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Conventional and plasmacytoid dendritic cells (cDCs and pDCs) are the two populations 
of DCs that can be readily identified in human blood. Conventional DCs have been sub-
divided into CD1c+, or blood dendritic cells antigen (BDCA) 1 and CD141+, or BDCA-3, 
DCs, each having both unique gene expression profiles and functions. BDCA-3 DCs 
express high levels of toll-like receptor 3 and upon stimulation with Poly I:C secrete IFN-
β, CXCL10, and IL-12p70. In this article, we show that activation of human BDCA-3 DCs 
with Poly I:C induces the expression of activation markers (CD40, CD80, and CD86) 
and immunoglobulin-like transcript (ILT) 3 and 4. This Poly I:C stimulation results in four 
populations identifiable by flow cytometry based on their expression of ILT3 and ILT4. We 
focused our efforts on profiling the ILT4− and ILT4+ DCs. These ILT-expressing BDCA-3 
populations exhibit similar levels of activation as measured by CD40, CD80, and CD86; 
however, they exhibit differential cytokine secretion profiles, unique gene signatures, and 
vary in their ability to prime allogenic naïve T cells. Taken together, these data illustrate 
that within a pool of BDCA-3 DCs, there are cells poised to respond differently to a given 
input stimulus with unique output of immune functions.
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inTrODUcTiOn

As key regulators of the immune system, antigen-presenting cells (APCs) play a primary role in 
acquiring, processing, and presenting both foreign and self-antigens to naïve CD4+ and CD8+ T cells, 
thereby initiating the adaptive branch of the immune system. Even though a variety of immunocytes, 
such as macrophages, monocytes, and B cells, are capable of functioning as APCs to a certain extent, 
dendritic cells (DCs) are considered the primary APCs for the stimulation of naïve T cells (1). In 
mammals, DCs are often broadly divided into two major groups, myeloid or conventional DCs 
(referred hereafter as cDCs) and plasmacytoid DCs (pDCs). In the human blood, three distinct 
subsets of DCs have been identified by their differential expression of three surface markers blood 
dendritic cells antigen (BDCA) 1, BDCA-2, and BDCA-3. BDCA-1 DC, or cDCs are characterized by 
their surface expression of Lin−, CD11c+, CD1c+, HLADR+, and CD123dim. BDCA-2 DCs, or pDCs, 
are identified by their surface markers Lin−, CD123+, CD4+, and HLADR+. The recently identified 
BDCA-3 cDCs are characterized as Lin−, CD123−, CD11c+, CD1c−, and by the unique expression of 
the chemokine receptor XCR1 (2, 3). BDCA-1 DCs express toll-like receptors (TLRs) 2-6 and 9, while 
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BDCA-3 DCs express high levels of TLR3. Consistent with this 
TLR expression profile, BDCA-1 and BDCA-3 DCs produce large 
amounts of IL-12 during antibacterial and anti-viral responses 
(4, 5). BDCA-3 DCs have also been shown to be highly efficient 
at cross-presentation of antigen to T cells, in particular necrotic 
antigens (3).

In addition to inducing pro-inflammatory responses, DCs are 
also capable of promoting tolerogenic responses. The tolerance-
inducing potential of DCs is intimately linked to their maturation 
status. For example, TLR-activated primary human pDCs have 
been shown to induce T regulatory cells (Tregs) in vitro under 
certain stimulatory conditions. It has also been previously dem-
onstrated that immature cDCs, under steady state, exhibit the 
ability to prime naïve T cells to differentiate into IL-10 producing 
Tregs (6). The result of such a priming event can be influenced by 
the cytokines the DCs secrete, as well as the expression of recep-
tors known to promote tolerance. Previous studies have shown 
that DCs differentiated in vitro with IL-10 (DC–IL-10) express 
high levels of inhibitory immune receptors, in particular the 
immunoglobulin-like transcript (ILT) family of surface receptors 
(7). ILT receptors have been shown to promote the induction of 
CD4+ Tregs through DC priming (8, 9). Additionally, TLR or 
CD40 ligand (CD40L) matured cDCs primed naïve T cells to 
differentiate into effector T cells (10). This dichotomy for cDCs 
to exhibit both immune-stimulatory and regulatory function 
suggests the presence of potentially different subsets or that the 
contrasting functions of cDCs are dictated by their differentia-
tion/maturation state.

In the present study, using highly enriched primary human 
DCs, we embarked on an effort to stimulate various human DC 
subsets, including BDCA-3 DCs, to examine the upregulation 
of known tolerogenic markers. Interestingly, we observed that  
Poly I:C-stimulated BDCA-3 DCs can be subdivided into dif-
ferent populations based on their surface expression of ILT3 
and ILT4. Our analysis of various ILT-expressing BDCA-3 DCs 
revealed populations that exhibit differential cytokine secretion 
profiles. In addition, gene expression profiling by microarray 
analysis revealed unique gene signatures for each population. 
Lastly, these different ILT-expressing populations of BDCA-3 
DCs differ in their ability to prime effector T cells.

