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Abstract

Magnetic resonance imaging (MRI) can indirectly reflect microscopic changes in

lesions on the spinal cord; however, the application of deep learning to MRI to clas-

sify and detect lesions for cervical spinal cord diseases has not been sufficiently

explored. In this study, we implemented a deep neural network for MRI to detect

lesions caused by cervical diseases. We retrospectively reviewed the MRI of 1,500

patients irrespective of whether they had cervical diseases. The patients were trea-

ted in our hospital from January 2013 to December 2018. We randomly divided the

MRI data into three groups of datasets: disc group (800 datasets), injured group

(200 datasets), and normal group (500 datasets). We designed the relevant parame-

ters and used a faster‐region convolutional neural network (Faster R‐CNN) combined

with a backbone convolutional feature extractor using the ResNet‐50 and VGG‐16
networks, to detect lesions during MRI. Experimental results showed that the pre-

diction accuracy and speed of Faster R‐CNN with ResNet‐50 and VGG‐16 in detect-

ing and recognizing lesions from a cervical spinal cord MRI were satisfactory. The

mean average precisions (mAPs) for Faster R‐CNN with ResNet‐50 and VGG‐16
were 88.6 and 72.3%, respectively, and the testing times was 0.22 and 0.24 s/image,

respectively. Faster R‐CNN can identify and detect lesions from cervical MRIs. To

some extent, it may aid radiologists and spine surgeons in their diagnoses. The

results of our study can provide motivation for future research to combine medical

imaging and deep learning.
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1 | INTRODUCTION

Traumatic diseases have become common with the advancements in

modern society. In general, severe neurologic deficits due to injuries,

including intramedullary hematoma and spinal cord contusion associ-

ated with edema encompassing the spinal cord,1 can be observed in

magnetic resonance imaging (MRI) signals. Many studies have shown

that MRI can detect physiological and morphological changes (such
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as swelling and asymmetry) based on variations in water molecules

by measuring alterations in the intensity of tissue signals.2 Further-

more, damages caused by cervical disc degenerative diseases (DDD)

and traumatic spinal cord injury (SCI) can be confirmed by MRI,

which is the basis for identifying spinal cord diseases and neurologi-

cal recovery.3,4 Therefore, diagnosis is a key step to treatment and

controlling lesions on soft tissue, and MRI could provide better diag-

nostic tools when there is uncertainty regarding diagnosis.5,6

Recently, deep learning‐based models, especially convolutional

neural network (CNN) models, have been efficient in object detection.

Convolutional neural network models have been applied in several

medical disciplines, including radiology,7,8 pathology,9 dermatology,10

and ophthalmology.11 Previous studies focused primarily on brain dis-

eases compared to diseases of the spinal cord because MRI has been

successful in diagnosing brain‐related illness. In addition, spinal cord dis-
eases exhibit more variations in their morphology and signals in sagittal

MRI.12–15 Only a few studies have investigated spinal cord diseases on

MRI using CNN models. Gros et al. conducted a study that utilized a

sequence of two CNNs to segment the spinal cord and/or intramedul-

lary multiple sclerosis lesions based on a multi‐site clinical dataset, and

their segmentation methods showed a better result compared to previ-

ous CNNmodels.16 However, the spinal cord diseases that they studied

did not have specific locations and usually occurred in multiple areas,

such as the brain, cerebellum, and lateral ventricles. In addition, MRI

data on cervical diseases are insufficient, which has frustrated research-

ers in object detection/segmentation. As is known, DDD and SCI are

the most common diseases of the cervical spine in clinical medicine, and

sagittal MRI is increasingly being recognized for its contribution in

assessing disease severity in patients with SCI and DDD.17,18 However,

the classification and detection of lesions for DDD and SCI on MRI

images on the basis of deep neural networks appear to be limited as

published studies in this regard are lacking in the literature. In addition,

the performance of traditional deep learning methods are unsatisfac-

tory, and traditional CNN have several defects.8,19,20 To address this,

some novel algorithms capable of powerful processing in object detec-

tion have been proposed; an example of such an algorithm is Faster R‐
CNN,19 which offers advantages in terms of accuracy and detection

speed. Therefore, we investigated the feasibility of using faster‐region
convolutional neural networks (Faster R‐CNN19) with a combination of

the pre‐trained VGG/Resnet21 (to extract features) to identify and

detect spinal cord diseases on theMRI dataset used in this study. Exper-

imental results show that this method has good recognition perfor-

mance.

