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Abstract: The safety and durability of bridges designed from weathering steels are conditioned by
the development of a sufficiently protective layer of corrosion products. Air pollution, microclimate
around the bridge, time of wetness, structural solution of the bridge, and the position and orientation
of the surface within the bridge structure all influence the development of protective layers on the
surface of the weathering steel. In this article, attention is focused mainly on the microclimatic
effects resulting from the road traffic under the bridge. The influence of chloride deposition on the
development of corrosion products is evaluated using experimental in situ testing. Two neighboring
bridges made of weathering steel and crossing different types of obstacles were selected for this
experiment. Relations and dependences between the measured parameters (deposition rate of
chlorides, corrosion rates, thickness of corrosion products and the amount of chlorides in corrosion
products) are evaluated and discussed.

Keywords: deposition rate of chlorides; corrosion samples; corrosion layer; weathering steel;
experimental tests; steel bridges

1. Introduction

During the construction of the highway network of the Czech Republic between 2000 and 2010,
a number of bridges with a weathering steel supporting structure were built. Most of these bridges
are located on the D1 highway in Ostrava and its surroundings. The girder bridges are designed to
be coupled with an upper concrete deck. The steel supporting elements of the bridges were made of
S355]2W weathering steel [1,2]. The economic aspect was decisive for selecting the protection strategy.
The selection of a weathering steel grade for bridge girders was motivated especially by the low cost
of long-term maintenance of bridges compared to traditional protection strategies based on the use of
conventional structural steel protected by paint systems or other coating protections.

A static assessment should consider the effects of corrosion losses of the structural elements of the
bridge [3]. One of the basic input datum entering the static analysis of the structure is therefore an
accurate prediction of corrosion losses for the required lifetime of the bridge [4,5]. When designing
bridges on the D1 highway, corrosion losses were determined based on a general environmental
classification to the degree of corrosion category C3 [6]. During extensive inspection of the bridges
after 10-15 years of operation, it has been found that a sufficient protective layer of corrosion products
were developed on most bridge surfaces [7]. On the bridges, however, locally bounded surfaces with
corrosive unfavorable development of corrosion layer were also identified. The main cause of local
defects in the development of patina was the leakage from the non-functional bridge drainage system,
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especially the leakage from drainage pipes of the bridge. After removing the causes of leakage and
cleaning the damaged parts of the structure, new corrosion products will develop, which after several
years will acquire protective patina properties.

Defects of protective corrosion layers caused by leaking from the bridge drainage system can
usually be removed without the application of anti-corrosion coatings. First of all, it is necessary to
remove the leakage source and to clean the surface of the structure, including non-adherent corrosion
products. A new sufficiently protective corrosion layer develops over time on this prepared surface.
If the cause of unfavorable corrosion development is the microclimatic environment around the
bridge, then the situation is more complex. Environmental parameters around the bridge cannot
usually be changed. In order to ensure the required service life of the structure, it is therefore
necessary to update the corrosion prediction model, and subsequently statically evaluate the effect
of accelerated corrosion effects on the long-term reliability of the structure. If the prediction of
expected corrosion losses is statically unacceptable, additional corrosion protection should be applied
to corrosion-damaged surfaces, for example in the form of zinc-based coatings [8] in the case of
structural steel or epoxy-coating, in the case of concrete reinforcement [9]. Structural engineers
are responsible for the reliable design of bridge construction and also for the design of their repairs.
The accessibility of practical information related to the climatic conditions and their effect is crucial with
respect to selection of the appropriate type of corrosion protection while respecting local environmental
characteristics around the bridge.

For some bridge constructions, inspections have identified surfaces that are not exposed to direct
leakage, yet they do not develop a sufficiently protective layer of corrosion products [10]. In all
observed cases, the upper surface of the bottom flanges of the main bridge girders was damaged.
This type of corrosion damage was identified only at the bridges or their parts that are above road
with intensive traffic. For other types of obstacles (vegetation, rivers and lakes, railway lines) there is
no corrosion damage on the bottom flanges. It has been found that the development of unprotected
corrosion layers is associated with the increased deposition of aerosol and airborne impurities on these
surfaces. The development of no protective corrosion products on the bottom flanges is mainly caused
by the increased deposition of chlorides that are bound to dust particles and aerosols. Chloride sources
are chemical de-icing agents used in winter road maintenance. The amount of deposited chlorides is
significantly affected by the structural solution of the bridge (see Figure 1).

Figure 1. Tunnel-like conditions under the bridge (road bridge over highway D1 in the city of Ostrava,
Czech Republic).

Experiences with real bridge operations show that when designing a structure, it is necessary to
pay more attention to the prediction of local microclimatic conditions that may be created around the
planned building. The general classification of the site into a degree of corrosive category without
linking to the dispositional and structural design of the proposed bridge and surrounding buildings
is insufficient. The bridges on the D1 highway in Ostrava were designed based on corrosion maps,
which mainly considered the concentration of SO, in the atmosphere as the main corrosion factor [11].
The SO, concentration in the air reached maximum in Central Europe in the 1970s [12,13]. At the time
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of design and construction of bridges on the D1 highway, these values were significantly lower, see
Figure 2.
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Figure 2. Decreasing of concentration of SO, in locality Kopisty and Ostrava (Czech Republic).