MaTerials anD MeThODs

isolation and culture of human cells
Total blood leukapheresis was purchased from Research Blood 
Components LLC (Brighton, MA, USA). Total peripheral blood 
mononuclear cells (PBMCs) were isolated after lysis of red blood 
cells. Total DCs were first enriched using the Human Myeloid DC 
Enrichment Kit (StemCell Technologies, Vancouver, BC, Canada) 
according to the manufacturer’s instructions. Enriched DCs were 
then stained antibodies, including lineage markers (Lin) (BD 
Bioscience, San Jose, CA, USA), HLADR (BD Bioscience, San 
Jose, CA, USA), CD1c (Biolegend, San Diego, CA, USA), CD11c 
(Miltenyi, San Diego, CA, USA), CD123 (BD Bioscience, San Jose, 
CA, USA), and CD141 (Miltenyi, San Diego, CA, USA). Labeled 
cells were sorted on a BD FACS ARIA II (BD Biosciences, San 

Jose, CA, USA). pDCs were sorted based on the expression of cell 
surface markers Lin−, CD123+, and HLADR+. cDCs were sorted 
based on cell surface markers as Lin−, CD123dim, HLADR+, 
CD1c+, and CD11c+. BDCA-3 DCs were sorted based on cell 
surface markers as Lin−, CD123dim, HLADR+, CD1c−, and 
CD141+. The purity of collected pDCs, cDCs, and BDCA-3 DCs 
was consistently greater than 98% based on post sort analysis.

rT-Pcr for Tlr gene expression (mrna)
Total RNA was extracted from a total of 1 ×  106 freshly puri-
fied pDCs, cDCs, and BDCA-3 DCs utilizing the RNeasy Plus 
Mini kit (Qiagen, Valencia, CA, USA). The RNA was reversely 
transcribed to cDNA utilizing SuperScript VILO (Invitrogen, 
Grand Island, NY, USA). TLRs 1–10 expression was analyzed 
using Applied Biosystem’s TaqMan Gene Expression Master 
Mix and primer/probes. PCR parameters were 50°C for 2 min, 
followed by 95°C for 10 min proceeding to 40 cycles at 95°C for 
15  s, 60°C for 1 min. RPLPO was used as an internal control. 
Taqman assays were performed on a BioRad Real-Time PCR 
System CFX384 (Biorad, Hercules, CA, USA). To determine 
the relative expression of each gene, the 2−ΔΔCt approach (ΔCq 
method) was employed (11).

gene array experiments
Purified BDCA-3 DCs were cultured in complete X-VIVO-15 
(5% human serum (Sigma) + 1% Pen/Strep (Invitrogen, Grand 
Island, NY, USA)) media containing 10 μg/mL Poly I:C at 37°C 
for 18 h. Cells were washed and sorted by the expression of ILT3 
and ILT4 (R&D Systems, Minneapolis, MN, USA). Total RNA 
was extracted from ILT3− ILT4−, ILT3+ ILT4−, ILT3+ ILT4+, and 
ILT3− ILT4+ BDCA-3 DCs utilizing the RNeasy Plus Mini kit 
(Qiagen, Valencia, CA, USA). RNA was frozen and sent to the 
Boston University MicroArray Core for further processing.

All procedures were performed at Boston University 
Microarray Resource Facility as described in GeneChip® 
Whole Transcript (WT) Sense Target Labeling Assay Manual 
(Affymetrix, Santa Clara, CA, USA), Nugen Ovation Pico WTA 
System User Guide, Nugen WT-Ovation Exon Module User 
Guide, and Nugen Encore Biotin Module User Guide (Nugen, 
San Carlos, CA, USA).

Microarray analysis
Affymetrix GeneChip Human Gene 1.0 ST CEL files were 
normalized to produce gene-level expression values using 
the implementation of the robust multiarray average (RMA) 
(12) in the affy Bioconductor R package (version 1.36.1) (13) 
included in the Bioconductor software suite (version 2.12) (14) 
and an Entrez Gene-specific probeset mapping (version 17.0.0) 
from the Molecular and Behavioral Neuroscience Institute 
(Brainarray) at the University of Michigan (15). Array quality 
was assessed by computing relative log expression (RLE) and 
normalized unscaled standard error (NUSE) using the affyPLM 
Bioconductor package (version 1.34.0). Principal component 
analysis (PCA) was performed using the prcomp R function 
with expression values that were unadjusted or were adjusted for 
donor (by creating linear models using the lmFit function in the 
limma package (version 3.14.4), treating donor as a fixed effect) 
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and had then been normalized across all samples to a mean of 0 
and a SD of 1. Linear mixed-effects modeling and the associated 
analysis of variance were carried out using the anova.lme func-
tion in the nlme package (version 3.1-97). Pairwise differential 
gene expression was assessed by performing Student t-tests on the 
coefficients of linear models created using lmFit, correcting for 
donor as a fixed effect. Correction for multiple hypothesis testing 
was accomplished using the Benjamini–Hochberg false discovery 
rate (FDR). All microarray analyses were performed using the R 
environment for statistical computing (version 2.15.1).

identification of Differentially 
expressed genes
For comparative analysis, general linear models for microarray 
data were performed for probe sets present on the microarray to 
identify probe sets that were differentially expressed between the 
groups, based on moderated t-statistics. Probe sets with a 1.5-fold 
change and a P-value <0.05 were considered biologically signifi-
cant. PCA was then performed. PCA is a mathematical transform 
that collapses the variance between samples across a set of large 
set of variables (here, all ~20,000 genes on the array) into a much 
smaller set of variables called principal components (PCs). These 
“meta-variables” are arranged such that PC1 explains the most 
variance in the data, followed by PC2, etc. PCA was performed 
using all genes across all samples, either before or after adjusting 
the expressions for donor (using a simple linear model), and plots 
were made of PC1 vs. PC2.

