASXL1) protein through its carboxyl termi-
nus to form the polycomb repressive deubiquitylase 
(PR‑DUB) complex that specifically removes 
monoubiquitin from histone 2A (H2A).87 
Ubiquitylation of H2A is a key mechanism for the 
polycomb repressive complex 1 (PRC1) to silence 
gene expression.88

UM cells with BAP1 depletion exhibit stem-cell-
like characteristics.89 These include loss of morpho-
logical differentiation as revealed by downregulation 
of microphthalmia-associated transcription factor, 
dopachrome tautomerase, and tyrosinase, as well 
as upregulation of genes characterizing stem 
cells.89

SF3B1, SRSF2 and EIF1AX mutations.  In UM, 
SF3B1 carrying a heterozygous point mutation, 
predominantly at p.R625, K666, and K700, has 
been reported in ~25% of UM patients.90–92 This 
mutation alters the splicing process of certain mes-
senger ribonucleic acid (mRNA) transcripts, but 
its tumorigenic role remains unclear.91,92 Hetero-
zygous in-frame deletions in another spliceosome 

Figure 3.  Gαq/11 signaling pathways.
The main downstream signaling pathways of GNAQ/GNA11 include PKC/MAPK/MEK/ERK, Trio/Rho/Rac/YAP, PI3K/Akt/
mTOR, and ARF6/GEP100. The important nodes have been identified as druggable targets (labeled with red).
ARF6, adenosine diphosphate ribosylation factor 6; GEP, guanine-nucleotide exchange factor; ERK, extracellular signal-
related kinase; GNAQ, guanine-nucleotide-binding protein G(q); GNA11, guanine-nucleotide-binding protein G(11) subunit 
alpha; MAPK, mitogen-activated protein kinase; mTOR, mammalian target of rapamycin; PI3K, phosphoinositide 3-kinase; 
PKC, protein kinase C; YAP, Yes-associated protein.
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factor, SRSF2, have been detected in 5% of UM 
cases, affecting amino acid residues 92–100.93 
Recently, mutations in EIF1AX (p.N4S), located 
in the X chromosome, have been detected in 13% 
of UM patients.94 EIF1AX encodes a eukaryotic 
translation initiation factor 1A (eIF1A) that regu-
lates the translation initiation process. Several ele-
ments of this process are known to be misregulated 
in tumorigenesis.95,96 Mutations in EIF1AX have 
been found in many cancer types and were associ-
ated with worse prognosis when coupled with 
mutations of the Ras family.97,98 In UM, EIF1AX 
mutations have been reported to be non-truncat-
ing and heterozygous. However, only mutant 
mRNA transcripts are expressed in UM, indicat-
ing that the wildtype copy of EIF1AX might be 
epigenetically inactivated.91 These mutations are 
mutually exclusive of each other and of BAP1 
mutations in almost all UM cases.23 Mutations in 
SF3B1 and SRSF2 are mainly associated with a 
late-onset metastatic risk, while EIF1AX muta-
tions are associated with low metastatic risk.91,99

Epigenetic alterations
Epigenetic events such as DNA methylation and 
histone modification involved in the initiation 
and progression of UM may silence TSGs or acti-
vate oncogenes, including noncoding RNAs.100 
The interplay between epigenetic alterations 
affects the regulation of transcription and/or 
translation of many key genes and pathways that 
contribute to UM.

DNA methylation, one of the key epigenetic 
mechanisms, is shown to be involved in regula-
tion of several UM-related genes. For example, 
the Ras association domain family 1 isoform A 
(RASSF1A) gene, located on chromosome 
3p21.3, encodes a protein that plays a significant 
role in apoptosis, cell-cycle regulation, and micro-
tubule stability.101,102 Methylation of the two 
CpG islands spanning its promoter inactivates 
this gene and leads to loss of G1/S phase con-
trol.103,104 Downregulation of the RASSF1A pro-
tein frequently occurs in UM.105 Other studies 
have found that cyclin-dependent kinase inhibitor 
2A (p16INK4a) is frequently inactivated by DNA 
methyltransferase 1 (DNMT1)- and DNMT3b-
mediated hypermethylation in both primary UM 
and cell lines.106 Thus, the downregulation of 
p16INK4a could be relieved by the demethylating 
drug 5-aza-2-deoxycytidine.107,108 Interestingly, 
metastasis is more common in patients possessing 
a methylated p16INK4a promoter.108 The TSG Ras 

and EF-hand domain-containing protein (RASEF) 
gene is also hypermethylated in UM. It has been 
reported that lack of RASEF expression in 35 pri-
mary UM samples and 11 UM cell lines was due 
to the methylated promoter.109 Hypermethylation 
of the genes Decoy receptor 1 (DcR1) and DcR2 
that encode the tumor necrosis factor (TNF)-
related apoptosis-inducing ligand (TRAIL) recep-
tors has been detected in UM.110 Recent studies 
have shown that DNA methylation is also involved 
in the regulation of other UM-related genes such 
as RARB, TIMP3, EFS, PTEN, SYK, TNFSF10D, 
LOX, and COL1A2.111–116

Histone modification includes histone methyla-
tion, acetylation, ubiquitination, phosphoryla-
tion, and so on. Methylation of histone could be 
an oncogenic event. It has been reported that 
impaired class II transactivator (CIITA) tran-
script levels are associated with high rate of tri-
methylated histone H3 lysine 27 (H3K27me3) 
binding to its promoter.117 The abnormal binding 
was realized by the histone methyltransferase 
enhancer of zeste homolog 2 (EZH2), which is a 
known component of polycomb repressive com-
plex 2 (PRC2) that is able to triple-methylate 
H3K27.117 Moreover, the transcription factor 
Hes family BHLH transcription factor 1 (HES1) 
is upregulated in UM cell lines due to H3K4 tri-
methylation of its promoter, predicting a higher 
risk for metastasis.118 Di- and trimethylated 
H3K9 silence gene expression. The overall levels 
of H3K9me2 in melanoma tissues are higher than 
those in normal skin, which is mainly regulated by 
euchromatic histone lysine N-methyltransferase 2 
(EHMT2/G9A).119,120 In several cancer subtypes, 
inhibition of EHMT2 led to the arrest of tumor 
growth.121