2 | MATERIALS AND METHODS

2.A | Data collection

Patients with cervical diseases were admitted to our hospital

between January 2013 and December 2018. Two diseases were

considered as inclusion criteria: cervical DDD and traumatic SCI

patients, which mainly refer to cervical disc herniation and changes

in spinal cord signal due to injury, respectively. Simultaneously, spinal

cord tumors, syringomyelia, motor neuron disease (MND), and

peripheral polyneuritis were used as exclusion criteria.

Patients were subjected to a cervical spine MRI performed by

radiologists using surface‐coil MRI with 1.5 or 3.0 T. The MRI

included T1‐weighted image (T1WI), T2‐weighted image (T2WI), and

short tau inversion recovery (STIR) or fat saturation (FS); STIR and

FS can be regarded as one type.22,23 In clinical procedures, MRI usu-

ally includes three types of images — T1WI, T2WI, FS, or STIR

images; the typical changes observed in tissue during MRI are listed

in Table 1. Based on the results from images and disease incidence,

a total of 1000 patients were enrolled from the picture archiving

and communication systems (PACS) station, including 690 men and

310 women. In addition, data of 500 people who were diagnosed as

negative were collected (without DDD and SCI) to obtain better

real‐time training results. The patients were divided into three

groups: “normal group,” “disc group,” and “injured group.” Finally, all

the images were desensitized before being used (e.g., removal of

name, age, date of examination, and sex).

2.B | Data preparation

The dataset was randomly split into two parts: 1200 (80%) patients

for training and 300 (20%) patients for validation; this was done to

simulate the proportion of the incidence in reality. Additionally, 500

MRI images were classified as a testing set to demonstrate detection

performance, and the number of images in the “normal group,” “disc

group,” and “injured group” were 200, 200, and 100, respectively.

The training and validation sets used a bounding box to show the

location of the lesion, as shown in Fig. 1, while the “normal group”

without a bounding box is shown in Fig. 2. In this process, two expe-

rienced spine surgeons labeled the bounding boxes using LabelMe

Tool box‐master. Before feeding the dataset into the network, we

cropped the center to eliminate differences from raw data, which

was generated from the PACS station. Finally, the number of dataset

images was increased by a factor of 10 after horizontal flip and con-

trast enhancement.

2.C | Overview of the study

In clinical diagnosis, the commonly used weighted images of cervical

MRI are T1WI, T2WI, and FS. Doctors need to combine the

TAB L E 1 Characteristics of tissues in magnetic resonance imaging.

Tissues signal shown in MRI

Type T1WI T2WI STIR/FS

Water Hypo‐intense Hyper‐intense Hyper‐intense

Fat Hyper‐intense Hyper‐intense Hyper‐intense

Calcification Hypo‐intense Hypo‐intense Hypo‐intense

Ossification Hypo‐intense Hypo‐intense Hypo‐intense

Gasification Hypo‐intense Hypo‐intense Hypo‐intense

Bleeding (3d‐2w) Hyper‐intense Hyper‐intense Hypo‐intense
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information from three different images to comprehensively judge

the patient's condition.5,6 Typically, in medical classification and

detection problems, the three types of images are used as indepen-

dent inputs. These weighted images are considered as a data aug-

mentation method. Other methods integrate these three single‐
channel images at the third dimension, and regard it as a three‐chan-
nel image. However, these methods have some problems. The for-

mer will cause the same patient to be diagnosed with different

diseases by inputting different weighted images, resulting in confus-

ing results. The latter uses the combination of three single‐channel
images to simulate the input of a three‐channel color image. How-

ever, because the distribution of pixel values of the synthetic image

is not consistent with the distribution of pixel values from the large

dataset of real images, like ImageNet, the efficiency of the network

will be reduced when using the pre‐trained model, and the network

cannot be pre‐trained with other medical datasets.