A low concentration of SO, in the air has an impact on the development of corrosion products
on the surface of weathering steel. Especially for sheltered surfaces (typically surfaces protected by
the upper bridge deck), the development of corrosion products is very slow with a corrosion rate
corresponding to the degree of corrosion category C1 to C2 [14]. It turns out that these surfaces
with a slowly developing patina can be very negatively affected by the increased deposition of
chlorides [15,16].

This article therefore pays attention to the development of corrosion products on the steel structure
of the bridge protected by the upper concrete deck, which are affected by the increased deposition
of chlorides. Attention is paid to the study of the microclimatic environment around the bridge and
to the influence of the design and layout of the bridge on the development of corrosion products.
The article further develops the findings described in previous publications of the authors, especially
the reference [10]. Compared to previous research of the authors [7,10,17], the current article goes into
more depth, bringing (a) a detailed analysis of the causes of the different corrosion development on the
inner and outer flanges of the main girders affected by chloride deposition; (b) the practical application
of visual evaluation of corrosion products; (c) analysis of the steel surface under the corrosion layer in
relation to the chloride deposition rate; (d) analysis of two-year continuous measurement of chloride
deposition, and (e) detailed elemental and phase analysis of corrosion products on typical surfaces
of bridge. It is worth mentioning that compared to the available research, such as [18], the presented
results are unique because they represent local data necessary for the design of the bridges in the
Moravian-Silesian region of the Czech Republic.

2. Materials and Methods

2.1. Bridges Selected for Experimental Testing

Two bridge structures were selected for the experimental measurement of the deposition of
chlorides and their effect on the development of corrosion products. Both bridges are located in
Ostrava (Czech Republic):

e  Bridge Bl: Weathering steel bridge on the road No. 479 over highway D1 (built in 2001);
e  Bridge B2: Weathering steel bridge on the road No. 479 over railway line (built in 1983).

The location of the bridges can be characterized in accordance with EN ISO 9223 [19] as an
urban environment with a corrosion category for carbon steels C2 to C3. The impact of a marine
environment [20] is negligible as the distance to the nearest coast is approximately 500 km. The rated
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bridge structures are located on the same roadway. The supporting structures of both bridges are
made of S355]2W weathering steel. The distance between the centers of the bridges is approximately
200 m (see Figure 3). The bridge structures are similar in design: girder bridges with an upper deck.
Both bridges are designed with sulfficient overhang of the upper bridge deck over the tops of the main
girders. The surfaces of the main girders of both bridges correspond to sheltered exposure conditions,
except for the outer girders, which can be partially washed by wind-driven rainfall. The structural
design of the B1 and B2 bridges is therefore very similar with regard to the settlement of chloride and
dust particles stirred up by traffic leading across the bridge.

Figure 3. Location of the selected bridge structures.

In terms of the development of corrosion products, the two bridges compared differ only in
the nature of the bridged obstacle. Bridge Bl is located above the highway and exposed to intense
road traffic beneath the bridge. The fast-moving vehicles on the D1 highway are a significant source
of chlorides spreading into the environment and onto the Bl bridge’s supporting girder structure.
In winter, chlorides are dispersed over the surfaces of the structure mainly as an aerosol, while in
the rest of the year, they are spread as dust deposits. Bridge B1 is specific in its construction design,
however, with bridge supports forming perpendicular walls directly adjacent to the sides of the
motorway. The environment under the bridge is also influenced by the geometric ground plan, the
bridge having a large width (41.0 m) to length (51.4 m) ratio. In addition to 4 lanes for road transport,
the bridge includes two tramway tracks. The aerosol and dust deposits stirred up by automobiles
traveling on the highway therefore cannot spread in the transverse direction to the motorway axis.
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This means there is no dispersion of particles into the surrounding environment and the surfaces of the
bridge structure are exposed to increased sedimentation of airborne impurities, including chlorides [21].
Bridge B2 is located above a railway line and a local road with minimal traffic. Bridge B2 therefore
has no significant source of chloride proliferation beneath it. Road traffic on both bridges is identical,
and the results of the measurements could therefore be used to evaluate the effect of traffic under the
bridge structure on the development of corrosion products.

