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Background-—Cardiovascular risk factor burden in the absence of clinical or radiological “events” is associated with mild cognitive
impairment. Magnetic resonance imaging techniques exploring the integrity of neuronal fiber connectivity within white matter
networks supporting cognitive processing could be used to measure the impact of cardiovascular disease on brain health and be
used beyond bedside neuropsychological tests to detect subclinical changes and select or stratify participants for entry into clinical
trials.

Methods and Results-—We assessed the relationship between verbal IQ and brain network integrity and the effect of
cardiovascular risk factors on network integrity by constructing whole-brain structural connectomes from magnetic resonance
imaging diffusion images (N=60) from people with various degrees of cardiovascular risk factor burden. We measured axonal
integrity by calculating network density and determined the effect of fiber loss on network topology and efficiency, using graph
theory. Multivariate analyses were used to evaluate the relationship between cardiovascular risk factor burden, physical activity,
age, education, white matter integrity, and verbal IQ. Reduced network density, resulting from a disproportionate loss of long-range
white matter fibers, was associated with white matter network fragmentation (r=�0.52, P<10�4), lower global efficiency (r=0.91,
P<10�20), and decreased verbal IQ (adjusted R2=0.23, P<10�4).

Conclusions-—Cardiovascular risk factors may mediate negative effects on brain health via loss of energy-dependent long-range
white matter fibers, which in turn leads to disruption of the topological organization of the white matter networks, lowered
efficiency, and reduced cognitive function. ( J Am Heart Assoc. 2018;7:e010054. DOI: 10.1161/JAHA.118.010054.)
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B rain health can be broadly defined as the physiological
state in which sensorimotor and cognitive tasks are

performed within a normal level that is comparable across
healthy individuals. This definition can also be expanded to
imply neurological functional reserve, that is, the ability
to learn and adapt to new knowledge and challenges or to
recover from neurological disease.

Currently, brain health is largely assessed in the context of
clinical neuroscience through behavioral measures. Cognitive
performance is assessed using standard paper-and-pencil

neuropsychological tests, whereas sensorimotor abilities are
commonly assessed through a neurological examination.1,2

Likewise, neurological adaptation is measured through obser-
vation of learning rates or through recovery after brain
injury.3-5

These behavioral measures provide some insight into the
underlying biological phenomena that are fundamentally
related to brain health. However, behavioral measures do
not yield specific information about the exact underlying
neuroanatomical mechanisms that constitute brain health
and, as a result, are limited in their ability to predict
performance or reserve, particularly in the context of
neurological disease and subclinical changes, where identify-
ing compromised neuroanatomical networks can be important
for treatment considerations.

Cardiovascular risk factors, such as diabetes mellitus,
hypertension, and hyperlipidemia are detrimental to general
health and to cognition in particular. They have pervasive and
profound effects on end-organ function and peripheral
vasculature.6 Cardiovascular risk factors result in initial subtle
brain structural changes and cognitive decline that may
eventually lead to dementia.7,8 Likewise, the cumulative
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effects of microangiopathic changes and perivascular lipo-
hyalinosis are commonly associated with white matter
changes in the brain.9 Although white matter has lower
metabolic needs, it is significantly more vulnerable to
ischemic damage compared with gray matter. White matter
receives less cerebrovascular perfusion10 and has a declining
anaerobic resistance associated with aging.11 Despite the
well-known relationship between white matter susceptibility
and ischemic damage, the mechanisms linking small-vessel
disease, white matter network disruption, brain health, and
cognitive decline are not well understood. Likewise, the
impact of microangiopathic white matter loss on cognitive
performance is not well defined in mild to moderate cases.
Therefore, evidence of premorbid brain decline coupled with
changes in brain structural integrity may be an early indicator
of cognitive decline and dementia.

In this study we examined the question of whether
cognitive function is related to cardiovascular risk factor
burden and loss of network integrity, which can be under-
stood as a biological measure of brain health.