Immune privilege and immune surveillance
Approximately 90% of UMs involve the choroid, 
and the remaining 10% occur in the iris or the 
ciliary body.122,123 The eye, especially the anterior 
chamber, including the iris and ciliary body, is 
considered ‘immune privileged,’ where immune 
responses to antigens are repressed to protect 
normal ocular tissues that would otherwise be 
damaged by excessive inflammation. The ocular 
‘immune privileged’ compartment is achieved by 
anatomical and biochemical barriers.124,125 
Anatomical barriers include the lack of afferent 
lymphatics and the existence of blood–ocular bar-
riers that limit the access of systemic priming 
immune cells to the eye. Biochemical barriers 
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include soluble immune suppressors, including 
cytotoxic T-lymphocyte antigen (CTLA)-2α, 
transforming growth factor beta (TGF-β), α-
melanocyte-stimulating hormone, retinoic acid, 
and indoleamine dioxygenase (IDO), which 
inhibit the effect of immune cells that migrate to 
the eye. These immune suppressors can limit 
T-cell proliferation and convert T effectors into 
T-regulatory (Treg) cells.126

Hence, UM may take advantage of this ‘immune 
privileged’ environment and allows immune-sup-
pressive mechanisms to grow. There is evidence 
showing that large UM lesions heavily infiltrated 
by macrophages and CD8+ T cells harbor a 
genetic profile, which represents increased risk 
for liver metastases.127 Even if CD8+ T cells infil-
trate the tumor, UM can grow progressively in 
the eye globe,128,129 suggesting regional immune 
suppression. Several immune-suppressive mecha-
nisms have been discovered, such as those involv-
ing programmed cell-death ligand-1 (PD-L1) 
and indoleamine 2,3-dioxygenase 1 (IDO1), to 
be utilized by UM to escape immune surveillance 
and metastasize.130–132 Primary UM cells showed 
resistance to CD8+ T cell cytolytic activity by 
expressing soluble Fas ligand (FasL), which pro-
vides protection from FasL-induced apopto-
sis.133,134 Moreover, UM is resistant to natural 
killer (NK) cell responses via expressing migra-
tion inhibitory factor (MIF) and TGF-β2.135–137 
Recent studies have also shown that the metasta-
sis of UM may be correlated with CD4+ Treg cells 
within lesions, which further supports a role for 
CD4+ Treg in tumor progression.138,139 In the 
mouse model of spontaneously developing UM, 
tumor dormancy is regulated in part by CD8+ T 
cells.140 NK cells have been demonstrated to reg-
ulate the outgrowth of liver micrometastases in 
other intraocular melanoma mouse models.141,142

Thus, the evidence indicates that limited immune 
surveillance in the ‘immune privileged’ eye ena-
bles the UM tumor to be dormant, as patients 
often experience metastasis or recurrence after 
more than 5 years of a recurrence-free period.

Therapeutic options
Ocular treatment aims to conserve the eyeball 
and preserve visual performance. The treatment 
of primary tumors includes radiotherapy, photo-
therapy, and local resection, as well as reservation 
of enucleation in advanced cases. At present, no 
effective treatment exists to prevent metastasis, 

but early detection and intervention could be crit-
ical for a positive long-term survival outcome in 
UM.143,144 Metastatic UM responds poorly to 
chemotherapy, targeted therapy, and immuno-
therapy. Nevertheless, unlike cutaneous mela-
noma, UM metastases generally do not respond 
to immune-checkpoint inhibitors. However, novel 
therapeutics targeting mutant GNAQ/GNA11, 
regulators of G-protein signaling, downstream 
pathways, inactivated BAP1, and immune-check-
point blockade are emerging.

Targeting oncogenic G-protein signaling: GNAQ/
GNA11, PLCβ, CYSLTR2
As mutations in GNAQ and GNA11 are present 
in 80~93% of UM patients, to identify an effec-
tive agent targeting Gαq or Gα11 is a compelling 
approach to cure this malignancy. To date, the 
only published inhibitors of Gαq/11 subunits are 
a series of natural products represented by 
YM-254890 and FR900359.145 YM-254890 was 
first derived from Chromobacterium spp. QS3666a, 
and used as a cyclic peptide to inhibit ADP-
dependent platelet aggregation.146 Mechanically, 
Gα subunits have two independent domains, the 
α-helical domain and the Ras-like domain, which 
are crucial for GDP–GTP exchange. The detach-
ment of GDP and the following binding of GTP 
require the interface between the two domains. 
YM-254890 could bind to the hinge between the 
two domains, thus preventing domain opening 
and thereby preventing the exchange of GDP for 
GTP, leading to G-protein inhibition.147–149 
YM-254890 preferably inhibits Gαq/11-mediated 
signaling, but not Gαi-, Gα15-, Gαs-mediated 
signaling, and the initiation of intracellular Ca2+ 
mobilization by PLCβ and Ca2+ channels.146 
However, YM-254890 might be effective, but 
only for R183 mutants of Gαq/11 in UM, which 
allows 40% of the GTP to continue to be bound, 
reflecting presumably a remaining activity of 
GTP hydrolysis. YM-254890 inhibited the accu-
mulation of IP1 in cells expressing Gαq/11

R183C, 
but had only a modest effect on Gαq/11

Q209L, 
which is GTPase-deficient.39,45,146 This selectivity 
profile could be related to the distinct locations of 
two mutations relative to YM-254890 and/or to 
differences in the mechanisms by which G-protein 
function is modulated.146 Recently, FR900359, a 
cyclic depsipeptide isolated from the Ardisia cre-
nata Sims plant, was identified as a structural 
analog to YM-254890 that functions in a similar 
way.39 It has been shown in vitro to specifically 
inhibit Gαq/11-mediated signal transduction in a 
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human melanoma cell line that carries the 
Gαq/11

Q209L mutation, resulting in decreased lev-
els of PLC activity, G-protein subunit dissocia-
tion, and cellular responses to GPCR activation.39 
In UM92.1 and Mel202 cell lines, FR900359 
could induce cell-cycle arrest and apoptosis via 
inhibiting oncogenic Gαq/11 signaling. In addi-
tion, FR900359 has been shown to promote 
Gαq/11

Q209L-driven UM cell differentiation by 
reactivating PRC2-mediated gene silencing.150,151 
Onken et al. have demonstrated that FR900359 
suppresses nucleotide exchange and drives con-
stitutively active Gαq/11