2.2. Monitoring of Deposition Rate of Chlorides

Two basic methods were selected for measuring the deposition rate of chlorides (S4), in
accordance with EN ISO 9225 [22]: the wet candle method and the dry plate method. Standard
measuring assemblies were modified so that they could be placed at selected positions on the bridges.
The principles of chloride deposition measurement using individual methods are given in [23,24].
Chloride deposition analysis using the spectrophotometric method was performed on the collected
samples at regular monthly intervals. With this measurement, the deposition rates could be obtained
for individual selected positions or for the total amount of chlorides deposited on the surface in the
monitored period. Chloride deposition measurement assemblies were placed on bridges B1 and B2 in
December 2016, and continuous measurements are still underway. Measurement of the deposition rate
of chlorides was performed at the following positions (see Figure 4):

e  P1: Bridge Bl—external girder, north orientation (in the direction of transport under the bridge);

e  P2: Bridge Bl—internal girder, north orientation (in the direction of transport under the bridge);

e  P3: Bridge Bl—internal girder, south orientation (opposite to the direction of transport under the
bridge);

e  P4: Bridge Bl—external girder, south orientation (opposite to the direction of transport under the
bridge);

e P5: Bridge B2—external girder, north orientation;

e  Pé6: Bridge B2—internal girder, north orientation.

2.3. Monitoring of Development of Corrosion Products

Corrosion coupons of S355]2WP steel (Corten A) were placed on the bridge structures to monitor
the development of the corrosion layer on the selected positions. Coupons were made in standard
sizes 150 x 100 x 1.5 mm?3 in accordance with EN ISO 9226 [23]. Only the front of the corrosion
coupon was exposed to the effects of the environment. The reverse side adjacent to the steel structure
of the bridge was protected from environmental influences with anti-corrosion protection. Corrosion
coupons were attached to the bridge structure using a set of thin magnets. Coupons in horizontal and
vertical positions were placed in the same positions as chloride deposition assemblies (see Figure 4).
An analysis of corrosion products was performed after one year of exposure to corrosion environment.
The main monitored characteristics of corrosion products included:

e Appearance of the corrosion layer surface and surface of the steel beneath the layer of
corrosion products;

e  Thickness of the corrosion product layer after one year of exposure (tcorr);

e  Corrosion loss after one year of exposure (rcorr);

e  Representation of individual elements in corrosion products (primarily Cl, Si and Al);

e  Representation of individual phases in the corrosion layer.

Visual evaluation of the surface of the corrosion layer was supplemented by an evaluation of
the proportions of adherent and non-adherent rust layers using the Scotch-tape test. In this method,
Scotch-tape is pressed against the tested surface. The tape is pressed against the surface lightly and
uniformly with a rubber roller or finger. After removal, the tape is attached to a sheet, such as a
transparency, and kept in a record. Making a photocopy of the sheet is useful. The frequency and size



Materials 2019, 12, 1089 6 of 19

of the captured rust particles is then evaluated. Fine and uniformly distributed rust particles less than
1 mm in size are typical on fully protective patina layers. A greater portion of rust particles larger than
5 mm is typical for corrosion layers that may have limited protective ability.

BRIDGE B1

BRIDGE B2

Figure 4. Selected positions for experimental testing on bridges B1 and B2.

The surface of the steel under the corrosion product layer was visually evaluated using the
Keyence VHX-5000 3D microscope (Osaka, Japan). Using the microscope, the frequency, diameter and
depth of the pits on the surface of the steel under the corrosion layer were measured.

The thickness of the corrosion products (tcorr) Was measured using the magnetic-induction method
with a PosiTector Smartlink and F-probe (DeFelsko Corporation, Ogdensburg, NY, USA). The thickness
of the corrosion products was determined as the average of the 15 measured sites on the surface of
the corrosion layer. The measurement sites were selected evenly along the surface of the corrosion
specimen. Corrosion losses (7corr) Were determined using standard gravimetric methods in accordance
with ISO 8407 [24]. The corrosion loss was determined by calculation based on the difference between
the original weight and the weight after removal of the corrosion layer in an inhibited hydrochloric
acid solution.
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A layer of corrosion products was mechanically removed from the corrosion samples to determine
the chemical composition and the representation of the individual phases in the corrosion layer.
The representation of individual elements in the corrosion layer was determined using the atomic
absorption spectroscopy with a Agilent 280 FS AA Spectrometer (GBC Scientific Equipment, Braeside,
Australia). The phase composition of the corrosion products was determined with a Philips X’pert
Pro powder diffractometer (Amsterdam, The Netherlands) in a Bragg-Brentano paraphilic geometry
using Co K radiation (A = 1.7903 A, U = 35 kV, I = 40 mA). Data evaluation was performed using the
HighScore Plus 4.0. program. The monitored phases of the corrosion product layer included goethite
(x-FeOOH), lepidocrocite (y-FeOOH); akaganeite (3-FeOOH) and magnetite (Fe304). Based on the
observed phase composition of the corrosion layer, the value of the PAly and PAl indexes (protective
ability index) were determined in accordance with [25,26].

3. Results

The following chapter presents the results of the experimentally determined characteristics of
the evaluated corrosion products and the results of the deposition rates of chlorides for the measured
positions P1 to P6.

3.1. Visual Evaluation of Corrosion Products

Visual evaluation of corrosion products was performed both for the corrosion layers developed
directly on the bridge B1 (exposure period of 17 years), and for the corrosion products developed on
the surface of the exposed samples (exposure period of 1 year).