In this dataset, each image is divided into three categories: nor-

mal, SCI, and DDD. SCI and DDD signals do not appear on any

image at the same time, which means that the classification informa-

tion of the three images is the same for a patient, although the loca-

tion of the bounding box obtained by the three images on the

network may be slightly different. Therefore, integrating the classifi-

cation information of the three images becomes a key problem in

the design of the network structure.

(a) (b) (c)

(d) (e) (f)

(h) (i) (j)

(k) (l) (m)

F I G . 1 . Lesions on magnetic resonance imaging (MRI) annotated in a bounding box by two spine surgeons. Images a–f show the typical
T1WI, T2W2, and STIR as "disc groups" labeled with the region of interest (ROI); images h–m show examples of the "injured group" marked
with the ROI. The dataset is also naturally imbalanced with respect to the lesion classes, and the "disc group" clearly dominates with 80% of
the total images in our training dataset.
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We used Faster R‐CNN as the main structure of the network.

Currently, Faster R‐CNN is the most popular two‐stage detection

network, and it is used in many medical image detection prob-

lems.22,23 The Faster R‐CNN mainly includes a feature extractor,

region proposal network (RPN), RoI pooling, and classifier. Primarily,

Faster R‐CNN consists of two parts. One is the RPN; it is a fully

convolutional network (FCN) for generating object proposals that will

be fed into the second module. The second is the Fast R‐CNN24

detector whose purpose is to refine the proposals and the sketch

map of detection processing, as shown in Fig. 3. It should be high-

lighted that RPN and Fast R‐CNN share the convolutional layers in

order to save time.19 Specifically, RPN is an FCN that simultaneously

predicts object bounds and objectness scores per image and gener-

ates high‐quality region proposals, which are used by Fast R‐CNN

for detection. Then, the region of interest (ROI) pooling layer takes

ROIs and convolutional features as inputs and generates the bound-

ing box of the objects as well as the corresponding class name as

the outputs, which contain cls_score and b_box pred. Based on the

trade‐off between network complexity and performance, VGG/Res-

net‐50 is used as the backbone network in this paper; that is, the

part before VGG/Resnet‐50, the global average pooling and the full

connection layer, is used as the feature extractor for Faster R‐CNN.

We present the Faster R‐CNN training the ResNet‐50 to illus-

trate the detection of lesions on MRI as an example. There are two

steps: first, we combine the data according to the triples (triad pat-

terns) as an input, that is, each input group includes the T1WI,

T2WI, and FS images of one patient, which are recorded as (T1, T2,

and FS). Each image in the triplet will be input into a separate net-

work, respectively; more specifically, CNN inspired from ResNet‐50
of Faster R‐CNN was employed to detect the lesion on the T1, T2,

and FS images. After extracting the bounding boxes from the images,

we retain one or zero bounding box for judging per image, which is

based on the confidence of the bounding box. In this work, RPN and

the features at conv_4 layer are used to predict class‐specific box

proposals. We set two scales (32, 64) and two aspect ratios (1:1,

1:2). We raised our threshold from 0.7 to 0.8 because many patients

have minor and occult injuries that are not considered as lesions on

the spinal cord. Then, we used the top‐ranked proposal region for

detection after non‐maximum suppression (NMS)25; more specifically,

we retained a maximum of one bounding box per image because for

an SCI, a patient usually has only one specific lesion area existing on

the MRI according to clinical diagnosis. To consistently classify these

three networks for the three images, we add a synergic classifier

after the feature extractor of each network, as shown in Fig. 4. To

construct a synergic classifier, the feature map obtained from the

last convolution layer of each feature extractor is combined by con-

catenation. In this paper, the combined size is 70 × 70 × 2048 × 3.

