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Abstract: The inverse Rayleigh distribution finds applications in many lifetime studies, but has not
enough overall flexibility to model lifetime phenomena where moderately right-skewed or near
symmetrical data are observed. This paper proposes a solution by introducing a new two-parameter
extension of this distribution through the use of the half-logistic transformation. The first
contribution is theoretical: we provide a comprehensive account of its mathematical properties,
specifically stochastic ordering results, a general linear representation for the exponentiated
probability density function, raw/inverted moments, incomplete moments, skewness, kurtosis,
and entropy measures. Evidences show that the related model can accommodate the treatment
of lifetime data with different right-skewed features, so far beyond the possibility of the former
inverse Rayleigh model. We illustrate this aspect by exploring the statistical inference of the new
model. Five classical different methods for the estimation of the model parameters are employed,
with a simulation study comparing the numerical behavior of the different estimates. The estimation
of entropy measures is also discussed numerically. Finally, two practical data sets are used as
application to attest of the usefulness of the new model, with favorable goodness-of-fit results in
comparison to three recent extended inverse Rayleigh models.

Keywords: inverse Rayleigh distribution; half-logistic transformation; moments; entropy; statistical
inference; real data analysis
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1. Introduction

In the seventies, [1] introduced what will be reveal as an important distribution for lifetime and
reliability studies, known as inverse Rayleigh (IR) distribution. Specially, it provides an appropriate
statistical model when dealing with unimodal highly right-skewed data. As mathematical basis,
the corresponding cumulative distribution function (cdf) and probability density function (pdf) are
given by

G(x; α) = e−(
α
x )

2
, g(x; α) =

2α2

x3 e−(
α
x )

2
, x, α > 0, (1)
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respectively, where α is a scale parameter. As notable features, the IR distribution has tractable and
simple probability functions, is unimodal and right-skewed, and possesses a hazard rate function with
a singular curvature: it increases at a certain value, then decreases until attain a kind of stabilization.
The pioneer studies are [2] which presents some properties of the maximum likelihood estimator of α,
and [3] which provides closed-form expressions for the (standard) mean, harmonic mean, geometric
mean, mode and median of the IR distribution. Also, among the amount of works investigating the
statistical aspects of the IR distribution, the reader can be referred to [4–12].

In the recent years, several extensions of the IR distribution were developed, using different
mathematical techniques, often at the basis of general families of distributions. Among them, there are
the beta IR (BIR) distribution by [13], transmuted IR (TIR) distribution by [14], modified IR (MIR)
distribution by [15], transmuted modified IR (TMIR) distribution by [16], transmuted exponentiated
IR (TEIR) distribution by [17], Kumaraswamy exponentiated IR (KEIR) distribution by [18], weighted
IR (WIR) distribution by [19], odd Fréchet IR (OFIR) distribution by [20], type II Topp-Leone IR
(TIITLIR) distribution by [21], type II Topp-Leone generalized IR (TIITLGIR) distribution by [22] and
exponentiated IR (EIR) distribution by [23].

However, to the best of our knowledge, the use of the half-logistic transformation to extend the IR
distribution remains unexplored, despite recent success in this regard. This half-logistic transformation
was pioneered by [24] in the context of the half logistic generated (HL-G) family of continuous
distributions. As main functions, the cdf and pdf of the HL-G family are, respectively, given by

F(x; λ, ξ) =
1− [1− G(x; ξ)]λ

1 + [1− G(x; ξ)]λ
(2)

and

f (x; λ, ξ) =
2λg(x; ξ)[1− G(x; ξ)]λ−1{

1 + [1− G(x; ξ)]λ
}2 , x, λ > 0, (3)

where λ is a shape parameter, G(x; ξ) is a cdf of a baseline/parent continuous distribution,
with corresponding pdf g(x; ξ), and ξ represents the baseline parameters (under a vector form,
say ξ = (ξ1, ξ2 . . .)). Thus, many studies used the HL-G family to introduce new flexible continuous
distributions with modelling perspectives, such as [25] with the HL Lomax (HLL) distribution, [26] in
which different methods of estimation for the HLL distribution are proposed, ref. [27] with the HL
power Lindley (HLPL) distribution, [28] with the HL generalized Weibull (HLGW) distribution, [29]
with the HL Burr X (HLBX) distribution and [30] which studied different estimation methods for the
HL Topp-Leone (HLTP) distribution.

That is, attracted by the success of the above extensions, we investigate the half-logistic IR (HLIR)
distribution, constituting a new lifetime distribution with two parameters, and a new extension of the
IR distribution as well. As expressed later, the cdf and pdf of the HLIR distribution are obtained by
inserting (1) into (2) and (3), respectively. In view of these functions, the HLIR can also be viewed as
a special case of the HL Fréchet (HLF) distribution by [24], i.e., with parameter β = 2, case that not
received a particular attention. The aim of this paper is to provide a solid and complete study on the
HLIR distribution, with an emphasis on the statistical inference of the related model. The essential
mathematical properties are provided, showing the overall flexibility of the HLIR distribution via
various measures (central, dispersion, as/symmetrical, entropy. . . ). Then, five different methods
of estimation are developed for the HLIR model parameters, specifically the maximum likelihood,
least square, weighted least square, percentile and Cramer-von Mises methods. The estimation of the
Rényi entropy and q-entropy is also discussed by using the plugging and ML methods. Then, we show
that the fits provided by the HLIR model can accommodate data with various features, and can
demonstrate better goodness-of-fits than the three following extended IR two-parameter models:
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the TIITLIR model (by [21]), TIR model (by [14]) and OFIR model (by [20]), and than the former
one-parameter IR model as well. Two practical data sets are analyzed in this regard.

The following sections composed the paper. Section 2 is devoted to the main probability functions
of the HLIR distribution. Section 3 introduces some mathematical properties of the HLIR distribution
including stochastic ordering results, a general linear representation for the exponentiated probability
density function, raw/inverted moments, incomplete moments, skewness and kurtosis features,
and some entropy measures. Section 4 discusses the estimation of the model parameters and entropy.
In Section 5, we reveal the potential of the HLIR model compared with some other models in a concrete
statistical setting. The paper encloses with some concluding remarks in Section 6.

2. The HLIR Distribution

This section introduces the main functions on the HLIR distribution, along with some
analytical properties.

2.1. Probability Functions

As described in the introduction, the cdf and pdf of the HLIR distribution with the vector of
parameters ϕ = (α, λ) is obtained by inserting Equation (1) into Equation (2) and Equation (3), i.e.,

F(x; ϕ) =

1−
[

1− e−(
α
x )

2
]λ

1 +
[

1− e−(
α
x )

2
]λ

(4)

and

f (x; ϕ) =

4λα2e−(
α
x )

2
[

1− e−(
α
x )

2
]λ−1

x3

{
1 +

[
1− e−(

α
x )

2
]λ
}2 , x, λ, α > 0, (5)

respectively, where α is a scale parameter and λ is a shape parameter.
Important reliability functions of the HLIR distribution are presented below. The survival function

(sf), hazard rate function (hrf), reversed hazard rate function (rhrf) and cumulative hazard rate function
(chrf) of the HLIR distribution are, respectively, given by

S(x; ϕ) =

2
[

1− e−(
α
x )

2
]λ

1 +
[

1− e−(
α
x )

2
]λ

,

h(x; ϕ) =
2λα2e−(

α
x )

2

x3
[

1− e−(
α
x )

2
]{

1 +
[

1− e−(
α
x )

2
]λ
} , (6)

h(x; ϕ) =

4λα2e−(
α
x )

2
[

1− e−(
α
x )

2
]λ−1

x3

{
1−

[
1− e−(

α
x )

2
]λ
}{

1 +
[

1− e−(
α
x )

2
]λ
}
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and

H(x; ϕ) = − log(2)− λ log
[

1− e−(
α
x )

2
]
+ log

{
1 +

[
1− e−(

α
x )

2
]λ
}

, x, λ, α > 0.