A sufficiently protective layer of corrosion products, typical of sheltered exposures, has developed
on bridge B1. An exception is on the upper surface of the bottom flanges of the inner girders (see
Figure 5), where non-adherent layers of corrosion products have formed, with a large proportion
of deposited impurities on the surface. Non-adherent corrosion products have formed on both the
northern and southern sides of the inner main girders, i.e., both in the direction and opposite direction
of traffic under the bridge construction. Compared to the bottom flanges of internal girders, a compact
and sufficiently adherent layer of corrosion products has developed on the outer flanges of exterior
main girders (see Figure 5).
internal

irder (position P2)  internal girder (position P3)

external girder (position P1)

Figure 5. Development of corrosion products on the bottom flanges of the main girders on bridge B1:
above—detrimental development on inner surfaces; below—acceptable development on outer surfaces.
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Figure 6 shows the surface of exposed steel samples in the vertical and horizontal orientation
for position P3. On the horizontally-oriented sample, a larger and less compact layer of corrosion
products has developed compared to the vertically-oriented sample. The corresponding corrosion
layers also have a different coloration. In the horizontally-oriented sample, a higher proportion of
settled pollution is evident.

Adhesion of corrosion products was assessed using the Scotch-tape test method. Imprints were
collected after a one-year exposure of the corrosion samples (see Figure 7). Small, evenly distributed
corrosion particles less than 1 mm in size were collected from both vertically-oriented surfaces. On both
horizontally-oriented surfaces, larger particles with a size of approximately 5 mm were collected.
Higher proportions of large corrosion particles were identified on the inner main girder (horizontal
surface at position P3).

vertical surface (position P3) horizontal surface (position P3)

Mannification: X300

Magnification: X200,

Figure 6. Bridge B1, position P3—layer of corrosion products on the surfaces of exposed samples after
one year of exposure.
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Figure 7. Scotch-tape test for positions P1 and P3 for vertical and horizontal placement of the surface

of the steel coupon and one-year exposure.

3.2. Steel Surface under Corrosion Layer

The frequency and size of the individual corrosion pits were evaluated using a Keyence VHX500
3D microscope. Figure 8 shows a selected example of the surface of a corrosion sample located on the

bottom flange of the inner main girder (sample from position P3).

Figure 8. Structure of the steel surface under the corrosion layer.

On each evaluated surface, four positions were focused at 500 x magnification. The area under
review was 670 um x 500 pm. The average number of pits in the area under observation and average

values of depth and diameter of pits are shown in Table 1.

Table 1. Pitting in steel surface after removal of corrosion products.

Bridee Tested Orientation Number of  Average Depth  Average Diameter
8 Position Pits of Pits [um] of Pits [um]

P1 vertical 32 35 69

horizontal 18 59 84

P vertical 24 37 67

B1 horizontal 19 47 82
P3 vertical 16 29 77

horizontal 16 56 94

P4 vertical 26 31 65

horizontal 7 63 132

5 vertical 36 22 51

B horizontal 19 41 73
P6 vertical 33 24 56

horizontal 19 40 89
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Vertically-oriented surfaces give rise to a larger number of pits which, however, have a smaller
diameter and depth than on the horizontal surface. For example, in the samples exposed at positions
P1, 32 corrosive pits with an average depth of 35 um and diameter of 69 um were found on the
vertically-oriented surface after removal of the corrosion layer. On the horizontally-oriented surface at
P1, 18 pits with an average depth of 59 um and diameter of 84 um were identified.

3.3. Deposition Rate of Chlorides

Chloride deposition has been monitored continuously on selected bridge structures since
December 2016. Data for 24 months are available and can be separated into two periods (December
2016 to November 2017 and December 2017 to November 2018).

The deposition rate of chlorides (Sq) was measured using the wet candle method (S4 ) and the
dry plate method in vertical and horizontal positions (S4,,) in accordance with EN ISO 9225 [22].
Figures 9-11 show the experimentally determined deposition rates of chlorides for the individual
methods and the measured surfaces of the two evaluated bridge structures. The annual average
values of deposition rates of chlorides are given in Table 2 for both seasons measured and individual
measurement methods.

Deposition rate of chlorides - wet candle method

100
90 ——DP1
80 —o—D2

Deposition rate of chlorides

O DNODN DN DN DN DN DN DN DN DN DN DN 00O 00 00O 0O O OO OO o OO o0 oo
e S e S s, B e, SO o S s, O s, S e, S s SO s, S s, S o, SO s SO s, N s, SO o, S s, B s, S s, S e, S s S s, N s O
o O O 0O 0O O 0O O O O O 9O O O O O O O 9O O O O 9O 9O
A ddadadadadagdaadaadaadaaadadgdagaadadagadaadadaddsagaaad
b e e - - - e e e T~ T~ e -
N~ AN O F IO O DN O O O = N = N O <H IO O DN O O
— A B o B —
Month of exposure

Figure 9. Deposition rates of chlorides determined by the wet candle method.