After the global average pooling, the data are flattened and input

into the full connection layer. Finally, the result is obtained by using

the Softmax classifier. The addition of synergic classifiers groups the

three networks into a whole network, and the three networks

become the sub‐networks of the whole network. Because each sub‐
network can generate a bounding box after the NMS, we use the

NMS again for the “bounding” boxes of the three sub‐networks, and

only retain the “bounding” box with the highest classification confi-

dence. Finally, we use the bounding box obtained by the three sub‐
networks to get the non‐maximum suppression again, and only retain

the bounding box with the highest classification confidence. The

result of Faster R‐CNN with VGG‐16/ResNet‐50 for detection lesion

associated with cervical diseases on MRI after testing is presented in

Table 2, and Fig. 5 shows some examples of the study.

3 | RESULTS

First, the datasets were desensitized, and scales were normalized

and labeled. Examples of the imaging studies are illustrated in

Figs. 1–4. Next, to comprehensively evaluate the proposed detection

system, the testing set was also collected from the PACS system to

assure data uniformity; a sketch map of training detection processing

is shown in Fig. 4. Furthermore, the mean average precision (mAP26)

F I G . 2 . Comparison between normal magnetic resonance imaging
(MRI) and abnormal MRIs.
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of the detection and the detection time were calculated; these are

summarized in Table 2. From Table 1, it is clear that the architecture

of Faster R‐CNN combined with ResNet‐50 and VGG‐16 network

had good recognition of the lesion on cervical spinal cord MRI. The

mAP was 88.6% and 72.3%, respectively, and testing time was 2.2

and 2.4 s/image, respectively. Figure 5 illustrates several examples of

visualization images（including disc herniation and spinal cord

injure）from the testing dataset through our model. Figure 6 shows

the prediction results for the VGG16/Resnet 50 models.In the

obtained images, apart from the frame, the corresponding damage

probability also marks the image damage area.

4 | DISCUSSION

MRI findings linked with abnormal conditions of the spinal cord can

indirectly reflect several microscopic changes in lesions caused by

DDD and SCI diseases in clinical settings.27 Our objective was to

classify and localize the lesion's area on MRI based on Faster R‐CNN

architecture with two kinds of CNN models (VGG/ResNet). mAP, the

visualized images, and corresponding location information tables are

acquired from the testing subjects in our method. The results show

that Faster R‐CNN combined with VGG16 and ResNet‐50 as a back-

bone can predict the lesions on MRI, and Faster R‐CNN with

ResNet‐50 has better prediction and speed for detecting lesions

associated with cervical diseases on MRI after testing.

On the one hand, in the field of image recognition and visual

learning tasks, CNNs in particular have rapidly become a methodol-

ogy of choice for analyzing medical images because of their unique

characteristic of preserving local image relations while performing

dimensionality reduction,27,28 such as residual network (ResNet). It

not only allows the gradient to pass the shortcut to alleviate gradient

disappearance but also allows the model to learn an identity function

that ensures the performance of the higher layers to be as good as

the underlying layers, if not worse.21 The main structure diagram of

ResNet is shown in the study published by He et al.29 Schmidhuber,

in his study,30 described the origin, operation process, development,

and application of deep learning. On the other hand, Faster R‐CNN,

as a novel algorithm, has been proposed with powerful processing

speeds in object detection since 2015. To date, Faster R‐CNN has

several advantages in regard to accuracy and detection speed. We

found that the proposed method achieved effective recognition per-

formance compared to VGG16, which is similar to the findings

reported by Jung et al.31 In addition, the numerical experiments

showed that Faster R‐CNN combined with novel CNN models has a

better recognition performance compared with the performance of

several traditional detection methods.32 Moreover Sa et al.33 pro-

posed Faster‐RCNN with small annotated clinical datasets in their

study, and they used 974 training images and tested 108 images

based on their proposed network. Their network can achieve much

better performance compared to the traditional sliding window

detection method on handcrafted features using only a small anno-

tated clinical dataset.