Q209L into a quiescent 
GDP-bound state.150 So far, only FR900359— 
but not YM-254890— has shown reasonable effi-
cacy in Gαq/11

Q209L-driven signaling. The kinetic 
parameters of the direct interaction between 
FR900359 and Gαq/11 have been determined 
recently. FR900359 dissociates from Gαq/11 with 
a remarkably slower off rate than that of 
YM-254890.152 These findings suggest that 
FR900359 might be a useful agent for UM treat-
ment. Although YM-254890 and FR900359 
showed promising potential in inhibiting abnor-
mally activated signaling in Gαq/11-mutant UM 
cell lines, they could not distinguish between 
wildtype and mutated Gαq/11, which added uncer-
tainty to their potential clinical application. For 
instance, FR900359 suppressed ERK1/2 and 
AKTS473 phosphorylation selectively in cells car-
rying Gαq/11 mutations but reduced tonic IP1 lev-
els in both Gαq/11-mutant and wildtype cells.153 
Besides, the complex structure and difficulties in 
the synthesis or production of these natural prod-
ucts have impeded their commercial develop-
ment. Moreover, the exact pharmacological 
efficacy in UM patients, as well as the possible 
side effects still need further investigation. 
Development of FR900359 certainly provides the 
rationale for discovering effective agents targeting 
Gαq and Gα11, which is based on the understand-
ing of the structure and transformation of these 
protein complexes. Identification and targeting of 
Gαq/11 interacting factors might be a novel 
approach to inhibit Gαq/11 activation in the future.

Apart from targeting the GDP–GTP exchange 
activity of Gα, there are also a few promising 
strategies used to target pharmaceutically Gα 
downstream effectors. As described above, the 
best understood Gα/effector interaction is that 
with PLC-β isozymes and diffuse B-cell lym-
phoma (Dbl) family proteins p63RhoGEF and 
Trio.59,154,155 Both bind to Gαq in a very similar 
pattern: a continuous helix-turn-helix (HTH) 

substructure of the effectors engages Gαq within 
its classical binding site, which consists of a 
groove formed between switch II (the G3 motif 
of the Ras-like domain) and helix α3. The direct 
interaction between the above effectors and Gα11 
has not been confirmed. Understanding the 
binding mode of Gα subunits with their effectors 
has facilitated the development of compounds to 
antagonize the interaction of these signaling 
complexes.156 The rearrangement of the switch 
regions of Gα subunits creates a hydrophobic 
cleft between switch II and helix α3 that is a major 
site of interaction with effectors and is the site for 
YM-254890 and FR900359 drug targeting.145 
Otherwise, the downstream effectors could engage 
the hydrophobic cleft of Gαq using their HTH 
substructures. The HTH of p63RhoGEF and 
PLC-β forms the interface with Gαq in crystal 
structures; the secondary interactions rearrange 
the complexes at membranes to activate effec-
tors.157,158 Based on this structure, a linear pep-
tide was designed and found to bind to PLC-β3 
or p63RhoGEF in vitro by specifically interacting 
with activated Gαq, preventing recruitment and 
activation of downstream effectors.156 It has no 
affinity for either GDP-bound Gαq or other G 
subunits, so it might be useful for inhibiting sign-
aling cascades controlled by Gαq. Meanwhile, 
microinjection of the HTH-based peptide into 
mouse prefrontal cortex neurons can prevent 
downstream depolarization induced by mus-
carinic cholinergic receptor-dependent Gαq.156 
Inspired from the therapeutic options of targeting 
PLC-β3 and p63RhoGEF, strategies like a broad-
spectrum peptide library should be applied to dis-
cover analogous peptides that serve as effector 
antagonists. Newly found Gαq/11-binding pep-
tides might serve as leads for therapeutic develop-
ment or provide effective affinity probes in the 
thermal shift assay of compound libraries to iden-
tify useful small molecules.

Another approach to targeting oncogenic G-protein 
signaling is the development of specific inhibitors 
of mutant GPCRs, such as those carrying 
CysLT2RL129Q, which is found in 3% of UM cases. 
A receptor-specific inverse agonist might be used 
to bind to and stabilize the inactive conformation 
of the receptor that could no longer activate 
Gαq/11. As a member of the same family, CysLT1R 
is shown to be highly expressed in colorectal ade-
nocarcinomas, astrocytoma, ganglioglioma, and 
metastatic adenocarcinoma.159,160 CysLT1 antag-
onists, montelukast, zafirlukast, and pranlukast, 
are useful in the treatment of asthma and allergic 
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rhinitis. Montelukast and pranlukast reduce colo-
rectal tumor growth both in vitro and in vivo, via 
a combination of anti-proliferative and pro-
apoptotic effects.161,162 BAY u9773 is a non-
selective antagonist at both CysLT1 and CysLT2 
receptors, whereas BayCysLT2 and HAMI 3379 
are described as potent and selective CysLT2 
antagonists.163–165 These two CysLT2R antago-
nists act as neutral antagonists, as both result in 
the reduction of CysLT2R-L129Q signaling, but 
they have limited efficacy as inverse agonists that 
target the oncogenic CysLT2R-L129Q mutant. 
Up to now, no studies have investigated the anti-
cancer efficacy of specific CysLT2 antagonists in 
UM animal models or patients.

Targeting RGS.  The inactivation process of Gαq/11 
is catalyzed by the GAP function of RGS pro-
teins.166 Berstein et al. have first reported that the 
cycle of nucleotide exchange could be modulated 
by Gα-binding partners by demonstrating that 
PLC-β1 increases the activity of GTP hydrolysis 
by Gαq/11. Thus, PLC-β1 is both an effector and a 
GAP for Gαq/11 to exert paradoxical roles. The 
first evidence of GAPs came from a yeast-based 
genetic screen for mutants that elevated sensitiv-
ity of Saccharomyces cerevisiae to α-factor phero-
mone, which resulted in the identification of the 
two primary factors supersensitive-1 (Sst1) and 
supersensitive-2 (Sst2).167 Sst1 and Sst2 rendered 
yeast supersensitive to α-factor. The large family 
of RGS proteins has a nine-α-helix bundle, which 
binds most covetously to the Gα transition state 
for GTP hydrolysis (GTP → GDP + Pi).168

As RGS proteins are negative regulators of 
GPCR-mediated signaling, they are attractive tar-
gets for developing therapeutics. The develop-
ment of RGS specific small molecules is still in its 
infancy, yet the ‘druggability’ of RGS domains 
has been determined early based on observations 
from the first crystal structure of the RGS4/Gαi1 
complex.169 It is hypothesized that a small mole-
cule binding to the A-site on the RGS domain 
could theoretically block the interaction with Gα. 
Thus, it might be equally feasible to design a 
small molecule to allosterically improve the GAP 
function of endogenous RGS proteins.