We leveraged methodological advancements in systems
and computational neurosciences related to the human brain
connectome. The structural connectome is a map of all
medium- to large-scale white matter connections across the
entire brain derived from diffusion tensor magnetic resonance
imaging (DTI). The connectome reveals regional pairwise brain
connectivity between all defined brain regions and enables
quantification of the topology of complex brain networks
beyond gray or white matter atrophy, which may occur with
healthy aging. The connectome is an individual map on which
the topological brain network organization can be compared
across individuals in the context of health or disease.12 By
providing a comprehensive overview of neuronal network
organization, the brain connectome has been applied suc-
cessfully to improve the understanding of several broad
categories of neurological diseases such as epilepsy,

dementia, and movement disorders.13-16 However, it has not
been evaluated thus far as a measure of brain health.

Individualized connectomes can be assessed with regard to
their integrity and topological network organization, leveraging
knowledge from network analyses. Global and regional prop-
erties can be assessed with regard to efficiency of transfer of
information via network integration and segregation.17 We
evaluated the association among cardiovascular risk factors,
white matter integrity, and cognitive performance in a group of
participants with varying cardiovascular risk factor burdens.
Cognitive performance was evaluated using verbal IQ, calcu-
lated from the National Adult Reading Test-Revised,18 which
has been standardized against other measures of intelligence
(Wechsler Adult Intelligence Scale)19 and serves as an accurate
probe of premorbid cognitive performance. Specifically, we
evaluated whether cardiovascular risk factor burden would be
associated with loss of fiber density, especially among short- or
long-range white matter connections, whose structural integ-
rity entails a continuum from lower to higher metabolic
demand, respectively. We hypothesized that a high cardiovas-
cular risk factor burden would be associated with a loss of
energy-dependent long axonal projections, leading to lower
verbal IQ. The confirmation of our hypothesis would lead to the
proposal that white matter network architecture could provide
a singular, quantifiable measure of overall brain health by using
imaging connectomics.

Methods
Anonymized data used in this study will be made available to
investigators who provide a written request to the corre-
sponding author to analyze the data, indicating the study in
which the data will be used.

Participants
We recruited 60 participants (47 female, mean age
55.1�8.6 years) without a history of neurological or psychi-
atric diseases from the local community through advertise-
ment. All participants were self-reported cognitively normal
adults. Thirty-three participants did not have a history of
cardiovascular risk factors (healthy control group), and 27
participants had previously been diagnosed with at least 1
cardiovascular risk factor: diabetes mellitus (14 participants),
hyperlipidemia (18 participants), and hypertension (20 partic-
ipants) (Table). Seven participants had been diagnosed with all
cardiovascular risk factors (a group henceforth referred to as
the cumulative morbidity group). These diagnoses were
obtained through medical chart review. The Charlson Comor-
bidity Index20 (CCI) was calculated for all participants. If
participants reported a diagnosis of hypertension and/or
hyperlipidemia, an extra point for each diagnosis was added

Clinical Perspective

What Is New?

• We demonstrate that cardiovascular risk factor burden is
associated with the loss of long-range white matter fibers,
which leads to the breakdown of complex network organi-
zation and subsequent cognitive decline.

What Are the Clinical Implications?

• With further validation, identification of the way compro-
mised neuroanatomical networks relate to brain health,
particularly in the context of neurological disease and
dementia, may be important for diagnostic strategy and
treatment interventions.
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to the overall CCI score. All participants except 4 had at least
a high school diploma. The study was approved by the
Institutional Review Board at the Medical University of South
Carolina, and all participants gave written informed consent.

Behavioral Evaluation
All participants underwent verbal performance assessment
using the National Adult Reading Test-Revised18 as an
estimator of premorbid cognitive function. Verbal intelligence
was calculated in accordance with the National Adult Reading
Test-Revised as shown:

Estimated Verbal Scale IQ ¼ 128:7� 0:89�
National Adult Reading Test-Revised errors

All participants completed the Community Healthy Activities
Model Program for Seniors,21 which was used as a measure
for physical activity. All behavioral testing was performed
within the same week as the neuroimaging assessment.

Image Acquisition
Imaging was performed on a Siemens (Munich, Germany) 3T
Total imaging matrix trio MRI scanner located at the Medical
University of South Carolina. We used T1-weighted, and
diffusion images collected from each participant. T1 parame-
ters were in the magnetization-prepared rapid gradient-echo
sequence with 1-mm isotropic voxels, 2569256 matrix size,
and a 9° flip angle. We used a 192-slice sequence with
repetition time, TR=2250 milliseconds, T1=925 milliseconds,
and echo time, TE=4.15 milliseconds. DTI parameters: twice-
refocused echo-planar imaging b=0, 1000, 2000, 60 diffusion

encoding directions, TR=6100 milliseconds, TE=101 millisec-
onds, field of view=2229222 mm2, matrix=82982, 2.7-mm
slice thickness, and 45 axial slices.