Deposition rate of chlorides - dry plate method (horizontal position)
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Figure 10. Deposition rates of chlorides determined by the dry plate method (horizontal position).
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Figure 11. Deposition rates of chlorides determined by the dry plate method (vertical position).
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Table 2. Average annual deposition rates of chlorides for the two measured seasons and individual

methods of measurement [mg/(m?-day)].

Bridge PTes.t.ed Orientation S (2U162017)  Sqp (OIG/2017) S, (2017/2018)  Sqp (2017/2018)
osition [mg/(m?-day)] [mg/(m?-day)] [mg/(m*-day)] [mg/(m?-day)]
P1 theirztciJCnatlal 14.72 1590 12.63 1070
B1 P2 hevianat 980 s 621 566
P oo GRE 1043 873 7%
P4 hZfirztci)ftlal 18.43 o 971 1008
N
P hersontl 403 o1 299 3%

3.4. Average Thickness of Corrosion Products after 1-Year Exposure

Table 3 shows the corrosion layer thickness (fcorr) of steel samples exposed at selected positions
between December 2016 and November 2017 and between December 2017 and November 2018
(the average of 15 measurements is shown in the table).

Table 3. Average thickness of corrosion products teorr after 1-year exposure [pum].

. aee . . teorr [um] teorr [um]
Bridge Tested Position Orientation (2016/2017) (2017/2018)
P1 vertical 72.0 62.5
horizontal 206.0 145.8
P2 vertical 72.0 64.3
Bl horizontal 188.0 181.6
P3 vertical 74.0 69.6
horizontal 222.0 153.3
P4 vertical 59.0 33.6
horizontal 187.0 113.8
5 vertical 56.0 25.7
B2 horizontal 190.0'! 192.31
6 vertical 57.0 27.2
horizontal 83.0 71.1

! Measurement is influenced by leaking from expansion joint.
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Position P5 was significantly affected by the failure of the bridge expansion joint. The horizontally-
oriented steel coupon has been influenced by the direct flow of salt solution from the roadway.
The 190.0 and 192.3 pm values therefore cannot be used to evaluate the effect of the deposition of
chlorides in the form of aerosol or dust particles. Details on the development of corrosion products
exposed to leaking from expansion joints are given in [7].

3.5. Corrosion Losses after 1-Year Exposure

Corrosion loss values for samples exposed for one year are listed in Table 4. Results for the
2016/2017 measurement period are available.

Table 4. Corrosion losses after 1-year exposure rcorr.

feorr [Hm-year—1]

Bridge Tested Position Orientation (2016/2017)
- vertical 19.3
horizontal 49.2
- vertical 19.0
Bl horizontal 45.8
P3 vertical 22.0
horizontal 494
P4 vertical 16.1
horizontal 49.9
- vertical 12.6
. 1
5 horizontal 46.7
P vertical 13.6
horizontal 204

! Measurement is influenced by leaking from expansion joint.

3.6. Content of Chlorides in Corrosion Products

The amount of chlorides deposited in the corrosion products was determined in an elemental
analysis of the corrosion layer. The analysis was performed on corrosion products that had formed on
the steel coupons after one year of exposure. Table 5 lists the results for the 2016/2017 measurement
period. The results of the elemental analysis were converted into units of the sample surface.
In addition to chlorides, the representation of aluminum and silicon are also listed in Table 5.
The presence of these elements in corrosion products is mainly due to the settling of dust particles.

Table 5. Content of individual elements in corrosion products [g-m~2-year!].

Tested mcy may mg;
Bridge Position Orientation (2016/2017) (2016/2017) (2016/2017)
[g/(m?-year)] [g/(m?-year)] [g/(m?-year)]

P1 vertical 0.66 0.33 0.17

horizontal 5.68 0.76 3.96

P vertical 0.98 0.09 0.54

Bl horizontal 11.40 3.25 16.33

P3 vertical 3.18 0.16 0.82

horizontal 11.27 0.93 4.65

P4 vertical 0.82 0.08 0.58

horizontal 9.53 1.04 4.73

5 vertical 0.69 0.02 0.29

- horizontal 5411 1.871 8301

6 vertical 1.17 0.06 0.41

horizontal 1.69 0.49 2.03

! Measurement is influenced by leaking from expansion joint.
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3.7. Phases in Corrosion Layer

X-ray diffraction analysis revealed the representation of individual phases in corrosion product
layers. The representation of individual phases, including the specified PA indexes, is given in Table 6.

Table 6. Phases analysis of corrosion layer.