BDca-3 Dc activation assay Followed by 
ilT4 sorting
After confirming the post sort purity of >98%, 1 × 105 BDCA-3 
DCs were plated in 96 well v-bottom plate in complete X-VIVO 
15 media (Lonza). TLR agonists, Poly I:C, and LPS (Invivogen, 
San Diego, CA, USA) were added at a final concentration of 
10 μg/mL. Plates were incubated at 37°C for 18 h. Cells were then 
harvested and stained with ILT4 (R&D Systems, Minneapolis, 
MN, USA). After staining, BDCA-3 DCs were sorted based on 
their expression of ILT4 for subsequent analysis.

cytokine Production assays
Immediately following sorting, total BDCA-3 DCs were added to 
a FACS tube containing Poly I:C at a final concentration of 10 μg/
mL in complete X-VIVO 15 media (5% human serum, 2  mM 
l-glutamine, and 1× pen/strep). BDCA-3 DCs were incubated 
at 37°C for 18 h to allow for the formation of ILT4-positive cells. 
Stimulated BDCA-3 DCs were then re-sorted by their expres-
sion of ILT4 directly into complete X-VIVO 15 media without 
further stimulation. 2  ×  104 cells in 200  μL complete X-VIVO 
15 media were added to a 96 well plate and incubated for 18 h 
at 37°C. Supernatants were harvested and cytokine profiles were 
assayed with the ProcartaPlex Human Cytokine/Chemokine/
Growth Factor Panel (eBiosciences, San Diego, CA, USA) on a 
Bioplex 200 System running Bioplex Manager Version 6. Statistics 
were performed by running a two-tailed paired student t-test in 
GraphPad Prism version 6.0. Results with a P-value <0.05 were 
considered significant. Intracellular FACS staining of BDCA-3 

DCs was performed as follows. Following sorting, total BDCA-3 
DCs were added to a FACS tube containing Poly I:C at a final 
concentration of 10 μg/mL in complete X-VIVO 15 media (5% 
human serum, 2 mM l-glutamine, and 1× pen strep). BDCA-3 
DCs were incubated at 37°C for 18 h to allow for the formation 
of ILT4 positive cells. Golgistop was then added for 6 h. Cells 
were then washed and surface stained with ILT3, ILT4 (R&D 
Systems), and CD141 (Miltenyi). Following surface staining, 
cells were stained with Live/Dead (Life Technologies) as per 
the manufacturer’s protocol. Finally, cells were intracellularly 
stained with IFN-γ (BioLegend), IL-4 (eBiosciences), IL-10 
(BD), IL-13 (BD), IL-5 (BioLegend), and TNFα (BioLegend). 
Data were collected using BD LSRII and analysis was performed 
with FlowJo Software V9.7 (Treestar).

In vitro Priming of naïve cD4+ and cD8+  
T cells
An aliquot of total PBMC was enriched using Human 
Pan T  cells Pre-Enrichment Kit (StemCell Technologies, 
Vancouver, BC, Canada) for the preparation of allogenic naïve 
CD4+ and CD8+ T cells. Total CD4+ and CD8+ T cells were 
stained and FACS sorted on a BD FACS ARIA II. Naïve T cells 
were designated as CD25−, CD127+, CD62L+, and CD49dlow. 
BDCA-3 DCs were isolated as stated previously. Bulk BDCA-3 
DCs were incubated at 37°C for 18 h with 10 μg/mL Poly I:C. 
After TLR stimulation, BDCA-3 DCs were sorted into pure 
populations of ILT4+ and ILT4−. Allogenic naïve CD4+ and 
CD8+ T cells were incubated with allogenic BDCA-3 DCs 
(ILT4+ and ILT4−) at a 1:5 DC to T cell ratio at 37°C in com-
plete X-VIVO 15 media. After 7  days, primed T cells were 
harvested and analyzed for cell surface phenotype as well as 
intracellular staining.

Flow cytometry
Blood dendritic cells antigen-3 DC activation status was 
assessed using surface stain markers CD40, CD80, CD86, and 
CCR7 from BD Biosciences. Cells were stained with fluorescent 
antibodies for 30 min on ice, washed twice with BD FACS stain-
ing buffer (DPBS contains 2% FBS and 0.09% sodium azide) and 
then acquired on a BD LSR II. Mean fluorescence intensity and 
cell percentages were determined by FlowJo V9.7 (Treestar). 
Cytokine production by day 7 primed T cells was assessed by 
intracellular cytokine staining (ICS) after initial staining with 
Cell Trace violet to detect proliferation (Life Technologies). 
Day 7 primed T cells were stimulated with PMA (50 ng/mL; 
EMD Millipore) and Ionomycin (1 μM; Sigma, St. Louis, MO, 
USA) in the presence of Golgi Stop (1 μl/mL; BD Bioscience) 
for 6 h. After incubation, cells were first surface stained with 
antibodies to CD25 (BD) and HLA-G (BioLegend), 30  min 
on ice. Next, cells were cultured using Live/Dead stain (Life 
Technologies) according to manufacturer’s protocol. Finally, 
cells were stained intracellularly with antibodies against IL-4 
(eBiosciences) and IFN-γ (BD). Data were collected using BD 
LSRII and analysis was performed with FlowJo Software V9.7 
(Treestar).
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resUlTs