Implications of these functions in survival analysis can be found in [31]. For modelling purposes,
the pdf and hrf are informative on the ability of the HLIR model to fit data. For this reason, in the next,
we put a focus on these two functions.

2.2. Functions Analysis

The limit features of the cdf, pdf and hrf of the HLIR distribution, i.e., given by Equation (4),
Equation (5) and Equation (6), are studied below. In the case where x → 0, we have

F(x; ϕ) ∼ λ

2
e−(

α
x )

2
, f (x; ϕ) ∼ λα2

x3 e−(
α
x )

2
, h(x; ϕ) ∼ λα2

x3 e−(
α
x )

2
.

Thus, both the pdf and hrf tend to 0 in this case, with the same polyno-exponential decay. Also,
we see that the rate of convergence mainly depends on the parameter α.

On the other side, when x → +∞, we get

F(x; ϕ) ∼ 1− 2
(α

x

)2λ
, f (x; ϕ) ∼ 4λ

x

(α

x

)2λ
, h(x; ϕ) ∼ 2λ

x
.

Hence, in this case, both the pdf and hrf tend to 0. The rate of convergence of the pdf mainly
depends on the parameter λ, whereas the one of the hrf is fixed and of order 1/x.

The mode(s) of the HLIR distribution is(are) given by critical point(s) of the corresponding
pdf. Here, after some algebraic manipulations, it(they) is(are) given as solution(s) of the following
non-linear equation:

2α2 − 3x2 − 2α2(λ− 1)
e−(

α
x )

2

1− e−(
α
x )

2 + 4λα2
e−(

α
x )

2
[

1− e−(
α
x )

2
]λ−1

1 +
[

1− e−(
α
x )

2
]λ

= 0.

Closed-form(s) for the mode(s) is(are) not available, but a mathematical software must help for
a numerical evaluation.

On the other side, the critical point(s) is(are) given by the solution(s) of the following
non-linear equation:

2α2 − 3x2 + 2α2 e−(
α
x )

2

1− e−(
α
x )

2 + 2λα2
e−(

α
x )

2
[

1− e−(
α
x )

2
]λ−1

1 +
[

1− e−(
α
x )

2
]λ

= 0.

This(these) critical point(s) is(are) not expressible in an easy manner, but can be
evaluated numerically.

A more direct analysis of the shapes comes from graphical investigations. In this regard, Figures 1
and 2 plot the pdf and hrf, respectively, for selected values of ϕ.
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Figure 1. Plots of the pdf of the HLIR distribution for (a) α = 0.5; (b) α = 3 and (c) α = 6, with varying λ.
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Figure 2. Plots of the hrf of the HLIR distribution for (a) α = 0.08; (b) α = 0.5 and (c) α = 2, with varying λ.

We observe that the pdf of the HLIR distribution can be unimodal, and higlhy right-skewed
(see Figure 1a), moderately right-skewed (see Figure 1b), or near symmetrical (see Figure 1c),
with various heaviness on the tails. Moreover, we see that the hrf of the HLIR distribution can
be decreasing with a reversed J-shape (see Figure 2a), increasing-decreasing with a reversed bathtub
shape (see Figure 2b), or mainly increasing (see Figure 2c). In the curvature sense, these functions
are significantly more flexible in comparison to those of the former IR distribution, motivating the
consideration of the HLIR model for greatest statistical perspectives.

2.3. Quantile Function

The quantile function (qf) of the HLIR distribution, say Q(u; ϕ), can be obtained by inverting the
corresponding cdf; it satisfies F[Q(u; ϕ); ϕ] = u for u ∈ (0, 1). After some algebraic manipulations,
we arrive at

Q(u; ϕ) = α

[
− log

(
1−

(
1− u
1 + u

) 1
λ

)]− 1
2

, u ∈ (0, 1). (7)

Thanks to its closed-form, this qf is helpful for determining the quartiles of the HLIR distribution,
generating values from the HLIR distribution for simulation purposes and defining various measures
of skewness and kurtosis. All these aspects will be used later.
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3. Mathematical Properties

In this section, some notable mathematical properties of the HLIR distribution are derived,
specifically stochastic ordering results, a general linear representation for the exponentiated probability
density function, raw/inverted moments, incomplete moments, skewness and kurtosis features,
and some entropy measures, namely, the Rényi entropy and q-entropy.

3.1. Some Stochastic Ordering Results

The HLIR distribution enjoys tractable stochastic ordering results involving the corresponding
cdf. From a statistical point of view, such results allow a better comprehension of the roles of the
parameters in the fitting ability of the HLIR model. The most notable of them are presented below.

Proposition 1. The following inequalities holds:

• For any α1 ≥ α2 > 0 and λ, x > 0, we have F(x; α1, λ) ≤ F(x; α2, λ).
• For any λ1 ≥ λ2 > 0 and α, x > 0, we have F(x; α, λ2) ≤ F(x; α, λ1).

Proof. The proof is based on monotonic arguments with respect to the parameters.

• After some algebraic manipulations, we get

∂

∂α
F(x; ϕ) = −

4αλe−(
α
x )

2
[

1− e−(
α
x )

2
]λ−1

x2

{
1 +

[
1− e−(

α
x )

2
]λ
}2 < 0,

implying that F(x; ϕ) is strictly decreasing with respect to α. Therefore, for any α1 ≥ α2 > 0 and
λ, x > 0, we have F(x; α1, λ) ≤ F(x; α2, λ).

• With the same methodology, we have

∂

∂λ
F(x; ϕ) =

2
[

1− e−(
α
x )

2
]λ {
− log

[
1− e−(

α
x )

2
]}

{
1 +

[
1− e−(

α
x )

2
]λ
}2 > 0,

implying that F(x; ϕ) is strictly increasing with respect to λ. Therefore, for any λ1 ≥ λ2 > 0 and
α, x > 0, we have F(x; α, λ2) ≤ F(x; α, λ1).

This ends the proof of Proposition 1.

The following result shows a simple relation between the HLIR distribution and two other
distributions, including the EIR distribution by [23].

Proposition 2. For any x, α, λ > 0, the following inequalities holds:

F∗∗(x; ϕ) ≤ F(x; ϕ) ≤ F∗(x; ϕ),

where F∗(x; ϕ) and F∗∗(x; ϕ) are two cdfs: F∗(x; ϕ) = 1−
[

1− e−(
α
x )

2
]λ

is the cdf of the EIR distribution

and F∗∗(x; ϕ) = [x2λ/(x2λ + α2λ)]F∗(x; ϕ) is a weighted version of it, which remains a valid cdf.
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Proof. The proof follows from the definition of F(x; ϕ), involving F∗(x; ϕ) as numerator, and the
following inequalities: since ey ≥ 1 + y for any y ∈ R,

1 ≤ 1 +
[

1− e−(
α
x )

2
]λ

≤ 1 +
(α

x

)2λ
=

x2λ + α2λ

x2λ
.