Image segmentation is used extensively in the field of medical

imaging. First, image segmentation needs intensive annotation, that

is, to label every pixel of the focus area, which reduces the require-

ments of the network on the amount of image data. Second, image

segmentation can clearly show an abnormal area in the image, which

is a.dvantageous in the interpretability of the network.16,34 However,

in the MRI image of the cervical spine, the diseased area is irregular

and the boundary is not clear, which makes it difficult to segment

and label the image. Consequently, generating an accurate image

segmentation label is difficult. This in turn will have a substantial

impact on the network performance. Therefore, we recommend

using detection networks to solve this problem rather than the U‐
net architecture.

Many studies have proposed boosting classifier for improvement

of object‐detection tasks in many categories. The idea of boosting is

F I G . 3 . Overview of the traditional Faster R‐convolutional neural network framework based on our method, showing each sub‐network.
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to modify the final result by fusing the results of multiple models.35

For example, in the classification of the ImageNet dataset, if the

classification result of four models for an image is “goldfinch,” and

that of one model is “house finch,” after boosting, the final result will

be output as “goldfinch.” Among them, the five models are indepen-

dent and can have different results, such as model 1 is ResNet and

F I G . 4 . (a) Example of detection using processing Faster R‐convolutional neural network (R‐CNN) in magnetic resonance imaging. (b)
Example of detection using Faster R‐CNN from each sub‐network.

TAB L E 2 Recognition performance in this network.

Methods Network mAP (%) Test time speed (s/image)

Faster R‐CNN Resnet‐50 88.6 0.22

Faster R‐CNN VGG‐16 72.3 0.24

mAP, mean average precision.
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model 2 is DenseNet.36 In this paper, the synergic classifier image is

combined, thereby causing the classification results of the three sub‐
networks to exhibit a higher consistency. Next, we use the idea of

boosting to suppress the results of the three sub‐networks again,

which we think is another advantage of the model. In our study, the

detection of cervical lesions is characterized such that each image

only is classified as either normal or as a certain disease, and there is

only one lesion area, which guarantees the feasibility of adding

synergic classifiers to the network. However, typically, in natural

image target detection, this method is not suitable because it deals

with multiple classifications. By adding a synergic classifier in this

study, the feature extractor of the three sub‐networks shows consis-

tency for the classification information of images. The number of

parameters of the synergic classifier is increased by 18 K, which is

approximately 2% of a single sub‐network. Therefore, although the

number of parameters of the whole network increases by a factor of

F I G . 5 . Example of detection results: from the outputs, each picture is surrounded by a target area and the corresponding classification
name and predicted probability value. This is an efficient method to recognize the effects of lesions on magnetic resonance imaging images.
The experimental results are observed to have reached the expected goal.

F I G . 6 . Histogram of the prediction results for the VGG16/Resnet 50 models. The sample sizes for the training set, validation set, and
testing set are 3600, 900, and 500, respectively.
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three, the number of parameters of a single sub‐network does not

increase much. Therefore, there is no requirement for additional data

to overfit the network because of the large size of the network

parameters.

Our study has some limitations. First, currently, the deep learning

of object‐detection task is updated very quickly, and the method we

adopted may have a lag compared to the latest method. Second, the

dataset used in the study is limited to our hospital imaging system.

Although this method can ensure the uniformity of data, it also

results in an insufficient data volume compared with other data-

bases, as well as poor scalability. If the dataset comes from multiple

hospitals, it would greatly improve the persuasiveness and practical-

ity of the experiment.

5 | CONCLUSION

In this study, we implemented a Faster R‐CNN combined with a

backbone convolutional feature extractor using ResNet‐50 and the

VGG‐16 network to detect lesions on cervical MRI images. Experi-

mental results showed that Faster R‐CNN improves the possibility of

diagnosing lesions from cervical MRI. Indirectly, our study showed

that deep learning can help to detect cervical diseases on MRI,

which is a value addition to the field. In the future, we hope that

more evidence‐based datasets can be established with the intentions

of providing a more reproducible approach to analyze MRI incorpo-

rated into deep learning and designing the MRI's criterion for assess-

ing diseases. Furthermore, it can be based on a deep learning

network to build a normalized analysis for clinical research studies of

MRI. Furthermore, the technique of Faster R‐CNN can provide the

possibility of auxiliary‐diagnosing for radiologists and spine surgeons

in the field of spinal injury.
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