Tlr3 signaling results in the Formation 
of several BDca-3+ Dc Populations
Isolating sufficient numbers of highly enriched pDCs and cDCs 
for functional assays requires a large number of input PBMCs. 
pDCs and cDCs only make up approximately 0.1–0.3% of total 
PBMCs in healthy individuals, respectively (16). A two-step 
enrichment process was devised to facilitate the isolation of suf-
ficient quantities of both cDCs and pDCs from a leukapheresis 
pack. First, total blood DCs were enriched by negative selection, 
followed by flow cytometry sorting of the enriched DC fraction for 
pDCs (Lin−, CD123+, HLADR+), cDCs (Lin−, CD123−, HLADR+, 
CD1c+, CD11c+), and BDCA-3 cDCs (Lin−, CD123−, HLADR+, 
CD1c−, CD141+) (Figure  1A). Previous studies suggested that 
primary cDCs and pDCs exhibit distinct patterns of TLR expres-
sion (17) as compared to in vitro monocyte-derived DCs (18, 19). 
We, therefore, wanted to confirm, as previously reported, the TLR 
expression profile of highly purified pDC and cDC populations 
to ascertain their phenotype prior to TLR agonist profiling. qPCR 
on the sorted primary blood DCs revealed that cDCs expressed 
a wide range of TLRs, including TLR1, TLR2, TLR4, and TLR10. 
By contrast, pDCs mainly expressed TLR 7 and 9, and BDCA-3 
cDCs expressed mainly TLR1, TLR3, and TLR10 (Figure  1B). 
Given that BDCA-3 cDCs expressed a limited repertoire of TLRs, 
we focused our initial efforts to characterize the BDCA-3 cDC 
response to Poly I:C, a TLR3 agonist.

The robust expression of TLR3 transcript in BDCA-3 cDCs 
suggests that this population of cDCs is particularly responsive to 
TLR3 agonists. We decided to evaluate BDCA-3 cDC’s response 
to Poly I:C, a TLR3 agonist. Stimulation of BDCA-3 cDCs with 
Poly I:C resulted in activation of these DCs as indicated by the 
induction of canonical DC-maturation markers, such as CD40 
and CD80/86 (Figure  1C). Poly I:C-induced BDCA-3 DC 
maturation was both dose and time dependent (data not shown). 
Interestingly, concomitant with the Poly I:C-induced maturation 
of BDCA-3 cDCs was the appearance of distinct populations, 
which can be distinguished based on the differential expression 
of ILT3 and ILT4 (Figure 1D). The appearance of these popula-
tions (ILT3− ILT4−, ILT3− ILT4+, ILT3+ ILT4−, and ILT3+ ILT4+) 
of BDCA-3 cDCs was not only dose dependent but also occurs 
with rapid kinetics following 18 h of stimulation with Poly I:C 
(data not shown). To discount the possibility that the various ILT 
populations arose due to differential levels and/or threshold of 
activation, the maturation status of each of the ILT populations 
was examined. As shown in Figure 1D, all ILT populations had 
similar surface expression of DC-maturation-associated markers. 
To address the specificity of the inductive signal for generating 
these various populations of BDCA-3 cDCs, the TLR4 agonist 
LPS was added to purified BDCA-3 cDC cultures for 18  h. 
As shown in Figure  1E and consistent with the lack of TLR4 
transcripts in BDCA-3 cDCs, TLR4 triggering did not promote 
the upregulation of ILT3 and ILT4. These data suggest that the 
inductive signal driving the development of these populations, 
designated by the expression of ILT3 and ILT4 on BDCA-3 cDCs, 
is not due to the in vitro culturing conditions but rather specific 
to TLR3-mediated signaling.

ilT4+ BDca-3 cDcs have Unique cytokine 
Profiles and genomic signatures 
compared to ilT4− cells
Following stimulation of BDCA-3 DCs with Poly I:C, the emer-
gence of several populations designated by their expression of ILT 
receptors, which have suggested inhibitory effects, prompted us 
to investigate whether these populations of the TLR3-induced 
DCs also exhibit differential cytokine production. Due to limited 
cell numbers in the ILT3+ILT4+ population, we focused our initial 
investigative efforts on the cytokine secretion profile of the ILT4-
expressing DCs (experimental design; Figure 2A). To determine 
the level of cytokine secretion among the ILT4− vs. ILT4+ popula-
tions, bulk-sorted BDCA-3 DCs were stimulated with Poly I:C for 
the induction of ILT4± cells. After 18 h, ILT4− and ILT4+ popula-
tions were FACs-sorted and re-cultured overnight in the absence 
of further TLR stimulation. As demonstrated in Figure  2B, 
multiplex cytokine analysis of the cultured supernatant revealed 
quantitative and qualitative differences in the cytokine secretion 
potential between the ILT4+ and ILT4− populations. ILT4− cells 
are unique in their capacity to produce IFN-γ and IP-10, while 
ILT4+ cells are poised for TNF-α, IL-12p70, and IL-6 production 
(Figure 2B). To confirm the unique cytokine-secreting profiles 
between ILT4+ and ILT4− cells, we performed ICS by stimulat-
ing BDCA-3 DCs for 18 h with Poly I:C and assessed cytokine 
secretion by each population (Figure  2C). Consistent with the 
cytokine analysis, ICS analysis reveal that ILT4− BDCA-3 DCs are 
capable of producing IFN-γ and low levels of TNF-α, conversely, 
ILT4+ BDCA-3 DCs produced exclusively high levels of TNF-α 
and undetectable levels of IFN-γ (Figure  2C). Taken together, 
the data thus far suggest that ILT4− and ILT4+ BDCA-3 DCs are 
phenotypically and functionally unique.