This ends the proof of Proposition 2.

In fact, the cdf F∗∗(x; ϕ) in Proposition 2 is the cdf of the maximum of two independent random
variables: one following the EIR distribution and the other following a special case of the power Lomax
(PL) distribution introduced by [32].

3.2. Linear Representation

The following result introduces a useful linear representation for the exponentiated pdf of the
HLIR distribution with power parameter ν > 0.

Proposition 3. Let ν > 0. Then, f (x; ϕ)ν can be expressed as the following series expansion:

f (x; ϕ)ν =
+∞

∑
j,k=0

cj,k(ϕ, ν)gk(x; ϕ, ν),

where

cj,k(ϕ, ν) = 4νλνα2ν

(
−2ν

j

)(
λj + ν(λ− 1)

k

)
(−1)k, gk(x; ϕ, ν) = x−3νe−(k+ν)( α

x )
2
,

and (b
a) denotes the generalized binomial coefficient.

Proof. The generalized binomial series formula applied two times in a row yields

f (x; ϕ)ν = 4νλνα2νx−3νe−ν( α
x )

2
[

1− e−(
α
x )

2
]ν(λ−1)

{
1 +

[
1− e−(

α
x )

2
]λ
}−2ν

= 4νλνα2νx−3νe−ν( α
x )

2 +∞

∑
j=0

(
−2ν

j

) [
1− e−(

α
x )

2
]λj+ν(λ−1)

= 4νλνα2νx−3ν
+∞

∑
j,k=0

(
−2ν

j

)(
λj + ν(λ− 1)

k

)
(−1)ke−(k+ν)( α

x )
2
.

After a rearrangement, we get the desired result, ending the proof of Proposition 3.

By taking ν = 1 in Proposition 3, we get a useful series expansion for the pdf of the HLIR
distribution, “useful” in the sense that we express a sophisticated function as sums of tractable
functions, i.e., gk(x; ϕ, ν). In particular, we will use it in the next to provide measures and functions
which are easy to handle from the analytical and numerical point of views.

3.3. Raw/Inverted Moments

Let r be an integer; the negative values are allowed. If X denotes a random variable following
the HLIR distribution, then its rth moment (or (−r)th inverted moment if r is negative) exists if and
only if r < 2λ, and it is given by µ′r = E(Xr) =

∫ +∞
0 xr f (x; ϕ)dx. Thanks to Proposition 3 applied with

ν = 1 and the calculus of the integral
∫ +∞

0 xrgk(x; ϕ, 1)dx via the change of variable y = (k + 1)(α/x)2,
assuming that r < 2 min(λ, 1), we obtain the following relation
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µ′r =
+∞

∑
j,k=0

cj,k(ϕ, 1)
∫ +∞

0
xrgk(x; ϕ, 1)dx =

+∞

∑
j,k=0

dj,k(ϕ, r)

(1 + k)1− r
2

,

where

dj,k(ϕ, r) =
1
2

αr−2Γ
(

1− r
2

)
cj,k(ϕ, 1) = 2λαrΓ

(
1− r

2

)(−2
j

)(
λ(j + 1)− 1

k

)
(−1)k

and Γ(s) =
∫ +∞

0 xs−1e−xdx (the standard gamma function).
For instance, the mean of X, say µ, can be derived by taking r = 1, and the following

approximation remains acceptable:

µ = µ′1 =
+∞

∑
j,k=0

dj,k(ϕ, 1)

(1 + k)
1
2
≈

M

∑
j,k=0

dj,k(ϕ, 1)

(1 + k)
1
2

,

where M denotes a large integer and

dj,k(ϕ, 1) = 2λα
√

π

(
−2

j

)(
λ(j + 1)− 1

k

)
(−1)k.

The variance of X does not exist, as well as the standard coefficients of skewness and kurtosis.
This motivates the use of other measures of skewness and kurtosis based on quantiles, as performed in
Section 3.5. However, we can express all the inverted moments, i.e., µ′−1, µ′−2, µ′−3 and so on.

3.4. Incomplete Moments

Let r be an integer; the negative values are allowed. Contrary to the moments, the incomplete
moments of the HLIR distribution always exist. That is, if X denotes a random variable following
the HLIR distribution, for a given t ≥ 0, the rth incomplete moment of X at t is given by
µ′r(t) = E(Xr1{X≤t}) =

∫ t
0 xr f (x; ϕ)dx. Proceeding as for the raw/inverted moments, the following

formula holds:

µ′r(t) =
+∞

∑
j,k=0

cj,k(ϕ, 1)
∫ t

0
xrgk(x; ϕ, 1)dx =

+∞

∑
j,k=0

ej,k(ϕ, r)

(1 + k)1− r
2

Γ
(

1− r
2

, (k + 1)
(α

t

)2
)

,

where

ej,k(ϕ, r) =
1
2

αr−2cj,k(ϕ, 1) = 2λαr
(
−2

j

)(
λ(j + 1)− 1

k

)
(−1)k

and Γ(s, u) =
∫ +∞

u xs−1e−xdx (the upper incomplete gamma function).
We rediscover the relation limt→+∞ µ′r(t) = µ′r. Also, we can derive the rth normalized incomplete

moment as φr(t) = µ′r(t)/µ′r, which is key tool to define widely used measures of inequality,
such as income quintiles, Lorenz curve, Pietra ratio and Gini coefficient. For instance, the Lorenz curve
is the plot of (φ0(t), φ1(t)) and the Gini coefficient is defined by

G =
∫ +∞

0

[
t
µ

φ0(t)− φ1(t)
]

f (t; ϕ)dt.

These measures are essential to go further with the HLIR distribution in applied settings. Further
details and applications of them can be found in [33,34], and the references therein.



Entropy 2020, 22, 449 9 of 24

3.5. Skewness and Kurtosis Based on the qf

We now provide skewness and kurtosis analyzes of the HLIR distribution by using some measures
involving the qf given by (7). Let us set Qu = Q(u; ϕ) with u ∈ (0, 1). Then, we consider the coefficient
of skewness S by [35] and the coefficient of kurtosis K by [36] defined by

S =
Q3/4 − 2Q1/2 + Q1/4

Q3/4 −Q1/4
, K =

Q7/8 −Q5/8 + Q3/8 −Q1/8

Q3/4 −Q1/4
,

respectively. Here, S measures the degree of asymmetry of the HLIR distribution, whereas K measures
the degree of its tail heaviness; as K increases, the tail of the HLIR distribution becomes heavier.
To better handle these measures and see the effects of α and λ on them, Figure 3 displays the
two-dimensional plots for S and K with respect to α and λ, with α, λ ∈ (1, 5).

al
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Figure 3. Plots for (a) the skewness S and (b) the kurtosis K for α, λ ∈ (1, 5).

From Figure 3, we see that the parameter α has a minor effect on S and K, contrary to λ;
as λ increases, S and K increase. Also, we see that the HLIR distribution is mainly right-skewed,
confirming the prime graphical investigations on the corresponding pdf.