Bridge Tested Position Orientation Phases PAI 4 PAlg
P1 vertical very strongly lepidocrocite; strongly akaganeite; weakly goethite 0.06 0.73

horizontal very strongly akaganeite; strongly goethite; weakly lepidocrocite 0.12 0.84

™ vertical very strongly lepidocrocite; strongly akaganeite; weakly goethite 0.07 0.59

Bl horizontal very strongly akaganeite; strongly goethite and lepidocrocite 0.06 0.94
P3 vertical very strongly akaganeite; weakly goethite and lepidocrocite 0.13 0.89

horizontal very strongly akaganeite; strongly goethite and lepidocrocite 0.09 0.96

P4 vertical very strongly lepidocrocite; strongly akaganeite; very weakly goethite 0.04 0.71

horizontal very strongly akaganeite; strongly goethite; weakly lepidocrocite 0.07 0.78

P5 vertical very strongly lepidocrocite; weakly goethite; weakly lepidocrocite 0.15 0.47

B2 horizontal very strongly lepidocrocite; strongly akaganeite; weakly goethite 0.09 0.741
P6 vertical very strongly lepidocrocite; strongly akaganeite; weakly goethite 0.09 0.53

horizontal very strongly lepidocrocite; strongly akaganeite; weakly goethite 0.03 0.63

! Measurement is influenced by leaking from expansion joint.

4. Discussion

The next chapter discusses the results of the measurements performed on two selected bridge
structures in Ostrava. From the experimentally obtained data, the effect of microclimatic conditions
under the bridge structure on the development of corrosion products on typical surfaces of the girder
bridges can be evaluated. Bridge B1 conveys traffic over the busy D1 highway, which has chemical
de-icing agents applied during the winter season. Bridge B2 conveys traffic over a railway line and
is not affected by the negative impact of intense road traffic under the bridge. A comparison of the
results from both bridges can therefore be used to evaluate the specific microclimatic influences of
bridge structures spanning roads with high traffic volumes.

4.1. Influence of Orientation of the Surface

The development of corrosion products on the surface of weathering steel is different for vertically
and horizontally positioned surfaces of bridge constructions (see Table 3). The thicknesses of corrosion
products (tcorr) observed from the one-year exposures in the periods 2016,/2017 and 2017 /2018 show
similar dependencies with respect to surface orientation. The thickness of corrosion products on the
vertical surfaces (the webs of the main girders) of both bridge structures is much smaller compared to
the horizontal surfaces (bottom flanges of the main girders). On horizontally-oriented surfaces, after a
one-year exposure, up to three times the thickness of the corrosion layer was observed compared to
the adjacent vertically-oriented surface. Similar ratios were also found between horizontal and vertical
surfaces when evaluating corrosion losses (Fcorr).

The differences between horizontally and vertically oriented surfaces were also observable in other
characteristics. On horizontally-oriented dry plates, up to five times the deposition rate of chlorides
(84,p) was found compared to the vertically-oriented dry plates (see Table 2). In horizontally-oriented
surfaces, a significantly higher proportion of chlorine (1mc]) was observed in corrosion products on
the exposed samples (see Table 5). For all horizontal surfaces, the corrosion layer was found to
have a strong representation of the akageneite phase, which is characteristic of surfaces exposed
to chloride deposition. The increased deposition of dirt and dust was also observed on horizontal
surfaces, resulting in an increased presence of aluminum and silicon in corrosion products. Different
corrosion development on horizontal and vertical surfaces was also evident from visual inspections
(see Section 3.1) and from the structural analysis of the steel surface beneath a removed corrosion layer
(see Section 3.2).
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4.2. Differences between External and Internal Girders

In evaluating corrosion products (tcorr) and corrosion losses (7corr) after one year of exposure on
corrosion samples, no significant differences were found between the outer and inner surfaces of the
bridge (however, for horizontally-oriented samples, significantly higher values of the two monitored
quantities were recorded compared to the adjacent vertical surfaces). However, the differences between
the outer and inner surfaces of the bridge were reflected in the weight of chlorine (1) in the corrosion
products. Bridge B1 was found to have a higher weight of chlorine in the corrosion products at the
P2 and P3 internal surfaces, although higher deposition rates (Sq4 ), determined using the standard
wet-candle method, were found on the outer surfaces at P1 and P4. The findings can be demonstrated
on two comparable horizontal surfaces with the same orientation in the direction of traffic under the
bridge (see Figures 5 and 12):

e Bridge B1, position P1 (north orientation, horizontal surface of bottom flange of external main
girder), 1-year exposure (2016/2017): mc| = 5.68 g-m~2; Sq = 14.72 mg/(m?-day);

e Bridge B1, position P2 (north orientation, horizontal surface of bottom flange of internal main
girder), 1-year exposure (2016/2017): mc; = 11.40 g'm’z; 54=9.80 mg/(mZ.day).

position P2

position P1

1/‘17;._;6___..‘ direction df‘tfansport
2 Tl

)
Figure 12. Direction of traffic and positions P1 and P2.

The apparent disproportion between the amount of chlorides found in the corrosion products
(mc)) and the deposition rates of chlorides (S4q) can be explained by the fact that although the external
surfaces of the bridge are more exposed to chlorides and impurities, the external surfaces are also
regularly cleaned by wind and rainfall. The amount of chlorine found in the corrosion products of
the external surfaces of bridge B1 was therefore less than the internal surfaces. This phenomenon
negatively manifests in long-term development, where non-adherent layers of corrosion products with
a large proportion of settled impurities form on the upper surfaces of the bottom flanges of the inner
main girders (see inner surfaces shown in Figure 5).