To better understand whether the ILT4+ and ILT4− popula-
tions represent DC populations with unique characteristics, 
transcriptional profiling was performed on ILT4+ vs. ILT4− 
BDCA-3 DCs after Poly I:C stimulation. General linear models 
for microarray data were performed for probe sets present on 
the microarray to identify probe sets that are differentially 
expressed between the groups, based on moderated t-statistics. 
Probe sets with a 1.5-fold change and a P-value <0.05 were 
considered significant. Although our analysis revealed unique 
gene signatures for the ILT4+ vs. ILT4− populations following 
stimulation, we were not able to identify unique surface mark-
ers to faithfully distinguish between the two populations. A 
3D plot generated by PCA with OmicSoft ArrayStudio across 
all probe sets revealed that ILT4+ cells are most dissimilar 
from ILT4− cells (Figure  2D). The ILT4− population revealed 
upregulated genes involved in T cell stimulation, in particular 
IFN-γ, which is consistent with multiplex cytokine and ICS 
analysis (Figures 2B,C). Finally, the ILT4+ population revealed 
the upregulation of two inhibitory receptors, ILT4 and ILT6. The 
ILT4 expression of the ILT4+ population was confirmed by real-
time PCR analysis (Figure 2D). The microarray analysis of the 
ILT4+ population showed upregulation in the TNF-α gene, these 
results are all consistent with both multiplex cytokine analysis 
and FACS intracellular staining (Figures 2B,C). Collectively, the 
functional and genomic analysis of ILT4+ and ILT4− cells suggest 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


FigUre 1 | Purified BDca-3 cDcs upon stimulation with a Tlr3 agonist yield multiple populations as measured ilT3 and ilT4 expression. 

(Continued)

March 2016 | Volume 7 | Article 885

Colletti et al. TLR3 Induces Unique BDCA3 DCs

Frontiers in Immunology | www.frontiersin.org

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


(a) Gating strategy for sorting human blood dendritic cells (as described in Section “Materials and Methods”). (B) RNA extracted from sorted pDCs, cDCs, and 
BDCA-3 cDCs was reverse transcribed for qPCR. To determine the relative expression of each gene of interest, normalized to RPLPO, the 2−ΔΔCt approach (ΔCq 
method) was utilized. Figure represents four donors. (c) BDCA-3 cDCs were stimulated with Poly I:C and LPS at 10 μg/mL for 18 h. Expression of CD80, CD86, 
CCR7, and CD40 comparing pre- and post-stimulation, blue dots represent unstimulated cells and red dots identify cells stimulated with TLR agonist, with values 
representing mean fluorescent intensity (MFI). (D,e) BDCA-3 cDCs stimulated with 10 μg/mL Poly I:C (D) or LPS (e) for 18 h, ILT3 and ILT4 population’s CD40, 
CD80, and CD86 expression compared by MFI. Data shown are one representative donor out of four.
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that these cells are distinct DC populations found within the 
broader BDCA-3 DCs.

ilT4− and ilT4+ BDca-3 Dcs Differ in 
Their ability to Prime allogenic naïve  
T cells
The differences in cytokine secretion and transcriptional profiles of 
ILT4− and ILT4+ BDCA-3 DCs imply that these DC populations 
may have distinct T cell priming potential. To address this pos-
sibility, we assessed the ability of each ILT4 population to prime 
naïve CD4+ and CD8+ T cells. To this end, BDCA-3 DCs were first 
stimulated with Poly I:C and subsequently sorted to high purity 
into ILT4− and ILT4+ populations. The sorted ILT4 populations 
were then co-cultured with allogenic sorted naïve CD4+ and CD8+ 
T cells at a DC to T cell ratio of 1–5. T cells were stained with 
Cell Trace prior to the MLR reaction to assess the level of their 
proliferation. On day 7 post priming, the phenotype of the result-
ant CD4+ and CD8+ T cells was assessed by flow cytometry for the 
secretion of prototypic Th1- and Th2-associated cytokines, such as 
IFN-γ and IL-4, respectively. Both ILT4+ and ILT4− DCs demon-
strated the capacity to prime both naïve CD4+ and CD8+ T cells as 
demonstrated by the dilution of Cell Trace dye (Figure 3A). More 
importantly, both DC populations preferentially primed naïve 
CD4+ and CD8+ T cells toward IFN-γ+ Th1 cells (Figure 3A). IL-4-
producing cells were also observed, but at much lower frequency 
than that of IFN-γ cells. Despite that ability to prime naïve CD4+ 
and CD8+ T cells toward the Th1 phenotype, ILT4+ DCs appeared 
to be less efficient at promoting Th1 induction as compared to 
ILT4− DCs (Figure 3A). CD4+ T cell activation remained largely 
intact, while the priming of CD8+ T cells was impaired by as 
much as 53% when co-cultured with ILT4+ DCs (Figure 3A). To 
investigate a possible explanation for the impaired T cell priming 
potential of ILT4+ DC, we examined the expression of the human 
leukocyte antigen (HLA)-G, a putative ligand for ILT4 receptor 
(20). Cell surface expression of HLA-G has been implicated in the 
induction of tolerogenic functions in various physiological and 
pathological settings (21–24). Assessment of the T cell expression 
of HLA-G after priming with ILT4+ and ILT4− DCs revealed that 
CD8+ T cells primed in the presence of ILT4+ DCs showed an 
approximately ninefold increase in HLA-G expression as com-
pared to CD8+ T cells co-cultured with ILT4− DCs (Figure 3B). 
On the other hand, there was no observable induction of HLA-G 
expression on CD4+ T cells co-cultured with either ILT4+ or ILT4− 
DCs. The observed impaired T cell priming ability of ILT4+ DCs 
could be the result of active inhibition by suppressor CD8+ T cells 
expressing HLA-G. To this end, we investigated the level of IL-10, 
a known anti-inflammatory cytokine secreted by various cell types, 
including Tregs (25), in our DC primed T cell cultures. As shown 