3.6. Measures Of Entropy

The entropy of the HLIR distribution can be measured in different ways. Here, we focus our
attention on the Rényi entropy by [37] and its twin sister: the q-entropy by [38]. For discussions
and applications of these two entropy measures, we refer the reader to the survey of [39], and the
references therein.

Let δ 6= 1 and δ > 0. Then, when δ(2λ + 1) > 1, the Rényi entropy of the HLIR distribution exists,
and it is given by

Iδ(ϕ) =
1

1− δ
log
[∫ +∞

0
f (x; ϕ)δdx

]
. (8)

Let us now investigate a practical series expansion of the main term. Owing to Proposition 3
applied with ν = δ and the calculus of the integral

∫ +∞
0 gk(x; ϕ, δ)dx via the change of variable

y = (k + δ)(α/x)2, assuming that δ > max(1/(2λ + 1), 1/3), we get
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∫ +∞

0
f (x; ϕ)δdx =

+∞

∑
j,k=0

cj,k(ϕ, δ)
∫ +∞

0
gk(x; ϕ, δ)dx =

+∞

∑
j,k=0

`j,k(ϕ, δ)

(δ + k)
3δ
2 −

1
2

, (9)

where

`j,k(ϕ, δ) =
1
2

a1−3δΓ
(

3δ

2
− 1

2

)
cj,k(ϕ, δ)

= 22δ−1λδa1−δΓ
(

3δ

2
− 1

2

)(
−2δ

j

)(
λj + δ(λ− 1)

k

)
(−1)k.

Therefore, one can express Iδ, along with an acceptable approximation, as follows:

Iδ(ϕ) =
1

1− δ
log

[
+∞

∑
j,k=0

`j,k(ϕ, δ)

(δ + k)
3δ
2 −

1
2

]
≈ 1

1− δ
log

[
M

∑
j,k=0

`j,k(ϕ, δ)

(δ + k)
3δ
2 −

1
2

]
,

where M denotes a large integer.
Now, let q 6= 1 and q > 0. Then, the q-entropy of the HLIR distribution is defined by

Hq(ϕ) =
1

q− 1

[
1−

∫ +∞

0
f (x; ϕ)qdx

]
. (10)

Therefore, owing to (9), with a similar approach than above, we get

Hq(ϕ) =
1

q− 1

[
1−

+∞

∑
j,k=0

`j,k(ϕ, q)

(q + k)
3q
2 −

1
2

]
≈ 1

q− 1

[
1−

M

∑
j,k=0

`j,k(ϕ, q)

(q + k)
3q
2 −

1
2

]
.

Other kinds of entropy can be expressed in a similar manner. In this regard, the book of [40]
is suggested.

4. Estimation

By considering the HLIR distribution as a statistical model, this section investigates the estimation
of α and λ via the five different methods mentioned in the introduction, also providing the interval
estimation of these parameters, and the estimation of the Rényi entropy and q-entropy as well.

4.1. Estimation of The Parameters

A myriad of estimation methods can be used to estimate α and λ. Here, we focus on the most
notable of them, namely the maximum likelihood (ML), least square (LS), weighted least square
(WLS), percentile (PC) and Cramer-von Mises (CV) methods. We first describe their mathematical
backgrounds and perform an adequate simulation study to check their efficiency.

4.1.1. ML Method

First of all, we investigate the ML estimates (MLEs) of α and λ. Let x1, . . . , xn be n observed values
from the HLIR distribution. Then, the MLEs can be calculated by maximizing the following function:
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l(ϕ) =
n

∑
i=1

log[ f (xi; ϕ)]

= n log(4) + n log(λ) + 2n log(α)− 3
n

∑
i=1

log(xi) + (λ− 1)
n

∑
i=1

log

[
1− e−

(
α
xi

)2
]

− 2
n

∑
i=1

log

1 +

[
1− e−

(
α
xi

)2
]λ
 ,

with respect to α and λ.
From the analytical point of view, the MLEs of α and λ are the solutions of two non-linear

equations using the first partial derivatives of l(ϕ), i.e.,

∂l(ϕ)

∂α
=

2n
α

+ 2α (λ− 1)
n

∑
i=1

e−
(

α
xi

)2

x2
i

[
1− e−

(
α
xi

)2
] − 4αλ

n

∑
i=1

e−
(

α
xi

)2
[

1− e−
(

α
xi

)2
]λ−1

x2
i

1 +

[
1− e−

(
α
xi

)2
]λ


and

∂l(ϕ)

∂λ
=

n
λ
+

n

∑
i=1

log

[
1− e−

(
α
xi

)2
]
− 2

n

∑
i=1

[
1− e−

(
α
xi

)2
]λ

log

[
1− e−

(
α
xi

)2
]

1 +

[
1− e−

(
α
xi

)2
]λ

.

Then, equating ∂l(ϕ)/∂α and ∂l(ϕ)/∂β to zeros and solving them simultaneously with respect to α

and λ, we obtain the MLEs (the same derivative approach can be developed in the next methods, but we
omit it for the sake of conciseness). Under some regularity conditions, the random versions of the
MLEs are known to be consistent, asymptotically normal, efficient and equivariant. Also, the formulas
for the corresponding standard errors, asymptotic confidence intervals and likelihood ratio tests
involving the MLEs are well-known. In this regard, we may refer to [41]. From the practical point of
view, they can be determine numerically thanks to the use of any statistical software (R, SAS, Python,
MATHCAD. . . ).

4.1.2. Ordinary and Weighted LS Methods

Let x1, . . . , xn be n observed values from the HLIR distribution and x(1), x(2), . . . , x(n) be their
ordered values, i.e., x(1) = inf(x1, . . . , xn), x(2) = inf({x1, . . . , xn}/{x(1)}) . . . and xn = sup(x1, . . . , xn).
Then, the LS estimates (LSEs) of α and λ can be calculated by minimizing the following function:

LS(ϕ) =
n

∑
i=1

[
F
(

x(i); ϕ
)
− i

n + 1

]2
=

n

∑
i=1



1−

1− e
−
(

α
x(i)

)2λ

1 +

1− e
−
(

α
x(i)

)2λ
− i

n + 1



2

,

with respect to α and λ.
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Similarly, by introducing a thorough weighted sequence, the WLS estimates (WLSEs) of α and λ

can be obtained by minimizing the following function:

WLS(ϕ) =
n

∑
i=1

(n + 1)2 (n + 2)
i (n− i + 1)

[
F
(

x(i); ϕ
)
− i

n + 1

]2

=
n

∑
i=1

(n + 1)2 (n + 2)
i (n− i + 1)



1−

1− e
−
(

α
x(i)

)2λ

1 +

1− e
−
(

α
x(i)

)2λ
− i

n + 1



2

,

with respect to α and λ.
For the theoretical background of this method and applications as well, we refer the reader to [42].

4.1.3. PC Method

Let x1, . . . , xn be n observed values from the HLIR distribution and x(1), x(2), . . . , x(n) be
their ordered values. Then, the PC estimates (PCEs) of α and λ are derived by minimizing the
following function:

PC(ϕ) =
n

∑
i=1

[
x(i) −Q

(
i

n + 1
; ϕ

)]2
=

n

∑
i=1

x(i) − α

[
− log

(
1−

(
1− i/(n + 1)
1 + i/(n + 1)

) 1
λ

)]− 1
2


2

,

with respect to α and λ.
The basics of this method can be found in [43,44].