Targeting second messengers: ARF6.  ARF6 is a 
novel downstream effector of Gαq signaling, 
which transmits GNAQ as well as β-catenin sig-
naling from the plasma membrane to the nucleus 
and cytoplasmic vesicles. It acts as an immediate 
downstream effector of GNAQ/GEP100 complex 

and delivers all the oncogenic signaling pathways 
of activated GNAQ, including PLC/PKC, Rho/
Rac, YAP, and β-catenin. ARF-GEF inhibitors 
have been used as surrogates for ARF6 inhibition. 
To identify chemically tractable allosteric ARF6 
inhibitors, Yoo et  al. have performed a high-
throughput screen with a collection of approxi-
mately 50,000 compounds.71 They identified 
NAV-2729, a pyrazolopyrimidinone compound, 
as the most promising candidate. It has low 
micromolar potency with half maximal inhibitory 
concentration (IC50) value of 1.0 µmol/l determined 
using fluorometric ARF6 nucleotide exchange 
assays. Nevertheless, NAV-2729 showed high 
selectivity toward all other human ARF family 
members, at concentrations up to 50 µmol/l. 
NAV-2729 binds to ARF6 in the GEF-binding 
domain, instead of the nucleotide-binding pocket. 
NAV-2729 exhibited a spectrum of biological 
activities in UM cells. Treatment of UM cells with 
NAV-2729 reduced colony growth and also 
blocked all the downstream signaling pathways of 
GNAQ.71 Altogether, these findings highlight 
ARF6 as a valuable therapeutic target for UM.

Targeting pathways: MAPK/MEK/ERK, PKC, PI3K/
Akt/mTOR, Trio/Rho/Rac/YAP.  MAPK is constitu-
tively activated in nearly 90% of metastatic UM. 
In experimental studies, several MEK1/2 inhibitors 
such as trametinib, selumetinib, and PD0325901, 
induced growth arrest in GNAQ/GNA11-mutant 
UM cell lines, UM cell-line-derived xenograft, 
and patient-derived xenograft (PDX) mod-
els.170–173 However, clinical studies have shown 
variable outcomes for MEK inhibition. A preclin-
ical study has demonstrated that the five UM cell 
lines used had GNAQ or GNA11 mutations and 
were either moderately or highly sensitive to the 
MEK inhibitor TAK733, with IC50 values below 
10 nmol/.174 A phase I study of TAK-733 on 12 
UM patients in total 51 patients with advanced 
solid tumors showed a limited antitumor effect; 
only two patients with cutaneous melanoma (one 
with BRAF mutation) had partial responses 
[ClinicalTrials.gov identifier: NCT00948467].175 
In a phase II trial with 120 advanced UM patients, 
selumetinib improved the median PFS to 15.9 weeks 
compared with only 7 weeks for chemotherapy, but 
only modestly increased the median OS [Clinical-
Trials.gov identifier: NCT01143402].176 Another 
phase I trial of selumetinib is still recruiting 
metastatic UM patients to examine whether 
higher drug dose efficiently blocks the MAPK 
pathway and prevents resistance [ClinicalTrials.
gov identifier: NCT02768766]. Several studies 
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have investigated the beneficial effects of the com-
binations of MEK inhibitors with other drugs. In 
the phase III clinical trial, SUMIT, involving 129 
metastatic UM patients, the combination of selu-
metinib and dacarbazine failed to improve PFS, 
with a reported low response rate of 3.1% and no 
statistically significant benefit in OS [ClinicalTri-
als.gov identifier: NCT01974752].177 A PDX 
model-based investigation has been done in five 
UM PDXs, and showed that the combinations of 
selumetinib with mTORC1/2 inhibitor vistusertib 
(AZD2014) and ERK inhibitor AZ6197 exerted 
the best activity, as tumor growth inhibition 
(TGI) was 62–97% for the five PDXs in the selu-
metinib + AZ6197 group, and 59–83% for the 
five PDXs in the selumetinib + AZD2014 group. 
The TGI value of monotherapies was 11–34% for 
selumetinib, 0–67% for AZ6197, and 28–84% for 
AZD2014. An objective response rate (ORR) 
below −0.5 was achieved in all five models for 
both combination groups.178 Recently, a review 
of 590 cases from six eligible clinical studies has 
shown that UM is poorly responsive to MEK 
inhibitors, including selumetinib [median PFS 
16 weeks, median OS 11.8 months, 14% partial 
response (PR), 1-year OS rate 45%176], tra-
metinib (median PFS 1.8 months, ORR/PR/
complete response 0%179), and combined appli-
cations (selumetinib + dacarbazine: median PFS 
2.8 months, 1-year OS rate 50%, ORR 3%;180 
trametinib + AKT inhibitor uprosertib: median 
PFS 15.7 weeks;181 binimetinib + PKC inhibitor 
sotrastaurin: median PFS 3.1–4 weeks) [Clinical-
Trials.gov identifier: NCT01801358].182 A 
recent three-arm randomized phase II study has 
demonstrated a statistically significant improve-
ment in PFS for metastatic UM, from 3.4 months 
for selumetinib alone to 4.8 months for selu-
metinib in combination with paclitaxel (PT), 
without a significant increase in toxicity [ISRCTN 
29621851].183 For cutaneous melanoma, which 
has been treated with BRAF inhibitors, the com-
bination of MEK and BRAF inhibitors benefited 
patients who had metastatic melanoma with 
BRAF-V600E or -V600K mutations. In a phase 
III trial, the combination of trametinib and 
dabrafenib, compared with dabrafenib alone, 
improved the PFS of patients from 8.8 months to 
9.3 months.184 The MEK inhibitor and BRAF 
inhibitor combination has not been tested in UM 
patients, as activating BRAF mutations are usu-
ally absent in UM. GNAQ/11 is the upstream 
regulator of the RAF/MEK/ERK pathway, and 
also activates other cascades such as the PI3K/

Akt/mTOR and Trio/Rho/Rac/YAP, which makes 
the blocking of the RAF/MEK/ERK pathway 
inappropriate for UM. Regarding UM, due to the 
lack of GNAQ/11 inhibitors, such drug combina-
tions need further research and development.