in Figure 3C, we found similar levels of T cell-derived IL-10 in 
both ILT4-positive and -negative DCs primed T cell cultures. 
Taken together, these data suggest a potential IL-10-independent 
mechanism of dampening DC priming capabilities.

DiscUssiOn

Our initial characterization of TLR expression pattern of a homo-
geneous highly purified human BDCA-3 DCs is consistent with 
previous studies (26), which demonstrated high TLR3 expression. 
The study of BDCA-3 DC biology has classically been associated 
with TLR3 agonists, namely Poly I:C. Interestingly, in addition to 
TLR3 expression, we observed that BDCA-3 DCs also exhibited 
high transcript levels for TLR1 and TLR10. TLR1 recognizes 
bacteria-associated peptidoglycan and lipoproteins in concert 
with TLR2 (27). Despite the low level of TLR2 gene expression 
(Figure  1B), stimulation with TLR1/2 agonist PAM3CSK4 
consistently induced BDCA-3 DC activation (data not shown), 
indicating that BDCA-3 DCs express functional TLR1/TLR2 
heteroreceptor complex capable of responding to lipoprotein. 
The high transcript level of TLR10 suggests that BDCA-3 DCs 
express functional TLR10 protein. However, given that the role 
of TLR10 in mediating immune function and its ligand have yet-
to-be-determined precluded us from further characterize TLR10 
function in BDCA-3 DCs. Transcript expression of various TLR 
receptors and responsiveness to multiple TLR agonists suggests 
two hypotheses: (A) on per cell basis BDCA-3 DCs express multi-
ple TLRs or (B) there may exist various BDCA-3 DC subsets each 
with a unique TLR expression. The recent discovery of a human 
XCR1+CD141+ DC subset expressing TLR3 within the conven-
tional DC population supports of the latter hypothesis (2). This 
discovery raises the possibility that multiple yet-to-be-identified 
populations of BDCA-3 DCs may exist.

Currently, BDCA-3 DCs can be identified and purified based 
on the absence of lineage marker expression (Lin−) and CD1c−, 
and the co-expression of HLADR and CD141. In the present 
study, we demonstrated that stimulation of BDCA-3 DCs with 
Poly I:C, a TLR3 agonist, induced the expression of canonical 
markers associated with DC activation/maturation, such as 
CD40, CD80, and CD86. Interestingly, Poly I:C stimulation also 
induced the expression of ILT3 and ILT4 as detected by flow 
cytometry. The expression pattern of the ILT receptors allowed 
for the distinction of various populations, namely ILT3− ILT4−, 
ILT3+ ILT4−, ILT3− ILT4+, and ILT3+ ILT4+, within the total 
BDCA-3+ population. ILT3 and ILT4 are surface proteins of the 
immunoglobulin superfamily, which have been demonstrated 
to be expressed on monocytes and DCs. The cytoplasmic region 
of ILT molecules contains a putative immunoreceptor tyrosine-
based inhibitory motif, suggesting an inhibitory function of ILT 
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FigUre 3 | ilT4− and ilT4+ BDca-3 cDcs have unique naïve T cell priming capabilities. (a,B) Total enriched BDCA-3 cDCs were cultured with Poly I:C for 
18 h. Cells were then sorted into ILT4− and ILT4+ populations and incubated with either naïve CD4 or CD8 allogenic T cells (CD25−, CD127+, CD62L+, CD49dlow). 
After 7 days, the resultant T cells were assessed for surface marker and intracellular cytokine expression. Dot plots are gated on live CD3+, CD4+, or CD8+ T cells. 
(c) IL-10 cytokine levels from day 7 T cell/DC co-culture supernatant. Data shown are one representative donor out of four.