4.1.4. CV Method

Let x1, . . . , xn be n observed values from the HLIR distribution and x(1), x(2), . . . , x(n) be their
ordered values. The CV estimates (CVEs) is a type of minimum distance estimates which is based on
the difference between the estimated and empirical cdfs (see [45,46]). That is, the CVEs of α and λ are
obtained by minimizing the following function:

CV(ϕ) =
1

12n
+

n

∑
i=1

(n + 1)2 (n + 2)
i (n− i + 1)

[
F
(

x(i); ϕ
)
− 2i− 1

2n

]2

=
1

12n
+

n

∑
i=1

(n + 1)2 (n + 2)
i (n− i + 1)


1−

1− e
−
(

α
x(i)

)2λ

1 +

1− e
−
(

α
x(i)

)2λ
− 2i− 1

2n



2

,

with respect to α and λ. Last but not least, we refer to [47] for empirical evidence of the efficiency of
the CVEs.

4.1.5. Numerical Results

Here, we conduct a simulation study to evaluate and compare the efficiency of the above estimates,
with respect to their mean squared errors (MSEs). In this regard, for each n = 10, 20, 30, 50, 100 and 200,
we generate 1000 random samples of size n, i.e., of the form (x1, x2, . . . , xn), from the HLIR distribution
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(the inversion method involving the qf given by (7) is used). The four following different sets of
parameters are considered:

ϕ1: (α = 1.5, λ = 0.8), ϕ2: (α = 1.5, λ = 0.5), ϕ3: (α = 1.5, λ = 1), ϕ4: (α = 0.5, λ = 0.5).

Then, the ML, LS, WLS, PC and CV estimates of α and λ are computed, as well as their MSEs.
Simulated outcomes are listed in Tables 1–4 for ϕ1, ϕ2, ϕ3 and ϕ4, respectively. The statistical software
MATHCAD(14) is used.

Table 1. Estimates and MSEs with the ML, LS, WLS, PC and CV methods for the HLIR model with ϕ1.

n MLEs LSEs WLSEs PCEs CVEs

Es MSE Es MSE Es MSE Es MSE Es MSE

10 1.713 0.302 1.478 0.374 1.471 0.287 1.378 0.319 1.744 1.379

0.991 0.287 0.855 0.447 0.841 0.395 1.005 7.810 1.109 1.215

20 1.627 0.130 1.496 0.142 1.511 0.126 1.402 0.142 1.623 0.843

0.904 0.079 0.828 0.078 0.835 0.071 0.798 0.145 0.928 0.130

30 1.567 0.065 1.492 0.090 1.510 0.082 1.373 0.098 1.575 0.699

0.856 0.034 0.808 0.043 0.818 0.040 0.745 0.075 0.866 0.059

50 1.545 0.037 1.502 0.054 1.514 0.045 1.408 0.057 1.553 0.623

0.838 0.020 0.814 0.026 0.819 0.022 0.752 0.045 0.849 0.032

100 1.523 0.018 1.503 0.026 1.513 0.022 1.424 0.031 1.527 0.555

0.817 8.129 * 0.805 0.012 0.810 9.531 * 0.747 0.024 0.821 0.013

200 1.507 8.193 * 1.497 8.467 * 1.500 9.781 * 1.446 0.017 1.506 0.511

0.807 4.213 * 0.800 3.667 * 0.803 4.774 * 0.761 0.014 0.808 5.512 *

The symbol * indicate that the value multiply 10−3.

Table 2. Estimates and MSEs with the ML, LS, WLS, PC and CV methods for the HLIR model with ϕ2.

n MLEs LSEs WLSEs PCEs CVEs

Es MSE Es MSE Es MSE Es MSE Es MSE

10 1.822 0.613 1.521 0.617 1.510 0.542 1.398 0.455 1.868 2.750

0.615 0.088 0.532 0.087 0.534 0.117 0.555 0.275 0.661 0.199

20 1.682 0.211 1.508 0.235 1.559 0.243 1.407 0.196 1.673 1.673

0.554 0.021 0.508 0.023 0.525 0.030 0.498 0.044 0.560 0.035

30 1.590 0.104 1.486 0.151 1.511 0.121 1.378 0.131 1.591 1.360

0.536 0.014 0.506 0.014 0.514 0.014 0.485 0.032 0.539 0.019

50 1.557 0.057 1.485 0.074 1.511 0.070 1.395 0.074 1.547 1.176

0.517 6.076 * 0.499 7.249 * 0.504 6.665 * 0.473 0.014 0.517 8.380 *

100 1.522 0.025 1.504 0.038 1.500 0.030 1.420 0.041 1.534 1.109

0.507 2.733 * 0.501 3.607 * 0.502 2.987 * 0.476 7.316 * 0.510 3.905 *

200 1.516 0.011 1.503 0.021 1.508 0.014 1.445 0.020 1.518 1.058

0.504 1.175 * 0.500 1.744 * 0.502 1.370 * 0.479 4.204 * 0.505 1.811 *

The symbol * indicates that the value multiply 10−3.
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Table 3. Estimates and MSEs with the ML, LS, WLS, PC and CV methods for the HLIR model with ϕ3.

n MLEs LSEs WLSEs PCEs CVEs

Es MSE Es MSE Es MSE Es MSE Es MSE

10 1.696 0.263 1.466 0.270 1.477 0.248 1.383 0.272 1.706 0.842

1.314 0.705 1.128 1.309 1.132 1.397 1.233 5.499 1.496 3.430

20 1.616 0.102 1.513 0.131 1.526 0.114 1.408 0.129 1.630 0.545

1.137 0.124 1.082 0.606 1.07 0.217 1.003 0.345 1.233 1.352

30 1.556 0.055 1.485 0.072 1.499 0.062 1.388 0.092 1.56 0.391

1.086 0.074 1.025 0.085 1.033 0.073 0.965 0.295 1.107 0.119

50 1.537 0.032 1.489 0.045 1.502 0.037 1.406 0.054 1.533 0.332

1.043 0.033 1.002 0.043 1.012 0.036 0.929 0.079 1.047 0.052

100 1.513 0.014 1.490 0.020 1.498 0.016 1.429 0.030 1.522 0.295

1.017 0.014 0.999 0.019 1.005 0.016 0.938 0.044 1.027 0.022

200 1.511 6.475 * 1.500 0.010 1.505 7.969 * 1.452 0.014 1.511 0.271

1.009 5.961 * 1.000 8.878 * 1.005 7.127 * 0.947 0.024 1.011 9.286 *

The symbol * indicates that the value multiply 10−3.