Structural Connectome Construction
Each participant’s individual connectome was built from the
neuroimaging data using the following steps: (1) T1-weighted
images were segmented into probabilistic gray and white
matter maps using the SPM12 unified segmentation-normal-
ization; (2) each individual’s gray matter map was divided into
1358 regions using the Atlas of Intrinsic Connectivity of
Homotopic Areas brain atlas22; (3) the gray matter parcella-
tion maps were nonlinearly registered into the DTI space;
(4) pairwise probabilistic DTI fiber tracking was computed for
all possible pairs of gray matter regions (further details on the
DTI tractography parameters below); (5) the weight of each
pairwise connectivity link was determined based on the
number of probabilistic streamlines connecting the gray
matter region pair, corrected by distance traveled by each
streamline and by the total volume of the connected regions;
and (6) a weighted adjacency matrix M of size 135891358
was constructed for each participant with Mi,j representing
the weighted link between region of interest (ROI)i and ROIj.

Tractography was estimated using the Functional MRI of
the Brain Diffusion Toolbox probabilistic method23 with the
Diffusion Toolbox BEDPOST software being used to assess
default distributions of diffusion parameters at each voxel,
and probabilistic tractography was performed using the
Diffusion Toolbox probtrackX (parameters: 5000 individual
pathways drawn through the probability distributions on
principal fiber direction, curvature threshold set at 0.2, 200
maximum steps, step length 0.5 mm, and distance correction).

Table. Demographic Distribution

Characteristic Without Cardiovascular Risk Factors (N=33)

With Cardiovascular Risk Factors

Diabetes Mellitus (N=14) Hyperlipidemia (N=18) Hypertension (N=20)

Age, y 52.2 (9.2) 59.4 (5.0) 59.2 (5.9) 59.3 (6.9)

Sex

Female 29 (87.9%) 11 (78.6%) 11 (61.1%) 12 (60%)

Male 4 (12.2%) 3 (21.4%) 7 (38.9%) 8 (40%)

Race

White 18 (54.6%) 3 (21.4%) 9 (50%) 7 (35%)

Black 15 (45.6%) 11 (78.6%) 9 (50%) 13 (65%)

Education, y 14.4 (2.0) 13.1 (2.0) 13.4 (1.9) 13.1 (2.1)

Behavioral measures

Verbal IQ 111.95 (13.0) 99.34 (14.3) 105.05 (15.0) 102.74 (15.4)

CHAMPS 0.83 (0.29) 0.69 (0.32) 0.81 (0.29) 0.76 (0.32)

Data are given as mean (SD) or as N (%). CHAMPS indicates Community Healthy Activities Model Program for Seniors.
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The waypoint mask was set as the white matter probabilistic
map. The weighted connectivity between the regions i and jwas
defined as the number of probabilistic streamlines arriving at j
region when i was seeded, averaged with the number of
probabilistic streamlines arriving at i region when jwas seeded.
The connection weight was corrected based on the distance
traveled by the streamlines connecting i and j (probtrackX’s
“distance correction”). The number of streamlines connecting
each pair of regions was further divided by the sum of the
volumes of these regions. In summary, each individual connec-
tome was represented by a 135891358 matrix, where the
nodes corresponded to the Atlas of Intrinsic Connectivity of
Homotopic Areas anatomical regions and the edges to the
structural connectivity between the nodes.

Network Analysis
Connectome Density

We assessed the overall connectivity of the networks by
calculating the connectome density for each subject, which is
defined as the ratio of all connections that exist in the network
to all possible connections. Specifically, we assessed the total
number of connections in the connectome and divided this by
the number of possible connections. Thus, a density of 100%
indicates a highly connected network in which all potential
connections exist. We then compared the connectome density
of participants with versus those without cardiovascular risk
factors.