(a) Experimental design of BDCA-3 DC phenotyping. (B) BDCA-3 cDCs were cultured with Poly I:C for 18 h and then sorted into ILT4− and ILT4+ populations. Cells 
were then plated without further stimulation for 18 h. Supernatants were assayed for cytokine and chemokine content by luminex analysis. P-values generated using 
two-tailed student’s paired t-test (95% confidence interval). Graphs represent four donors. (c) BDCA-3 cDCs were stimulated with Poly I:C for 18 h, Golgistop was 
then added for 6 h. Cells were surface stained with ILT3, ILT4, and CD141 and then intracellularly stained with IFN-γ and TNF-α. Data showing intracellular staining 
are representative of one donor out of four. (D) Genomic profiling of ILT4− vs. ILT4+ was performed using GeneChip Human Gene 1.0 ST arrays. Principal 
component analysis (PCA) was computed using OmicSoft ArrayStudio, and a plot was generated to show the relative clustering of ILT4− and ILT4+. ILT4− and ILT4+ 
populations were compared to each other by t-test with a threshold set for a fold change >1.5 and a P-value <0.05. ILT4 gene expression was confirmed by qPCR. 
(Data shown are one representative donor out of four).
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receptors. Consistent with the proposed inhibitory function, ILT3 
has been shown to induce immunosuppression, including T cell 
anergy, Treg induction, and reduced allo-stimulatory capacity (8, 
9). The similar expression of activation markers within each of the 
described ILT populations (Figure 1D) led us to hypothesize the 
potential for functional differences among these various ILT3- 
and ILT4-expressing DC populations.

Previous studies have confirmed the expression of inhibitory 
ILT receptors on monocyte-derived BDCA-3 DCs, which were 
generated in the presence of various growth factors and cytokines, 
including IL-10. These DCs, termed DC–IL-10, expressed high 
levels of the receptors ILT2 and ILT3 (7). DC–IL-10 cells were 
shown to exhibit immunosuppressive features, such as high IL-10 
production and generation of CD4+ Tregs (7). More recently, 
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BDCA-3 DCs expressing high ILT3 levels have been identified 
in the dermis of human skin. These dermal ILT3+ BDCA-3 
DCs are characterized by their capacity for constitutive IL-10 
production, inducing T cell hyporesponsiveness, and inhibiting 
skin inflammation by the induction of Tregs (28). In addition 
to ILT3 expression, transcript profiling performed on primary 
blood BDCA-3 DC have also demonstrated the presence of the 
inhibitory receptor ILT4 following Poly I:C stimulation by gene 
array (29). Due to the consistently limited number of cell yield 
from ILT4−ILT3+ and ILT4+ILT3+ post Poly I:C stimulation, we 
focused our efforts on phenotyping ILT4±ILT3− BDCA-3+ DCs. 
To investigate the potential of functional differences between 
ILT4− and ILT4+ BDCA-3+ DCs, we began by comparing the tran-
scriptional profiles of ILT4− or ILT4+ DCs by microarray. From 
this analysis, we found unique transcripts that were differentially 
expressed between ILT4− and ILT4+ DCs. Consistent with the 
high surface expression of ILT4, ILT4 transcript was increased 
in ILT4+ BDCA-3 DCs stimulated with Poly I:C (Figure  2D). 
ILT6 expression was also highest in ILT4+ BDCA-3+ DC samples. 
ILT6, unlike other ILT members, lacks a transmembrane domain 
and is a soluble receptor (30). As immune modulators, the 
heightened expression of ILT4 and ILT6 may work in synergy to 
attenuate T cells priming in ILT4+ DC MLR reactions (Figure 3). 
In addition to the enhanced transcript expression of ILT4 and 
ILT6, ILT4+ BDCA-3 DCs expressed higher levels of transcripts 
for interleukin-12 beta-subunit (IL-12b/IL-12p40) and tumor 
necrosis factor α (TNF-α). The expression of IL-12b, which is a 
shared subunit for both bioactive IL-12p70 and IL-23, suggests 
that ILT4+ BDCA-3 DCs may promote the generation of either 
T-helper 1 (Th1) and/or Th17 cells, respectively. Consistent with 
the IL-12b transcript levels, the production of bioactive IL-12p70 
by ILT4+ BDCA-3 DCs was greater as compared to ILT4− BDCA-
3+ DCs. TNF-α is a well-studied pro-inflammatory cytokine. 
TNF-α is known for its ability to induce systemic inflammation 
and the acute phase reaction. TNF-α regulates the expansion and 
survival of CD4+ and CD8+ T cells and has been implicated in the 
progression of various diseases (31–33). In addition to IL-12b 
and TNF-α, ILT4+BDCA-3 DC produced exclusively CCL3, a 
chemokine that has been shown to enhance the differentiation, 
migration, and effector functions of CD8+ T  cells (34). Taken 
together, ILT4+BDCA-3 DCs, based on their cytokine produc-
tion, are functional to provide a link between innate and adaptive 
immunity.