The poor response of UM patients to MEK 
inhibitors may be partially due to the complex 
tumor microenvironment. Targeting of c-mesen-
chymal-epithelial transition factor (c-MET), the 
receptor of hepatocyte growth factor (HGF), 
enhanced the effects of trametinib in metastatic 
UM. HGF is secreted in the liver and phospho-
rylated c-MET is detected in UM liver metasta-
ses. This suggests that HGF induces resistance of 
tumor cells to trametinib.172,185 Activation of the 
PI3K/Akt pathway by HGF might be another 
resistance mechanism, which might be reversed 
using the PI3K inhibitor GDC0032.185 These 
findings support a previous study, which has 
reported the effective combination of PI3K and 
MEK inhibitors for UM.172,173

Inhibition of PKC alone with AEB071 (sotrastau-
rin) unsustainably suppressed ERK1/2 signaling and 
induced cell-cycle G1 phase arrest.171 In a phase I 
clinical trial, 4 (3%) of 153 metastatic UM patients 
had a partial response and 76 (50%) had stable dis-
ease. Tumor reduction by ⩾10% from baseline was 
observed in 34 patients (22%) [ClinicalTrials.gov 
identifier: NCT01430416].186 This effect was 
enhanced by the combination with MEK inhibitors, 
MEK162 and PD0325901, as shown in an in vivo 
animal study.171 However, a phase Ib/II clinical 
trial that combined the MEK inhibitor binimetinib 
with AEB071 was terminated prior to initiation of 
the phase II trial [ClinicalTrials.gov identifier: 
NCT01801358]. In addition, the combination of 
AEB071 with the p53-MDM2 inhibitor CGM097 
or the mTORC1 inhibitor RAD001, showed prom-
ising results of tumor regression. AEB071 + 
RAD001 co-treatment induced significant tumor 
regression in two of the three PDX models, while 
the AEB071 + CGM097 combination led to tumor 
regression or stasis in all five PDX models.187 
Another novel PKC inhibitor, LXS196, is being 
assessed for its safety, tolerability, pharmacokinetics 
(PK), pharmacodynamics (PD) and efficacy in 68 
patients with metastatic UM. Among patients 
treated with LXS196, 6 had PR and 45 had stable 
disease (SD) as their best response, suggesting 
promising clinical activity for LXS196 as a single 
agent with manageable toxicity profile [ClinicalTrials.
gov identifier: NCT02601378].188
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The combination of the pan-PI3K inhibitor 
GSK2126458 and the MEK inhibitor GSK 
1120212 induced apoptosis in GNAQ/11-mutant 
UM cell lines.173 The combination of AEB071 
with the PI3K inhibitor BYL719 showed a syner-
gistic effect in mouse models with UM cell-line-
derived subcutaneous transplantation.189 
Following up from this study, a phase I clinical 
trial is currently underway to determine whether 
simultaneous inhibition of PI3K and a different 
downstream pathway could improve the antican-
cer effect in metastatic UM [ClinicalTrials.gov 
identifier: NCT02273219].

The combination of selumetinib with the Akt 
inhibitor MK2206 induced synergistic effect on 
autophagic death of UM cells in vitro and in vivo 
(cell-line-derived subcutaneous transplanta-
tion).170 However, a phase II clinical trial of 
trametinib combined with the Akt inhibitor 
GSK795 showed no improvement of PFS and 
response rate (RR) compared with that in the 
selumetinib group [ClinicalTrials.gov identifier: 
NCT01979523].181

Regarding mTOR-targeting therapy, a combina-
tion screening showed a potent synergetic interac-
tion between the PI3K inhibitor GDC0941 and 
the mTOR inhibitor everolimus in vitro and in two 
PDX models.190 A clinical phase II study using the 
combination of everolimus and the somatostatin 
receptor agonist pasireotide showed poor benefit 
and required dose reduction [ClinicalTrials.gov 
identifier: NCT01252251]. Overall, 3 of 13 (26%) 
patients obtained clinical benefit, 7 of 13 (54%) 
demonstrated SD, and 7 of 14 (50%) required at 
least one dose reduction due to toxicity.191

The Trio/Rho/Rac/YAP pathway has recently 
been found to play a vital role in GNAQ/11 
downstream signaling.192 The YAP inhibitor 
verteporfin decreased the growth of GNAQ/11-
mutated UM cells.62,63,193 In addition, Gαq acti-
vates focal adhesion kinase (FAK), which 
facilitates YAP activation. Inhibition of FAK 
activity by VS-4718 or PF562771 blocks YAP 
signaling and tumor growth, indicating FAK is an 
actionable target in UM.192

The molecular targets and potential drugs are 
summarized in Tables 1 and 2. It is not surprising 
that these compounds often show limited effects in 
clinical trials, as they only affect part of the onco-
genic Gα11/q networks. A thorough understanding 

of the signaling pathways orchestrated by Gα11/q 
combined with new target-specific drugs will cer-
tainly promote the progress of UM therapy.

BAP1: HDAC inhibitor, BET inhibitor
BAP1 loss in class 1 UM led to H2A hyperubiq-
uitination, which could be reversed by inhibition 
of histone deacetylases (HDACs), which repro-
gram aggressive UM to a highly differentiated 
and low-grade phenotype in vivo.195 HDACs are 
a class of epigenetic enzymes that remove acetyl 
groups from acetylated lysine residues of histone 
proteins. Histone acetylation is related to the 
regression of gene transcription, including differ-
ent classes of cancer suppressor genes. Several 
HDAC inhibitors have manifested promising 
anticancer activities, such as valproic acid, pan-
obinostat, vorinostat,195 trichostatin A,195,212 
tenovin-6,196 depsipeptide,197 MS-275,198 quisi-
nostat,199 JSL-1,194 MC1568, and MCI1575.200 
For example, JSL-1, a novel HDAC inhibitor, 
effectively induced apoptosis, and suppressed the 
migration and invasion of UM cells and UM 
growth in a cell-line-derived xenograft mouse 
model.194 JSL-1 impaired the self-renewal capac-
ity and eliminated stem-like cells which are 
believed to be seeds of metastasis. A recent pre-
clinical research identified HDAC inhibitors as 
potential candidates that suppress the adaptive 
YAP and Akt signaling following MEK inhibi-
tion. The MEK–HDAC inhibitor combination 
outperformed either agent alone, resulting in a 
long-term decrease in tumor growth in both sub-
cutaneous and liver metastasis models.204 In addi-
tion, Booth et al. have used PDX-derived UM cell 
lines to confirm that combining the HDAC inhib-
itor entinostat with neratinib, an inhibitor of 
human epidermal growth factor receptor 2 and 
epidermal growth factor receptor (EGFR) tyros-
ine kinases, exerts additive cytotoxic effects. This 
combination cooperatively induced the Gα pro-
teins and EGFR internalization while blocking 
the Ras pathway, thus activating mitochondrial 
dysfunction and autophagy.205