To determine which fibers were disproportionately lost, we
calculated the percentage of short-, mid, and long-range white
matter fibers. First, we calculated the Euclidean distance
between each pair of node centroids in each connectome and
designated all fibers with lengths below the first quartile
(lowest 25%) as short-distance fibers and all fibers with lengths
above the third quartile (75% and above) long-distance fibers.
Midrange fibers had lengths above the first quartile and below
the third quartile (25% to 75%). We determined the proportion
of all existing connections in each connectome that were either
short-, mid, or long-distance fibers. To determine the effect of
cardiovascular risk factors on short-, mid, and long-range white
matter connectivity, we assessed differences in the percentage
of short-, mid, and long-distance fibers between participants
with and those without cardiovascular risk factors.

Connectome Measures

We extracted graphed theoretical measures of network orga-
nization and efficiency using the Brain Connectivity Toolbox.24

Each connectome was partitioned into communities or
modules by optimizing the Newman modularity algorithm.25

Modularity (Q) is a value that quantifies the strength of the
network’s modular organization by identifying groups of nodes
that have stronger intracommunity coherence than

intercommunity coherence. Figure 1 provides a neuroanatom-
ical overview of the parcellation scheme (Figure 1A through
1D), how modules are calculated (Figure 1E through 1H) in
which ROIs belonging to the same module have the same

Figure 1. The gray matter regions are divided into 679 regions of
interest (ROIs) in each hemisphere, corresponding to neuroanatom-
ical boundaries defined by a parcellation atlas (A, where ROIs are
indicated by different colors). To facilitate visualization of networks,
each ROI can be represented by a sphere in the ROI’s center ofmass
(B throughD).Modularity iscalculatedbyassessing theROIs thatare
more closely integrated by their white matter networks and
relatively segregated from the other surrounding modules.
E through H, In the example of 1 subject, the ROIs that belong to
thesamemoduleare representedusing thesamecolor (ie, all ROIs in
yellow belong to the same module, which is different from the
module containing ROIs in green, and so on). G and H, Edges
corresponding to the white matter networks integrating 1 module
(with ROIs in yellow), largely representing premotor circuitry.
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color, and an example module and connectivity profile
(Figure 1G and 1H) of the premotor module.

We also calculated global network efficiency, which
quantifies the ease of information flow in the network and
is computed as the inverse of the shortest path length
between 2 nodes.26

Statistical Analyses
We performed general linear regression analyses to determine
the effect of fiber loss on verbal IQ, with verbal IQ as the
dependent variable and whole-brain fiber density as the
predictor variable. We also constructed a second model to
adjust for key covariates with whole-brain fiber density, age,
CCI, education, and physical activity (Community Healthy
Activities Model Program for Seniors) predicting verbal IQ. We
did not account for sex because the cohort was predom-
inantly made up of women (80%).

For each subject’s connectome, we extracted the global
efficiency, modularity score, and the optimal community
structure that indicates to which communities each ROI
belongs. Due to stochasticity of network partitioning, which
may lead to assignment of ROIs to different communities with
every run, we performed 100 runs of modularity assessment
function for each individual and used the mean as the
modularity score. To determine differences in network
topology, we performed a 2-tailed t test that compared the
modularity scores of participants with versus those without
cardiovascular risk factors. We also explored the community
structure of 3 exemplar participants: 1 healthy control, a
participant with only 1 cardiovascular risk factor, and 1
participant with all 3 cardiovascular risk factors. Finally, to
determine the effect of fiber loss on network topology and
efficiency, we performed Pearson correlation analyses
between whole-brain fiber density and whole-brain modularity
and global efficiency. All statistical analyses were performed
using MATLAB (Mathworks, Natick, MA). The statistical
significance was set at P≤0.05 (2-sided), and the P-values
were Bonferroni corrected at P≤0.05.

Results

Participant Demographics
Table provides the descriptive statistics of the participants
included in this study.

Relationship Between Connectome Density and
Verbal IQ
Our model revealed that connectome density alone accounted
for about 23% of the variance in predicting verbal IQ: F(1,60)

=18.7, P<10�4, adjusted R2=0.23. When age, years of
education, cardiovascular risk factor burden, and level of
physical activity were added, connectome density (P=0.004),
years of education (P<10�6), and CCI (P=0.05) were signif-
icant predictors and accounted for about 60% of the variance
in predicting verbal IQ: F(5,60)=18.2, P<10�9, adjusted
R2=0.59. Physical activity (P=0.31) and age (P=0.29) were
not significant predictors in the model.