ILT4− BDCA-3 DCs expressed mainly type II interferon  
(IFN-γ). These results were confirmed at the protein level by both 
intracellular FCS and luminex analysis (Figures  2B,C). IFN-γ 
plays an important role in both innate and adaptive immunity. 
IFN-γ is involved in anti-viral, -bacterial, and -tumor biology 
(35–37). The capacity of ILT4− BDCA-3 DCs to produce IFN-γ 
following stimulation is reminiscent of previously described 
interferon-producing killer dendritic cells (IKDC) (38). Murine 
IKDCs are distinct from cDCs and pDCs and with the molecular 
expression profile of both NK cells and DCs. They produce sub-
stantial amounts of IFN-γ and exhibit cytolytic capacity (39, 40). 
Whether ILT4−BDCA-3 DCs are the human equivalent/counter 
part of the murine IKDCs remains to be determined. In addition 
to IFN-γ, high levels of IP-10 were also detected in the supernatant 

of cultured ILT4− BDCA-3 DCs. The high levels of IP-10 are prob-
ably due to the secretion of high levels of IFN-γ. IP-10 is known to 
induce the chemotaxis of various immunocytes including T cells 
(41, 42). ILT4− BDCA-3 DCs also expressed several immune acti-
vators, including CD48, CD84, and CD74. CD84 is a cell surface 
receptor expressed on monocytes, macrophages, granulocytes, and 
DCs involved in leukocyte activation. CD84 function on myeloid 
cells remains unknown (43). CD74 is involved in the regulation 
of class II major histocompatibility complex (MHC) proteins in 
APCs. Taken together, the upregulation of these CD markers may 
contribute to ILT4− DC’s ability to more robustly prime naïve 
CD4+ T cells (Figure  3A top panel) (44). Recent studies have 
confirmed the presence of a unique subset of BDCA-3 DCs, cells 
that are also XCR1+. XCR1 is a chemokine receptor for the ligand 
XCL1. In our microarray analysis, we did not detect any differ-
ences in the expression of XCR1 between the ILT4− and ILT4+ 
populations, suggesting that XCR1 is not a contributing factor 
toward the phenotypes observed. Considering the differences in 
gene expression profiling, in particular the high expression of ILT 
receptors on ILT4+ BDCA-3 DCs and the high level of IFN-γ by 
ILT4− BDCA-3 DCs, we propose that ILT4-BDCA-3 DCs extend 
the BDCA-3 DC family, representing a cell type possessing dual 
innate effector functions and antigen-presenting capacity.

Blood dendritic cells antigen-3 DCs have the ability to prime 
naïve T cells and influence their polarization toward various 
T-helper cell phenotypes, in particular toward Th1 priming 
(45). The location of such DCs also influences their capacity to 
prime toward a regulatory phenotype. Skin BDCA-3 DCs were 
shown to secrete high levels of IL-10 and induce highly potent 
Tregs (28). BDCA-3 DC–IL-10 showed high expression of ILT 
receptors. The high expression of ILT3 was shown to be involved 
in BDCA-3 DCs impaired allo-stimulatory capacity to prime 
naïve T  ells (7). In our study, we showed that stimulated primary 
human BDCA-3 DCs with Poly I:C generated several popula-
tions of ILT-expressing cells. In an allogenic MLR reaction, we 
showed that BDCA-3 DCs expressing high levels of ILT4 have 
a reduced allo-stimulatory capacity. This reduced capacity was 
more prominent for CD8+ T cell activation, yet negligible with 
CD4+ T cells. This is unanticipated, given that our analysis of both 
ILT4− and ILT4+ BDCA-3 DCs suggests that these cells are potent 
T cells activators. The discrepancy in the capacity of ILT4− and 
ILT4+ BDCA-3 DCs to prime T cells may be directly linked to the 
activity of the ILT4 receptor. Previous studies have determined 
that HLA-G is a natural ligand for ILT4 (46). HLA-G, a non-
classical class I heavy chain, is typically expressed on fetal-derived 
placental cells and has been shown to inhibit allogenic MLRs 
(47, 48). We tested the expression of HLA-G on the resulting 
primed T cells after the MLR with BDCA-3 DCs. Interestingly, 
we observed an increased expression of HLA-G on primed CD8+ 
T cells co-cultured with ILT4+ DCs (Figure 3B). The expression 
of HLA-G on primed CD8+ T cells could be associated with the 
induction of a subpopulation of IL-10 producing suppressor  
T cells. However, IL-10 secretion was similarly observed in all cul-
tured conditions. This suggests a possible suppressive mechanism 
that is IL-10-independent. This is consistent with previous studies 
demonstrating that HLA-G+ T cells present within PBMCs do not 
mediate suppression through IL-10 secretion (49). Nonetheless, 
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the induced expression of HLA-G on T cells by a distinct DC 
population may represent an immune-dampening mechanism to 
prevent the overstimulation of the adaptive arm of the immune 
response. Taken together, these observations suggest that within 
a Poly I:C-stimulated population of bulk BDCA-3 DCs, there are 
cells poised for immune-stimulation, as well as to dampen the 
immune response.

Our study contributes to the already expanding knowledge of 
DC phenotypes. We have shown that a sorted culture of BDCA-3 
DCs, as identified by our current understanding of phenotypic 
markers, actually consists of cells that respond differently to 
an activation stimulus (cytokine secretion, genomic analysis, 
and T  cells priming). We have subdivided Poly I:C-stimulated 

BDCA-3 DCs by their expression of ILT4. They differ in their 
ability to secrete cytokines and prime naïve T cells. Through 
genomic analysis, we have shown that they have unique gene 
signatures associated with unique biological processes, such as 
T cell priming and inflammation. Taken together, these popula-
tions of BDCA-3 DCs may work in synergy to mediate different 
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