An ongoing phase II trial is examining the efficacy 
of the HDAC inhibitor vorinostat in patients with 
metastatic UM [ClinicalTrials.gov identifier: 
NCT01587352]. In addition, a multicenter phase 
II open label study evaluating the effect of the 
combination of the anti-PD-1 pembrolizumab 
and entinostat showed clinical efficacy in meta-
static UM patients with manageable toxicities, 
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Table 1.  Molecular targets and potential drugs of UM in preclinical studies.

Target Drug Model system Key findings

GNAQ/GNA11 YM-254890147–149 UM cell lines Inhibited the exchange of GDP for GTP in 
cells expressing Gαq/11

R183C

FR90035939,150–152 UM cell lines Inhibited Gαq/11
Q209L-mediated signal 

transduction and promoted Gαq/11
Q209L-

driven UM cell differentiation

PLC-β3 or 
p63RhoGEF

A linear peptide156 Modified HEK293 cells Prevented recruitment and activation of 
downstream effectors of Gαq

ARF6 NAV-272971 UM cell lines Reduced colony growth of cells and 
blocked all the downstream signaling 
pathways of Gαq

MEK Trametinib172 Metastatic UM cells Blocked ERK1/2 phosphorylation and 
elicited growth arrest

PI3K Taselisib185 Metastatic UM cells Effectively blocked HGF-mediated Akt 
phosphorylation and inhibited cell growth

YAP Verteporfin193 UM cell lines Decreased growth of GNAQ/11-mutated 
UM cells

FAK PND-1186192 UM cell lines and -derived xenograft 
mouse model, subcutaneous implantation

Blocked YAP signaling and tumor growth

HDAC JSL-1194 UM cell lines and -derived xenograft 
mouse model, subcutaneous implantation

Effectively induced apoptosis, and 
suppressed migration and invasion

Trichostatin A195 UM cell lines Induced morphologic differentiation, cell-
cycle exit, and a shift to a differentiated, 
melanocytic gene expression profile

Tenovin-6196 UM cell lines Induced apoptosis by activating the 
expression of tumor suppressor 
genes such as p53 and elevating ROS, 
eliminated cancer stem cells

Depsipeptide197 Primary and metastatic UM cells Inhibits migration by downregulation of 
MMPs and upregulation of TIMPs

Entinostat198 UM cell lines Synergized with TRAIL to induce 
apoptosis in TRAIL-resistant cell lines

Quisinostat199 UM cell-line-derived zebrafish xenograft Blocked migration and proliferation

MC1568, 
MCI1575200

UM cell lines Inhibited IL-8 levels and cell proliferation 
in either unstimulated or PMA stimulated 
cells

BRD4 JQ1201,202 UM cell lines and -derived xenograft 
mouse model, subcutaneous and 
intravenous implantation

Showed cytotoxic activity, reduced 
expression of genes involved in cell cycle, 
apoptosis, and DNA repair

BET + FGFR PLX51107 +  
AZD4547203

UM cell lines and -derived xenograft 
mouse model, subcutaneous and liver 
orthotopic implantation

Inhibited growth of UM cells co-implanted 
with human stellate cells

MEK + ERK Selumetinib +  
AZ6197178

PDX models: 4 from primary tumors and 
1 from liver metastasis, subcutaneous 
implantation

TGI 62% to 97%

(Continued)
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which might be attributed to the potential 
immune-modulatory activity of HDAC inhibitors. 
The ORR was 10% and 31% of patients exhibited 
the best overall response of SD [ClinicalTrials.gov 
identifier: NCT02697630].209,210 With the 
development of fine needle aspirate biopsies, 
another study assessed whether using vori-
nostat in class 2 high-risk UM patients could 
switch their gene expression profile into nor-
mal melanocytes [ClinicalTrials.gov identifier: 
NCT03022565].195

Apart from H2A hyperubiquitination, global 
DNA methylation is another important conse-
quence of BAP1 loss, revealed by multiplatform 
analysis of 80 primary UM.22 The DNA methyla-
tion gene profile is different between EIF1AX- 
and SRSF2/SF3B1-mutant UM. Class II or 
BAP1-mutant UM showed a unique phylogenetic 
cluster of global DNA methylation.213 These 
findings indicated that the DNA methylation sta-
tus, as well as other mechanisms of regulation of 
gene transcription, might be vital in regulating 

Target Drug Model system Key findings

MEK + mTORC1/2 Selumetinib +  
AZD2014178

PDX models: 4 derived from primary 
tumors and 1 from liver metastasis, 
subcutaneous implantation

TGI 59% to 83%

MEK + PKC Mirdametinib/
binimetinib + 
sotrastaurin171

UM cell lines and -derived xenograft 
mouse model, subcutaneous implantation

Led to sustained MAPK pathway inhibition 
and showed a strong synergistic effect in 
halting proliferation

PKC + p53-MDM2 Sotrastaurin + 
CGM097187

PDX models: 3 from primary tumors; 1 
from skin metastasis; and 1 from liver 
metastasis, subcutaneous implantation

Led to tumor regression or stasis in all 
five PDX models

PKC + mTORC1 Sotrastaurin + 
everolimus187

PDX models: 3 from primary tumor; 1 
from skin metastasis; and 1 from liver 
metastasis; subcutaneous implantation

Induced significant tumor regression in 
two of the three PDX models

MEK + PI3K GSK1120212 + 
GSK2126458173

UM cell lines Induced apoptosis in GNAQ/11-mutant UM 
cell lines

MEK + Akt Selumetinib + 
MK2206170

UM cell lines and -derived xenograft 
mouse model, subcutaneous implantation

Induced synergistic effect on autophagic 
death

mTOR + PI3K Everolimus + 
pictilisib190

PDX models: 4 from primary tumors, and 
2 from liver metastasis, subcutaneous 
implantation