Pearson correlations revealed that connectome density
was significantly correlated with verbal IQ scores (r=�0.49,
P<10�4; Figure 2A, left panel), such that subjects with
densely connected networks performed better in the behav-
ioral task, and subjects who had lost some fiber connections
performed worse. The relationship was still significant even
when we controlled for other significant predictors of verbal
IQ: for example, years of education (r=0.45, P<10�3) and CCI
(r=0.42, P<10�3). The models were still significant when
corrected for multiple comparisons (P=0.025).

Effect of Cardiovascular Risk Factors on
Connectome Density and Long-Range White
Matter Connectivity
There was decreased connectome density in participants with
cardiovascular risk factors, and a significant difference was
seen between participants with no cardiovascular risk factor
and the cumulative morbidity group (Figure 2C, first panel:
left hemisphere, t[38]=2.0470, P=0.048; right hemisphere,
t[38]=2.1154, P=0.041).

Across all subjects, 54.4%, 40.1%, and 4.9% of all fibers
were classified as short-, medium-, or long-range fibers,
respectively. Subjects without cardiovascular risk factors had
54.3% short fibers, participants with at least 1 cardiovascular
risk factor had 54.7% short fibers, and participants with
cumulative morbidities had 58.3% short fibers. There was a
significant difference in the number of short fibers between
healthy controls and participants with cumulative morbidities
(P=0.017).

Subjects without cardiovascular risk factors had 40.3%
medium fibers compared with 39.9% among participants with at
least 1 cardiovascular risk factor and 37.6% among participants
with cumulative morbidities. There was a significant difference
in the number of medium fibers between healthy controls and
participants with cumulative morbidity (P=0.015).

Subjects without cardiovascular risk factors had 5.0% long
fibers, whereas participants with at least 1 cardiovascular risk
factor and participants with cumulative morbidities had 4.9%
and 3.4% long fibers, respectively. There was a significant
difference in the number of long fibers between healthy controls
and participants with cumulative morbidity (P=0.028).

These results indicate an overall loss of mid- and long-
range connections due to multiple cardiovascular risk factors.
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The results were significant when corrected for multiple
comparisons (P=0.02).

Effect of Fiber Loss on Network Topology and
Efficiency
There was a significant correlation between connectome density
and modularity (r=�0.52, P<10�4), and connectome density and
global efficiency (r=0.91, P<10�20) (Figure 2A, middle and right
panels). Furthermore, examination of community structures
revealed a fragmentation pattern in both hemispheres of

participants with cardiovascular risk factors. Figure 2B shows 3
example participants: 1 participant without cardiovascular risk
factors, 1 participant with only 1 cardiovascular risk factor, and 1
participantwith all 3 cardiovascular risk factors. There is a gradual
decrease in the number of connections, or an increasing sparsity
of the networks, and an increase in the number of modules (a
fragmentation of the network) from the control on the left to the
participant with cumulative morbidities on the right. Likewise,
therewas an increase in the left- and right-hemispheremodularity
scores with increasing cardiovascular risk factor burden (left
hemisphere, t[38]=�3.6039, P<10�3; right hemisphere, t[38]

Figure 2. A, Left, Correlation between density and verbal IQ (r=0.49, P<10�4). A, Middle, Correlation
between density and modularity (r=�0.52, P<10�4). A, Right, Correlation between density and global
efficiency (r=0.91, P<10�20). B, Sample data: number of modules detected in the left and right hemispheres
of 1 healthy control, 1 participant with cardiovascular risk factors (hypertension), and 1 participant who had
all cardiovascular risk factors (cumulative morbidities). Note the breakdown and increased number of
modules (or fragmentation of the community structure) with increasing number of cardiovascular risk
factors. Also note decreasing density with increasing cardiovascular risk factors, with the complete loss of
connections in the participant with cumulative morbidities. C, Left, Effect of cardiovascular risk factors on
density: decreasing left and right hemisphere density with increasing number of cardiovascular risk factors.
Significant difference in density between controls and cumulative morbidity (P=0.048, P=0.041,
respectively). C, Right, Effect of cardiovascular risk factors on modularity; increasing left and right
hemisphere modularity with increasing number of cardiovascular risk factors. Significant difference in
modularity between controls and cumulative morbidity (P<10�3, P=0.0028, respectively). CVD indicates
cardiovascular disease.
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=�3.2001, P=0.0028; Figure 2C, second panel). The results
were significant when corrected for multiple comparisons
(P=0.01).