Table 4. Estimates and MSEs with the ML, LS, WLS, PC and CV methods for the HLIR model with ϕ4.

n MLEs LSEs WLSEs PCEs CVEs

Es MSE Es MSE Es MSE Es MSE Es MSE

10 0.606 0.069 0.502 0.069 0.506 0.063 0.466 0.051 0.621 0.126

0.615 0.088 0.538 0.145 0.541 0.143 0.557 0.284 0.664 0.213

20 0.561 0.023 0.515 0.031 0.520 0.027 0.469 0.022 0.554 0.032

0.554 0.021 0.526 0.052 0.525 0.030 0.498 0.044 0.553 0.035

30 0.530 0.012 0.498 0.016 0.504 0.013 0.459 0.015 0.542 0.020

0.536 0.014 0.510 0.015 0.514 0.014 0.485 0.032 0.540 0.017

50 0.519 6.332 * 0.498 9.623 * 0.504 7.787 * 0.465 8.251 * 0.521 0.011

0.517 6.076 * 0.499 7.766 * 0.504 6.665 * 0.473 0.014 0.523 9.412 *

100 0.507 2.773 * 0.497 4.192 * 0.500 3.278 * 0.473 4.530 * 0.511 4.964 *

0.507 2.733 * 0.499 3.481 * 0.502 2.987 * 0.476 7.316 * 0.512 4.168 *

200 0.505 1.222 * 0.501 2.110 * 0.503 1.600 * 0.482 2.182 * 0.504 1.996 *

0.504 1.175 * 0.500 1.665 * 0.502 1.371 * 0.479 4.204 * 0.504 1.788 *

The symbol * indicates that the value multiply 10−3.

From these tables, it is clear that the MSEs decrease as sample sizes increase, for all the estimates.
Also, in almost all of the cases, the MSEs of the MLEs take the smallest values among the corresponding
MSEs of the other methods. In this sense, in our setting, the ML method can be considered as the best
and will be naturally privileged in the next.

We complete this part with an interval estimation study. More specifically, we use the ML method
to calculate lower bound (LB), upper bound (UB) and average length (AL) of the (two-sided asymptotic)
confidence interval estimation of the model parameters at the levels 90% and 95%. The obtained
numerical results are mentioned in Tables 5–8 for ϕ1, ϕ2, ϕ3 and ϕ4, respectively.
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Table 5. LBs, UBs and ALs of the confidence interval estimation with the ML method for the HLIR
model with ϕ1.

n 90% 95%

LB UB AL LB UB AL

10 0.9812 2.3595 1.3783 0.8493 2.4915 1.6422

0.4155 1.8072 1.3916 0.2823 1.9404 1.6581

20 1.0237 1.9731 0.9494 0.9328 2.0640 1.1311

0.4570 1.0406 0.5835 0.4012 1.0964 0.6953

30 1.1899 1.9927 0.8028 1.1131 2.0696 0.9565

0.5637 1.1046 0.5409 0.5119 1.1564 0.6445

50 1.3385 1.9514 0.6130 1.2798 2.0101 0.7303

0.7090 1.2018 0.4928 0.6618 1.2490 0.5872

100 1.2681 1.6878 0.4197 1.2280 1.7280 0.5000

0.6276 0.8917 0.2641 0.6023 0.9170 0.3147

200 1.3499 1.6483 0.2983 1.3214 1.6768 0.3554

0.6857 0.8793 0.1936 0.6671 0.8978 0.2307

Table 6. LBs, UBs and ALs of the confidence interval estimation with the ML method for the HLIR
model with ϕ2.

n 90% 95%

LB UB AL LB UB AL

10 0.8230 2.4433 1.6203 0.6679 2.5984 1.9305

0.2930 0.9958 0.7028 0.2257 1.0631 0.8374

20 1.1324 2.4175 1.2851 1.0093 2.5405 1.5312

0.3437 0.7453 0.4016 0.3053 0.7838 0.4785

30 1.2235 2.2379 1.0144 1.1264 2.3351 1.2086

0.3834 0.7141 0.3307 0.3517 0.7458 0.3941

50 1.1789 1.8935 0.7146 1.1105 1.9619 0.8515

0.3984 0.6401 0.2416 0.3753 0.6632 0.2879

100 1.2926 1.8030 0.5104 1.2437 1.8519 0.6082

0.4320 0.6013 0.1693 0.4158 0.6175 0.2017

200 1.3099 1.6611 0.3511 1.2763 1.6947 0.4184

0.4385 0.5523 0.1138 0.4276 0.5632 0.1356
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Table 7. LBs, UBs and ALs of the confidence interval estimation with the ML method for the HLIR
model with ϕ3.

n 90% 95%

LB UB AL LB UB AL

10 1.0988 2.3947 1.2959 0.9747 2.5187 1.5440

0.5174 2.3797 1.8624 0.3390 2.5580 2.2190

20 1.2117 2.1173 0.9057 1.1249 2.2040 1.0791

0.7164 1.8340 1.1176 0.6094 1.9410 1.3316

30 1.3016 2.0438 0.7422 1.2305 2.1149 0.8844

0.7916 1.6449 0.8533 0.7099 1.7265 1.0167

50 1.3957 1.9756 0.5800 1.3401 2.0312 0.6910

0.9009 1.5806 0.6797 0.8358 1.6457 0.8099

100 1.3614 1.7592 0.3978 1.3233 1.7973 0.4740

0.8509 1.2381 0.3872 0.8138 1.2752 0.4614

200 1.3840 1.6621 0.2780 1.3574 1.6887 0.3313

0.8758 1.1375 0.2618 0.8507 1.1626 0.3119

Table 8. LBs, UBs and ALs of the confidence interval estimation with the ML method for the HLIR
model with ϕ4.

n 90% 95%

LB UB AL LB UB AL

10 0.3509 0.9691 0.6182 0.2917 1.0283 0.7365

0.3310 1.1897 0.8587 0.2488 1.2719 1.0232

20 0.3634 0.7614 0.3980 0.3253 0.7995 0.4742

0.3625 0.7954 0.4329 0.3211 0.8368 0.5157

30 0.4275 0.7659 0.3384 0.3951 0.7983 0.4032

0.4320 0.8254 0.3935 0.3943 0.8631 0.4688

50 0.3565 0.5830 0.2264 0.3349 0.6046 0.2698

0.3658 0.5833 0.2174 0.3450 0.6041 0.2591

100 0.4149 0.5828 0.1680 0.3988 0.5989 0.2001

0.4147 0.5764 0.1617 0.3993 0.5919 0.1926

200 0.4638 0.5858 0.1220 0.4521 0.5974 0.1454

0.4591 0.5795 0.1204 0.4475 0.5911 0.1435

From Tables 5–8, it is clear that the ALs decrease as sample sizes increase.

4.2. Estimation of The Entropy

We now investigate the estimation of the Rényi entropy Iδ(ϕ) given by (8) and the q-entropy
Hq(ϕ) given by (10) by the means of a simulation study. We adopt the same setting than Section 4.1.5
(we generate 1000 random samples of sizes n = 10, 20. . . with the same sets of parameters).
Then, we determine the MLEs of α and λ, denoted by α̂ and λ̂, and for δ, q = 1.2, 1.5 and 2, we estimate
Iδ(ϕ) and Hq(ϕ) by Iδ(ϕ̂) and Hq(ϕ̂) with ϕ̂ = (α̂, λ̂), respectively. We measure the precision of
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these estimates by the relative biases (RBs); in the case of the Rényi entropy and a given ϕ, the RB is
defined by

RB =
Estimate Iδ(ϕ̂)− Exact value Iδ(ϕ)

Exact value Iδ(ϕ)
.