Resulted in apoptosis in vitro and 
enhanced anti-tumor effect of each single 
agent in vivo

MEK + HDAC Trametinib + 
panobinostat204

UM cell lines and -derived xenograft 
mouse model, subcutaneous and 
intravenous implantation

Resulted in a long-term decrease in 
tumor growth

HDAC + HER2 + 
EGFR

Entinostat + 
neratinib205

PDX-derived UM cell lines: 1 from 
abdominal metastasis; 1 from liver 
metastasis; 1 from brain metastasis; and 
1 from loco-regional recurrent tumor

Induced the Gα proteins and EGFR 
internalization while blocking the Ras 
pathway, thus activating mitochondrial 
dysfunction and autophagy, exerted 
additive cytotoxic effects

BRD4 + PLK1 JQ1 + volasertib206 UM cell lines Induced a more selective profile of UM 
cytotoxicity

ARF6, adenosine diphosphate ribosylation factor 6; BET, bromodomain and extraterminal protein family; EGFR, epidermal growth factor receptor; 
FAK, focal adhesion kinase; FGFR, fibroblast growth factor receptor; GDP, guanosine diphosphate; GTP, guanosine triphosphate; GNAQ, guanine-
nucleotide-binding protein G(q); HDAC, histone deacetylase; HER2, human epidermal growth factor receptor 2; HGF, hepatocyte growth factor; IL, 
interleukin; MMP, matrix metallopeptidase; mTOR, mammalian target of rapamycin; PI3K, phosphoinositide 3-kinase; PKC, protein kinase C; PDX, 
patient-derived xenograft; TRAIL, tumor-necrosis-factor-related apoptosis-inducing ligand; UM, uveal melanoma; YAP, Yes-associated protein.

Table 1.  (Continued)
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metastasis in UM. The bromodomain containing 
4 (BRD4) inhibitor JQ1 showed cytotoxic activity 
in UM cells and cell-line-derived xenograft mouse 
models bearing GNAQ/11 mutations. It reduced 
the expression of genes involved in cell cycle, 
apoptosis, and DNA repair.201,202 BRD2, BRD3, 
BRD4, as well as bromodomain testis-associated 
(BRDT) proteins belong to the bromodomain 
and extraterminal (BET) protein family, which 
promotes transcriptional elongation via binding 
to acetylated lysine of histones and recruiting 
transcriptional complexes.214,215 JQ1 treatment of 
UM cells made them more sensitive to cell-cycle-
related inhibitors such as the Polo-like kinase 1 
(PLK1) inhibitor BI6727 volasertib.206

PLX51107, a second-generation BET inhibitor, is 
undergoing clinical trial in patients with advanced 
UM, as well as other cancers [ClinicalTrials.gov 
identifier: NCT02683395].216 However, cases 
with metastases manifested resistance to 
PLX51107. The combination of the fibroblast 
growth factor receptor (FGFR) inhibitor 
AZD4547 with PLX51107 inhibited the growth 
of UM cells co-implanted with human stellate 
cells, indicating that the concomitant inhibition of 
the BRD4 and FGFR pathways might be a novel 
option for UM liver metastases.203

The use of HDAC and BET inhibitors might lead 
to a less aggressive and actively differentiated 
state of BAP1-deficient UM cells, therefore pro-
longing the survival of UM patients. As expected, 
with the emergence of more and more epigenetic 
drugs, the combination of HDAC or BET inhibi-
tors with other therapies may become an active 
research topic in UM therapy.

Immune-checkpoint blockade: CTLA-4,  
PD1/PD-L1
The poor efficacy of immune-checkpoint block-
ade suggests that melanomas arising from the 
uveal tract might be immunotherapy-resistant 
variants. Ipilimumab, a monoclonal antibody tar-
geting cytotoxic T-lymphocyte-associated anti-
gen 4 (CTLA-4), has shown an RR ranging from 
0% to 5% and a median OS of 5.2–10.3 months 
[ClinicalTrials.gov identifier: NCT00495066].207 
A single-arm phase II study of pembrolizumab in 
patients with metastatic UM obtained a median 
PFS at 11 months, with 20% RR and 60% clinical 
benefit rate.208 The largest retrospective study 
involving 58 metastatic UM patients using 

anti-PD-1/PD-L1 immunotherapy has shown an 
objective RR of 3.6%, median PFS of 2.6 months, 
and median OS of 7.6 months.217 A study in the 
Netherlands has shown that 2 of 15 patients who 
received at least 1 anti-PD1 therapy had clinical 
benefit. Two patients were alive, and on treat-
ment showed SD. The median OS was 9.6 months, 
and PFS was 2.3 months.218 The weak efficiency 
of immunotherapy might be attributed to a very 
low mutational load of UM and liver being an 
immunosuppressive organ.219–221 Analysis of eight 
cases enrolled in a single-center trial indicated 
that metastatic UM patients treated with the com-
bination of nivolumab and ipilimumab through 
transarterial chemoembolization (TACE) had a 
25% PR rate and 50% SD rate.222 A largescale 
phase II trial, GEM1402, was conducted with the 
combination of ipilimumab + nivolumab in a 
group of 50 metastatic UM patients. The ORR 
and SD rates were 12% and 52%, respectively 
[ClinicalTrials.gov identifier: NCT02626962].211 
A more recent phase II clinical trial enrolled 39 
metastatic UM patients who received nivolumab 
plus ipilimumab followed by nivolumab mainte-
nance. The best ORR was 17% for PR, 53% for 
SD, and 30% for progression of disease. The 
median PFS and OS was 26 weeks and 83 weeks, 
respectively, and the 1-year OS was 62% 
[ClinicalTrials.gov identifier: NCT01585194].223 
Compared with cutaneous melanoma patients, 
the immunotherapy results of UM patients were 
less optimistic. As cutaneous melanoma shows a 
higher mutational burden than UM, which is 
related to a large number of neo-antigens, it is 
suitable for immunotherapy.