Discussion
We examined the relationships among cardiovascular risk
factors, the integrity of axonal fibers, and verbal IQ using
structural connectomes from a cohort of participants with
various degrees of cardiovascular risk factors. Our results
supported our hypothesis that a high cardiovascular risk factor
burden would be associated with the loss of energy-dependent
long axonal projections, leading to lower verbal IQ. This
suggests that cardiovascular risk factor burden is associated
with loss of longer-range white matter fibers, disruption of
network architecture and efficiency, and lower cognitive
performance. Network density alone predicted 23% of cognitive
performance, and including sociodemographic and health
variables increased the prediction accuracy to 60%. We found
that participants with cardiovascular risk factors showed
network disruption and a reduction in network density. We
further demonstrated relationships among cardiovascular risk
factors, brain integrity, and functional outcomes, indicating that
white matter integrity is 1 potential approach to measure brain
health because it is associated with both cardiovascular risk
factor status and cognitive performance.

White matter is more vulnerable to injury caused by
hypoperfusion than gray matter,27 with lower collateral blood
supply in the deep white matter. For this reason cardiovascular
risk factors, particularly hypertension and diabetes mellitus,

lead to microangiopathic white matter injuries that are
conspicuously observed on routine MRIs in individuals with
cardiovascular risk factors or in the elderly. These are
commonly referred to as cerebral small vessel disease
(SVD)28 and are directly associated with amyloid angiopathy,
atherosclerosis, and arteriolosclerosis.29 Cerebral SVD can be
detected on routine MRIs by white matter hyperintensities
(WMH), and their progressive accumulation has been shown to
be associatedwith the development of lowwhitematter and low
brain volume, dementia, mood disturbances, and gait prob-
lems.30 The Radboud University Nijmegen Diffusion Tensor and
Magnetic Resonance Cohort study prospectively assessed 503
individuals with SVD and observed that a highWMH volumewas
associated with a hazard ratio of 1.8 for the development of
parkinsonism, most commonly vascular parkinsonism.31 In the
same cohort (503 subjects from the Radboud University
Nijmegen Diffusion Tensor and Magnetic Resonance Cohort
study), the investigators observed a 5.5-year cumulative risk of
11.1% of developing dementia, with whitematter volume,WMH,
and hippocampal volume explaining most of the variance.32 The
same group also observed that SVD affecting frontosubcortical
regions was more common in individuals with depressive
symptoms.33

Interestingly, the associations described above are well
defined in cases of high or cumulative SVD burden, but in most
cases, WMH are incidental findings on MRI, and their clinical
significance is largely unknown.30 They likely represent the
early manifestation of an insidious process whose conse-
quences remain subclinical until a threshold of structural
compromise is reached. The ability to accurately detect these

Figure 2. Continued
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changes in an early stage could lead to strategies to inform
decisions about their significance, progression, and treatment.
Diffusion MRI is a promising technique for this goal because
ongoing technological developments have increased its sensi-
tivity to small changes in tissue and white matter micro-
structure.34 However, the findings from early studies were not
able to definitely conclude whether they added benefit over the
simple volume of WMH. For example, in the dementia study
cited above, the authors concluded that tract-based spatial
statistics, which is a form of quantification of scalar diffusion
parameters along the core of white matter pathways, did not
reveal additional benefit in predicting dementia.32 Similarly, the
depression study did not observe an additional benefit of radial
diffusivity after additional adjustment for WMH and lacunar
infarcts.33 Nonetheless, several more recent studies have
started to disclose the important role of diffusion MRI in
identifying subtle white matter changes in the context of SVD.
As part of the PRESERVE (How Intensively Should We Treat
Blood Pressure in Eestablished Cerebral Small Vessel Disease?)
DTI study, Croall and colleagues observed that after normaliza-
tion for brain volume, WMH, lesion load, number of lacunae, and
scalar diffusion measures such as fractional anisotropy and
mean diffusivity were significantly associated with multiple
cognitive domains such as verbal fluency, mental flexibility, and
cognition.35 Moonen and colleagues, as part of the DANTE
(Discontinuation of Antihypertensive Treatment in Elderly
People) Study Leiden, observed that lower fractional anisotropy
in white matter was associated with executive functioning after
adjustment for normalized brain volume, but diffusionmeasures
were not associated with mood scores.36 Ciulli and colleagues
observed that a predictor model built on white matter mean
diffusivity could forecast executive function (Trail Making Test
performance) in patients with mild cognitive impairment and
SVD with an accuracy of 77.5% to 80.0%.37