From the above results, it follows that in predicting the long-term development of corrosion
products based on year-long testing, it is necessary to analyze the sum of all information obtained from
the corrosion tests. The results of corrosion thickness (t.orr) and corrosion loss (7corr) measurements
after one year of exposure may not provide sufficiently accurate data about the future development of
corrosion products. It is therefore very important to supplement the assessment of the development
of corrosion products with other parameters: mainly visual assessment of the development of
corrosion products, including evaluation of collected imprints (Scotch-tape test), and the results
of chemical analysis of the corrosion layer, focusing on the elemental content that indicates increased
deposition of chloride ions from road traffic. For example, corrosion loss values (rcorr) measured on
horizontal surfaces of the Bl bridge correspond to corrosion category C3 according to EN ISO 9223 [19].
Classification in corrosion category C3 itself, expected for an urban industrial environment based on
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annual corrosion tests, does not indicate the potential risk of adverse corrosive product development
on the inner flanges of the bridge. Differences in corrosion loss values between internal and external
surfaces will be more significant only after long-term exposure, when the structure has been exposed
to increased chloride deposition [10].

4.3. Influence of Microclimatic Conditions under the Bridge Structure

Bridge B1 conveys traffic over the busy D1 highway, which has chemical de-icing agents applied
during the winter season. Bridge B2 conveys traffic over the railway line and is not affected by the
negative impact of intense road traffic under the bridge. Differences in the character of the spanned
obstacle were reflected in all experimental data related to the development of corrosion products.

Figures 9-11 show the deposition rates of chlorides (S4) for individual surfaces and measurement
methods. The graphs show elevated deposition rates of chlorides occurring in the winter periods, when
the roads are treated with chemical de-icing agents. Both observed winter periods show differences in
the observed values. During winter 2016/2017, higher deposition values of chlorides were measured
than in winter 2017/2018. These differences are mainly related to the current climatic conditions
during the winter period. Data from two selected winter months are shown in Table 7 for clarity.

Table 7. Deposition rate of chlorides (S4 ) measured by wet candle method [mg-m~2-day~].

Bridge Tested Position 01/2017 02/2017
Pl—external girder, north orientation 82.64 39.33
B1 P2—internal girder, north orientation 49.67 24.20
P3—internal girder, south orientation 56.43 28.13
P4—external girder, south orientation 89.92 41.25
B2 P5—external girder, north orientation 9.80 5.08
P6—internal girder, north orientation 6.33 5.89

For bridge construction B2, the deposition rates of chlorides in winter periods were found to
be several times lower than on the bridge Bl (for example, in January 2017, approximately nine
times lower compared to the outer surfaces of the bridge B1). A comparison of the data obtained on
bridges B1 and B2 shows a significant influence in the source of chlorides. The upper bridge deck
with sufficient lateral overhang protects the main girders of both Bl and B2 bridges from the increased
deposition of particles stirred up by traffic over the bridge. However, bridge B1 is located above a busy
highway, and the construction of the bridge also creates tunnel-like conditions. The main source of
elevated chloride deposition is road transport under the bridge structure.

The influence of the environment under the bridge structure is also evident from the results of
the elemental analysis of the exposed samples. On the horizontal surface of the Bl bridge spanning
the motorway, more than six times the difference in the presence of chlorides in corrosion products
was found after one year of exposure than on a comparable surface of the bridge B2 over the railway
line. Large differences are also apparent in the representation of aluminum and silicon, i.e., elements
indicating increased deposition of dust particles and other impurities.

e Bridge B1, position P2 (north orientation, horizontal surface), 1-year exposure (2016/2017):
mcy = 11.40 g¢m~=2; mp; = 3.25 gm~2; mg; = 16.33 g-m~2;

e Bridge B2, position P6 (north orientation, horizontal surface), 1-year exposure (2016/2017):
mcr = 1.69 g~m_2; may = 0.49 g«m_z; mg; = 2.03 g-m_z.

On the horizontal structures of bridge B1, the phase analysis revealed a very strong presence
of akaganeite, which is produced in an environment with a high occurrence of chlorides. On bridge
structure B2, lepidocrocite was predominantly represented on horizontal surfaces in the corrosion
layer. Although using the values of PA indices set on the developing layer of corrosion products to
estimate the protective effects of fully-developed patina is not suitable, it can be inferred by comparing
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the PAl to influence corrosion processes due to chlorides. The values of the PAIg indexes were higher
for bridge B1 than for bridge B2 (see Table 6).

The different environments beneath both tested bridges also manifested in the values of corrosion
thickness (tcorr) and corrosion losses (rcorr) determined after one year of exposure of the corrosion
samples. A more than double difference was found for both monitored variables:

e Bridge B1, position P2 (north orientation, horizontal surface), 1-year exposure (2016/2017):
teorr = 188.0 um; rcorr = 45.8 um;

e Bridge B2, position P6 (north orientation, horizontal surface), 1-year exposure (2016/2017):
teorr = 83.0 um; 7corr = 20.4 pm.