Previously, Nitta et  al. have identified an active 
T-cell repertoire comprising tumor-infiltrating 
lymphocytes (TILs) in UM patients.224 In a phase 
II two-stage study, 21 metastatic UM patients 
were enrolled. Administration of a single infusion 
of TILs induced objective tumor regression in 7 
of 20 evaluable (35%) patients. Among them, one 
patient with highly pretreated UM manifested a 
durable complete regression of all the metastatic 
lesions, which has been going on for almost 
2 years now.225

Tebentafusp is a novel technique of immunother-
apy based on the immune-mobilizing monoclonal 
T-cell receptor against cancer (ImmTAC). It 
contains a soluble T-cell receptor HLA-A*02:01, 
in complex with a melanocyte-lineage-specific 
antigen gp100280–288, and is fused to an anti-CD3 
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single-chain variable fragment.226 The expression 
levels of Ggp100 are higher in melanoma cells 
compared with normal melanocytes and other 
tissues.227 Preclinical data show that teben-
tafusp induces the formation of an immune 
synapse between T cells and tumor cells to 
cause cytolysis, while it induces the production 
of a range of pro-inflammatory cytokines 
including TNFα, interleukin 2 (IL-2), IL-6 and 
interferon-γ.226,228,229 According to the results 
from two completed clinical trials with teben-
tafusp in metastatic UM patients, the ORR, 
median PFS, and OS rates were 14–18%, 3.7–
5.6 months, and 73–74% respectively. The 
adverse events of tebentafusp were transient and 
manageable [ClinicalTrials.gov identifiers: 
NCT01211262; NCT02570308; phase I]. These 
reports on tebentafusp in metastatic UM are 
encouraging, although the number of patients 
enrolled was small (n = 34).230,231 There are two 
more ongoing trials for tebentafusp in UM 
[ClinicalTrials.gov identifiers: NCT03070392, 
NCT02570308; phase II].

Liver-directed therapies
Liver-directed targeted therapies are being pur-
sued for the hepatotropic feature of metastatic 
UM.94 The presence of multiple liver metastases 
is a contraindication for surgical excision, and 
thus only a small number of cases are eligible for 
surgical treatment.232 In cancer management, 
embolization blocks the blood supply to the 
tumor, and often includes an ingredient to attack 
the tumor chemically or with irradiation. TACE 
is the usual form.233 Chemoembolization is a 
method of local chemotherapy that combines 
infusion of chemotherapeutic drugs through the 
hepatic artery with the blockage of blood supply 
to the tumor. The chemotherapeutic drugs 
include carboplatin alone, cisplatin alone or in 
combination with carboplatin, and mitomycin C 
alone or in combination with doxorubicin and 
cisplatin.234,235 Immunoembolization means 
infusion of an immune-stimulating agent, such 
as granulocyte–macrophage colony-stimulating 
factor (GM-CSF), into the hepatic artery, fol-
lowed by embolization. It acts as a stimulus to 
the immune system against tumor cells.236 
Radioembolization using yttrium-90 (90Y) has 
been used to treat liver metastases from UM. In 
a phase II trial, radioembolization was performed 
with 90Y resin microspheres, and its effectiveness 
was calculated using a specific formula. The 

median OS and PFS was 10 months and 
4.7 months, respectively.237 A phase I study of 
radioembolization in combination with ipilimumab 
and nivolumab for metastatic UM is underway 
[ClinicalTrials.gov identifier: NCT02913417]. 
Isolated hepatic perfusion (IHP) is a procedure by 
which the liver is surgically isolated and perfused 
with a chemotherapeutic agent to allow local per-
fusion of the liver with a high dose of a chemo-
therapeutic agent.238 A randomized phase III trial 
of IHP versus best alternative care (BAC) for met-
astatic UM is underway [ClinicalTrials.gov iden-
tifier: NCT01785316]. BAC implicates that the 
treating physician at each study center decides 
the treatment together with the patient, in con-
sideration of all available regimens, such as sur-
gery and other experimental treatments 
tolerated.239 All of the above approaches are 
used to treat metastatic liver disease; however, 
there is no standard treatment available.

Conclusion
Although activation mutations in Gαq and Gα11 
genes are dominant in UM, direct inhibition of 
the constitutively active oncoproteins Gαq and 
Gα11 is still in its infancy. Targeting separate 
downstream pathways by, for example, a MEK 
inhibitor has limited effects. Combinations of 
inhibitors of multiple signaling molecules and 
compounds targeting ARF6 might be sufficient to 
correct all the known downstream pathways. 
Modifiers of mutated BAP1 and epigenetics, such 
as HDAC and BET inhibitors, may become use-
ful tools to revert the high-risk UM phenotype, 
since they have shown promising outcomes in pre-
clinical models. Immune-checkpoint blockade has 
inadequate anticancer activity in systemic use, as 
the eye globe is ‘immune privileged’ and the liver 
maintains an immunosuppressive environment. 
TIL and tebentafusp, as well as liver-directed 
therapies, brought new hope for metastatic UM, 
which need to be further developed.

Despite great progress in the development of novel 
therapeutic strategies, UM, especially metastatic 
UM, remains an incurable malignancy. Compared 
with cutaneous melanoma, UM shows poor sensi-
tivity to targeted therapies, such as immunother-
apy and MEK inhibitors. This may be caused by 
the different biological mechanisms and behaviors 
of these two malignancies. Therefore, different 
therapeutic approaches are required. Further 
studies on the genetics, epigenetics, tumor 
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microenvironment, and immunologic back-
ground of UM will help to discover effective per-
sonalized therapies.

An important lesson to bear in mind while search-
ing for therapeutics is that UM’s biology and 
pharmacology are quite unique compared with 
other types of cancer. Research results from cell 
lines or xenograft models might only partially rep-
resent the whole picture of UM in vivo. This has 
been repeatedly manifested in the past by the fact 
that some agents that were effective in preclinical 
models completely failed in clinical trials. In addi-
tion, the results from PDX models should be 
interpreted with caution before testing the effec-
tiveness of the new drugs in clinical trials, as the 
tumor microenvironment in UM patients is much 
more complicated than that of mice, especially 
that of the wildly used immune-deficient nude 
mice. These differences could result in unex-
pected outcomes, and humanized animal models 
should be considered.

In conclusion, UM therapy is largely an unmet 
medical need. Future investigations should address 
all altered genes, proteins, and dysregulated signal-
ing networks in this disease at the system level to 
increase understanding and pave the way for per-
sonalized therapy. New discoveries in the field will 
allow for improvement in clinical outcomes.
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