It is important to emphasize that the more recent studies
mentioned above were performed using scalar measures (ie,
voxelwise metrics) of diffusion MRI, such as fractional
anisotropy and mean diffusivity, whereas modeling of white
matter networks and circuitry topology using diffusion tractog-
raphy is the subsequent step to determine the complexity of
brain networks. In a pilot study, Xie and colleagues demon-
strated that depressive symptoms in patients with SVD were
associated with impairment of global network efficiency and
lower nodal efficiency in several brain regions.38 More similarly
to our approach, Tuladhar and colleagues demonstrated that
SVD patients had less dense networks, with lower network
strength and efficiency and with reduced connectivity between
hub (rich club) regions.39 This study did not test the relationship
between white matter topology and cognitive symptoms but
proposed their likely association.

Our study builds on the literature discussed above, com-
bined with a risk factor determinant and functional

consequences to assess their tripartite association: cardiovas-
cular risk factors ↔ white matter integrity ↔ functional
performance.

We observed that cardiovascular risk factors were associated
with reduced density. Connectome density gauges how well the
network is connected and informson thewiring or physical cost of
connecting the network. Biological networks are sparsely
connected, and only a fraction of possible connections occur.
For instance, cortical fiber tract connectivity inmammalian brains
is between 10% and 30%.40 Density is dependent on the overall
number of white matter projections, and we observed that
cardiovascular risk factors were associated with a reduction in
connectome density, that is, with white matter fiber loss in
general with a disproportionate loss of longer connections. The
human brain, even at rest, consumes about 20% of energy while
making up only 2% of human weight. The energy consumed goes
into generating action potentials, neurotransmitter release, and
recycling; however, a large portion of the energy goes into
maintaining resting potentials via active transport of ions across
themembrane (about 28% for neurons).41 The cost of forming and
maintaining these connections increases with increasing surface
area, volume, length, and activity such that longer fibers aremore
costly, occupy more space, and generally require more energy.
This suggests that to conserve energy and space, most connec-
tions in the brain should be short range (as supported by our
analysis, 54.4% short-range fibers, 40.1% midrange fibers, and
4.9% long-range fibers). However, minimizing energy costs must
also be balanced against maintaining an efficient topological
organization that allows for efficient information processing and
transfer. Therefore, the inherent segregation or increased
connectivity within modules (that utilizes short-distance connec-
tions) must be accompanied by integration or communication
between the modules (which utilizes long-distance connections)
to allow for a globally efficient topology.We observed a significant
loss of long-distance fibers in participantswith cardiovascular risk
factors, which led to a disruption of their topological organization
and lowering of their overall network efficiency.

We posit that decreased connectome density, and the loss
of long-distance fiber connections in particular, led to the
observed fragmentation pattern and lowered efficiency of the
white matter networks, which was in turn associated with
lower verbal IQ. The association between density and verbal
IQ remained significant even when potential confounders such
as years of education and age were accounted for.

The topological organization of brain networks is thought
to provide an insight into efficient cognitive processing of the
brain, where high intramodular connectivity favors local
processing and functional specialization, and connectivity
between modules favors global integration.42 However, devi-
ations from this optimal structure with either increased or
decreased clustering may be the underlying cause or conse-
quence of many cognitive and psychiatric disorders. Of note is
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that we cannot determine causality because this was a single
cross-sectional study; however, we observed that loss of long-
range fiber connections resulting from cardiovascular risk
factors was associated with deviations from this optimal
topological architecture that signifies a healthy brain.
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