Simulated outcomes about the Rényi entropy are presented in Tables 9–12 for ϕ1, ϕ2, ϕ3 and ϕ4,
respectively, and those of the q-entropy are presented in Tables 13–16 for ϕ1, ϕ2, ϕ3 and ϕ4, respectively.

Table 9. Rényi entropy estimates and RBs for the HLIR model with ϕ1.

n Exact
Value

δ = 1.2 Exact
Value

δ = 1.5 Exact
Value

δ = 2

Estimate RB Estimate RB Estimate RB
10

0.929

0.836 0.100

0.858

0.743 0.134

0.787

0.708 0.101

20 0.908 0.023 0.829 0.034 0.770 0.022

30 0.910 0.020 0.832 0.031 0.779 0.011

50 0.917 0.013 0.842 0.018 0.782 6.454 *

100 0.937 8.576 * 0.854 4.477 * 0.786 1.323 *

200 0.929 0.252 * 0.858 0.004 * 0.788 0.968 *
The symbol * indicates that the value multiply 10−3.

Table 10. Rényi entropy estimates and RBs for the HLIR model with ϕ2.

n Exact
Value

δ = 1.2 Exact
Value

δ = 1.5 Exact
Value

δ = 2

Estimate RB Estimate RB Estimate RB
10

1.279

1.213 0.052

1.167

1.077 0.077

1.062

1.001 0.058

20 1.223 0.044 1.144 0.020 1.036 0.024

30 1.265 0.011 1.149 0.015 1.038 0.022

50 1.265 0.011 1.160 6.064 * 1.055 6.444 *

100 1.267 9.558 * 1.161 5.065 * 1.058 3.544 *

200 1.273 5.068 * 1.164 2.707 * 1.059 2.975 *
The symbol * indicates that the value multiply 10−3.

Table 11. Rényi entropy estimates and RBs for the HLIR model with ϕ3.

n Exact
Value

δ = 1.2 Exact
Value

δ = 1.5 Exact
Value

δ = 2

Estimate RB Estimate RB Estimate RB
10

0.789

0.668 0.153

0.73

0.640 0.123

0.671

0.610 0.091

20 0.714 0.095 0.705 0.035 0.637 0.050

30 0.761 0.035 0.712 0.026 0.659 0.017

50 0.776 0.016 0.713 0.025 0.663 0.012

100 0.779 0.012 0.722 0.011 0.669 3.100 *

200 0.788 1.497 * 0.725 6.639 * 0.671 0.357 *
The symbol * indicates that the value multiply 10−3.
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Table 12. Rényi entropy estimates and RBs for the HLIR model with ϕ4.

n Exact
Value

δ = 1.2 Exact
Value

δ = 1.5 Exact
Value

δ = 2

Estimate RB Estimate RB Estimate RB
10

0.802

0.730 0.089

0.69

0.604 0.125

0.585

0.522 0.108

20 0.778 0.030 0.661 0.042 0.568 0.029

30 0.791 0.014 0.669 0.031 0.576 0.016

50 0.796 7.181 * 0.679 0.015 0.577 0.014

100 0.797 5.891 * 0.688 2.132 * 0.589 7.532 *

200 0.800 2.364 * 0.689 0.606 * 0.585 0.511 *
The symbol * indicates that the value multiply 10−3.

Table 13. q-entropy estimates and RBs for the HLIR model with ϕ1.

n Exact
Value

q = 1.2 Exact
Value

q = 1.5 Exact
Value

q = 2

Estimate RB Estimate RB Estimate RB
10

1.74

1.584 0.090

1.255

1.184 0.057

0.837

0.812 0.030

20 1.665 0.043 1.240 0.012 0.817 0.024

30 1.714 0.015 1.242 0.011 0.827 0.012

50 1.722 0.010 1.247 6.763 * 0.834 3.921 *

100 1.733 4.096 * 1.262 5.454 * 0.838 0.951 *

200 1.738 1.241 * 1.255 0.119 * 0.837 0.192 *
The symbol * indicates that the value multiply 10−3.

Table 14. q-entropy estimates and RBs for the HLIR model with ϕ2.

n Exact
Value

q = 1.2 Exact
Value

q = 1.5 Exact
Value

q = 2

Estimate RB Estimate RB Estimate RB
10

2.226

2.141 0.038

1.478

1.447 0.021

0.913

0.904 0.010

20 2.166 0.027 1.456 0.015 0.906 8.183 *

30 2.175 0.023 1.471 4.813 * 0.913 0.362 *

50 2.204 9.500 * 1.472 4.358 * 0.913 0.171 *

100 2.217 3.877 * 1.473 3.469 * 0.913 0.131 *

200 2.218 3.458 * 1.475 2.095 * 0.913 0.111 *
The symbol * indicates that the value multiply 10−3.

Table 15. q-entropy estimates and RBs for the HLIR model with ϕ3.

n Exact
Value

q = 1.2 Exact
Value

q = 1.5 Exact
Value

q = 2

Estimate RB Estimate RB Estimate RB
10

1.523

1.374 0.098

1.137

1.024 0.099

0.787

0.754 0.041

20 1.465 0.038 1.068 0.061 0.761 0.033

30 1.484 0.026 1.113 0.021 0.779 9.278 *

50 1.499 0.016 1.126 9.813 * 0.784 3.558 *

100 1.512 7.609 * 1.129 7.297 * 0.788 1.975 *

200 1.521 1.275 * 1.136 0.757 * 0.786 0.939 *
The symbol * indicates that the value multiply 10−3.
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Table 16. q-entropy estimates and RBs for the HLIR model with ϕ4.

n Exact
Value

q = 1.2 Exact
Value

q = 1.5 Exact
Value

q = 2

Estimate RB Estimate RB Estimate RB
10

1.544

1.472 0.047

1.096

1.039 0.053

0.74

0.728 0.016

20 1.476 0.044 1.082 0.013 0.730 0.014

30 1.518 0.017 1.090 5.887 * 0.735 7.336 *

50 1.524 0.013 1.092 3.371 * 0.736 5.129 *

100 1.529 9.527 * 1.095 0.878 * 0.743 4.069 *

200 1.536 5.298 * 1.096 0.048 * 0.742 3.075 *
The symbol * indicates that the value multiply 10−3.

From these tables, we see that the RBs of the Rényi entropy and q-entropy decrease as the sample
sizes increase, attesting the efficiency of the proposed estimates.

5. Applications to Real Data

In this section, we prove the flexibility of the HLIR model by analyzing two practical datasets,
denoted by D1 and D2, given as follows:

D1. The first data set is extracted from ([48], Table 3). For the sake of transparency, the data are: 1.312,
1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 2.027, 2.055,
2.063, 2.098, 2.14, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382, 2.382, 2.426,
2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566, 2.57, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684,
2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 2.88, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096,
3.128, 3.233, 3.433, 3.585, 3.585.

D2. The second data set coming from [49]. The data consists of the monthly actual taxes revenue in
Egypt from January 2006 to November 2010. The data (in 1000 million Egyptian pounds) are: 5.9,
20.4, 14.9, 16.2, 17.2, 7.8, 6.1, 9.2, 10.2, 9.6, 13.3, 8.5, 21.6, 18.5, 5.1, 6.7, 17, 8.6, 9.7, 39.2, 35.7, 15.7,
9.7, 10, 4.1, 36, 8.5, 8, 9.2, 26.2, 21.9, 16.7, 21.3, 35.4, 14.3, 8.5, 10.6, 19.1, 20.5, 7.1, 7.7, 18.1, 16.5, 11.9,
7, 8.6, 12.5, 10.3, 11.2, 6.1, 8.4, 11, 11.6, 11.9, 5.2, 6.8, 8.9, 7.1, 10.8. The corresponding histogram
shows that the distribution of the data is highly right-skewed, motivating the use of the HLIR
model for suitable fits.