The different development of corrosion products on the horizontal surfaces of both evaluated
bridges can also be documented based on a visual evaluation. On the bridge B1 samples, bulkier and
less adherent corrosion products developed with a higher proportion of settled impurities. Visual
evaluation was supplemented by an evaluation of adherent and non-adherent rust layers using the
Scotch-tape test. Imprints of horizontal surfaces from the bridge B1 show an uneven distribution of
trapped particles of various sizes, whereas the size of the largest particles collected on the imprint
were approximately 5 mm. For bridge B2, the collected particles were evenly distributed and the
particle size was up to 2 mm. Imprints from the compared surfaces at positions P2 and P6 are shown
in Figure 13.

bridge B1, surface (P2) ~ bridge B2, surface (P6)

I3

Figure 13. Scotch-tape tests on selected horizontal surfaces.

4.4. Brief Static Evaluation of Corrosion Weakening

The evaluated bridge structures are made of structural steel S355]2W. The main corrosion risk
associated with the use of this steel grade is the corrosion weakening of the structure or its parts. Stress
corrosion cracking is very unlikely. During the inspection of the bridge over the D1 highway, the real
thicknesses of the bottom flanges of the main girders were checked. The measurement was performed
using the ultrasonic thickness gauge. Unfortunately, the original thicknesses of structural elements
from the time of the bridge construction are not available. Real corrosion losses after 17 years of bridge
operation are therefore unknown. However, the actual thicknesses are still within the range of rolling
tolerances of the used sheets. Therefore, it is not necessary to carry out the reinforcement of structural
elements with corrosion-negative development.

From the static point of view, the greatest risk is the corrosion weakening of structural elements
with low thickness: such typical components are fillet welds connecting webs and flanges of the
main girders. For example, a corrosion weakening of 1 mm for a 7 mm thick filled weld can be very
significant in terms of reducing the load-bearing capacity of the steel bridge structure. On the other
hand, the same corrosion weakening of a 50 mm thick bottom flange does not significantly affect the
load-bearing capacity of the bridge. A greater risk of failure of thin structural elements should be taken
into account using suitable corrosion allowance already when designing the load-bearing structure.
Corrosion allowances can be calculated in accordance with the recommendations given in [17].
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Regarding the local corrosion damage, it is important to evaluate its position within the bridge
structure. For example, the corrosion weakening of the main girder in the area of outer hinged supports
is not usually significant in terms of the bending resistance of the bridge, as there are no bending
moments acting at the end of the main girders. On the other hand, the maximum shear forces act
above the supports and therefore the fillet welds and the web of the main girders are significantly
stressed. In the opinion of the authors of this article, it is therefore very important that the assessment
of the detected corrosion failures is carried out by a structural engineer who is familiar with the static
behavior of the bridge.

5. Conclusions

The course of corrosion processes on bridges constructed with weathering steel is significantly
influenced by the chosen structural solution of the bridge and the specifics of local microclimatic
conditions. The results of the measurements performed show that the general classification of a locality
according to the category of corrosion aggressiveness is not sufficiently indicative for the prediction of
corrosion processes if the geometric parameters of the construction design and possible microclimatic
influences are not taken into consideration.

The course of corrosion processes can be very different for the different bridge structure surfaces
under consideration. This fact should be reflected in designing structures [17] as well as in regular
maintenance [27]. Vertically-oriented surfaces (typically webs of main girders) usually develop a
uniform, thin corrosion layer typical of sheltered exposures. The patina on soffit surfaces also has
similar parameters. The most complex issue is predicting the development of corrosion products on
horizontal surfaces, which can be affected by increased settling of airborne particles. If the principles
of a suitable design are observed and the bridge is placed in suitable microclimatic conditions, a
sufficiently protective patina develops on the horizontal surfaces. By contrast, there is a risk of creating
non-protective corrosion products associated with a technically unacceptable corrosive weakening of
the structure.

One of the decisive factors influencing the local microclimate in the vicinity of a bridge is the
effect of chlorides, which are deposited on bridge structure elements mainly due to traffic on adjacent
roads. De-icing salts used for winter road maintenance are a source of chlorides. Some significant
findings have been determined from the results of measuring chloride deposition. Measurements
show that in the case of bridges with suitable structural arrangements, it is possible to significantly
eliminate the amount of deposited chlorides, the source of which is traffic over the bridge structure.
Increased chloride deposition, however, may occur due to intense road traffic under the bridge
structure. At present, not enough experimentally validated data is available to define the specific
dimensional and structural requirements, which if applied, decreases chloride deposition from traffic
under the bridge to a level that does not limit the beneficial development of patina on bridge structure
components. Therefore, it is necessary to at least observe the basic rules: to design structures that
allow the dispersal of pollutants and aerosols into the surrounding environment and, importantly,
to implement basic maintenance consisting of regular cleaning of the steel structure after the end
of winter.
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