The fitting behavior of the HLIR model is compared to the one of the following well-known
models: OFIR, TIITLIR, TIR and IR models. As common point, they extend the IR model and possess
two parameters (excepted the former IR model). With the concern to make comparisons as fair as
possible, we apply the following notorious criteria: Cramér Von-Mises (CVM), Anderson-Darling
(AD), Kolmogorov-Smirnov (KS) with the corresponding p-value (KS p-value), as well as those
based on the log-likelihood: minus estimated log-likelihood (-ˆ̀), Akaike information criterion
(AIC), consistent Akaike information criterion (CAIC), Bayesian information criterion (BIC) and
Hannan-Quinn information criterion (HQIC). Model with the minimum values for CVM, AD, KS, (-ˆ̀),
AIC, BIC, CAIC and HQIC, and the maximum KS p-value, is considered to provide the best fits for the
proposed data. For further details on these criteria, we refer the reader to [50]. In this part, the software
R is used, along with the package AdequacyModel (see [51]).

The MLEs and their standard errors (SEs) for the considered models, as well as CVM, AD, KS,
and KS p-value are given in Tables 17 and 18 for D1 and D2, respectively. Also, the goodness-of-fit
measures (− ˆ̀), AIC, BIC, CAIC, and HQIC are provided in Tables 19 and 20 for D1 and D2, respectively.
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Table 17. Goodness-of-fit measures, MLEs and SEs (into parentheses) for D1.

Model CVM AD KS KS p-Value MLEs and (SEs)
HLIR 0.0513 0.3895 0.0596 0.9668 3.6538 10.2773
(α, λ) (0.2197) (2.5587)
TIITLIR 0.0908 0.6421 0.0776 0.7993 2.7966 10.2992
(α, θ) (0.1574) (2.8538)
TIR 0.1767 1.2000 0.2540 0.0002 7.5093 0.8891
(θ, λ) (19.4108) (0.0182)
OFIR 0.5913 3.7026 0.1801 0.0227 2.9540 1.3910
(θ, α) (0.1862) (0.1231)
IR 0.1875 1.2706 0.3549 0.0000 2.2827 -
(α) (0.1374) -

Table 18. Goodness-of-fit measures, MLEs and SEs (into parentheses) for D2.

Model CVM AD KS KS p-Value MLEs and (SEs)
HLIR 0.0476 0.2821 0.0626 0.9745 9.0540 1.5057
(α, λ) (0.8159) (0.2381)
TIITLIR 0.0487 0.2904 0.0726 0.9142 7.1702 1.2912
(α, θ) (0.5758) (0.2319)
TIR 0.0496 0.2885 0.0659 0.9598 105.9762 0.4105
(θ, λ) (19.4108) (0.3493)
OFIR 0.0964 0.7205 0.1458 0.1623 47.0580 0.7820
(θ, α) (5.1027) (0.0838)
IR 0.0488 0.2934 0.0821 0.8203 9.3593 -
(α) (0.6092) -

Table 19. Goodness-of-fit measures based on the log-likelihood for D1.

Distribution − ˆ̀ AIC CAIC BIC HQIC

HLIR 50.5018 105.0030 105.1856 109.4720 106.7764
TIITLIR 52.0685 108.1371 108.3189 112.6053 109.9098

TIR 71.9390 145.8787 145.9384 148.1128 146.7651
OFIR 71.7113 147.4228 147.6046 151.8910 149.1955

IR 88.4130 178.8262 178.8859 181.0603 179.7125

Table 20. Goodness-of-fit measures based on the log-likelihood for D2.

Distribution − ˆ̀ AIC CAIC BIC HQIC

HLIR 188.4997 380.9994 381.2137 385.1545 382.6213
TIITLIR 188.6142 381.2283 381.4426 385.3834 382.8503

TIR 189.1310 382.2620 382.4762 386.4170 383.8839
OFIR 193.7239 391.4479 391.6621 395.6029 393.0698

IR 190.5877 383.1754 382.2455 385.2529 382.9863

From Tables 17–20, we confirm that the HLIR model provides the best fits among the other models
for D1 and D2 since it has the lowest values of CVM, AD, KS, − ˆ̀ , AIC, CAIC, BIC and HQIC, and the
greatest values for the KS p-value. Also, one can notice that the KS p-values of the HLIR model are very
closed to 1, making the HLIR model difficult to beat with the KS p-value benchmark for D1 and D2.

The estimated pdf (epdf), estimated cdf (ecdf), estimated sf (esf) and probability-probability (P-P)
plots of the HLIR model are displayed in Figures 4 and 5 for D1 and D2, respectively.
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Figure 4. Plots for the epdf, ecdf, esf and P-P plots of the HLIR model for D1.
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Figure 5. Plots for the epdf, ecdf, esf and P-P plots of the HLIR model for D2.

From Figures 4 and 5, nice fits are observed for the HLIR models; in the four plots, the green
curves fit very well those based on the corresponding empirical ones, attesting the applicability of the
HLIR model for D1 and D2.
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In order to complete this part, let us now investigate the entropy estimation of the HLIR model
for the two data sets, adopting the methodology describes in Section 4.2. For D1, at δ = 1.2, δ = 1.5,
and δ = 2, the estimated Rényi entropy is equal to 49.182, 25.324 and 17.371, respectively, and, at q = 1.2,
q = 1.5 and q = 2, the estimated q-entropy is equal to 5, 2 and 1, respectively. Thus, we can notice
that the estimated Rényi entropy decreases as δ increases. Also, the estimated q-entropy decreases
as q increases. For D2, at δ = 1.2, δ = 1.5 and δ = 2, the estimated Rényi entropy is equal to 1.348,
1.304 and 1.259, respectively, and, at q = 1.2, q = 1.5 and q = 2, the estimated q-entropy is equal
to 2.312, 1.555 and 0.945, respectively. Hence, the estimated Rényi entropy decreases as δ increases.
Also, the estimated q-entropy decreases as q increases.

6. Concluding Remarks

In this paper, a new two-parameter lifetime distribution based on the half-logistic transformation
and the IR distribution is introduced. It is called the HLIR distribution. Some of its mathematical
properties as stochastic ordering results, a general linear representation for the exponentiated
probability density function, raw/inverted moments, incomplete moments, skewness and kurtosis
features, and Rényi entropy and q-entropy are derived. The estimation of the model parameters is
discussed through the ML, LS, WLS, PC and CV methods. Simulation study is carried out to compare
the performance of the five resulting estimates. It revealed that the ML method performs better than
the others, in approximately, most of situations. The estimation of the Rényi entropy and q-entropy
is also conducted with success. An application to two real data sets indicates that the HLIR model
can produce better fits than other champion models, also based on the IR distribution. With only
two parameters and such a high degree of performance, we hope that the HLIR model will attract the
attention of some practitioners for further perspectives.
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