
Communication

Fusion Protein of Rotavirus VP6 and SARS-CoV-2 Receptor
Binding Domain Induces T Cell Responses

Kirsi Tamminen * , Suvi Heinimäki , Stina Gröhn and Vesna Blazevic *

����������
�������

Citation: Tamminen, K.; Heinimäki,

S.; Gröhn, S.; Blazevic, V. Fusion

Protein of Rotavirus VP6 and

SARS-CoV-2 Receptor Binding

Domain Induces T Cell Responses.

Vaccines 2021, 9, 733. https://

doi.org/10.3390/vaccines9070733

Academic Editors: Ralph A. Tripp,

Steven B. Bradfute and Scott Anthony

Received: 25 May 2021

Accepted: 21 June 2021

Published: 2 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Vaccine Development and Immunology/Vaccine Research Center, Faculty of Medicine and Health Technology,
Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland; suvi.heinimaki@tuni.fi (S.H.);
stina.grohn@tuni.fi (S.G.)
* Correspondence: kirsi.tamminen@tuni.fi (K.T.); vesna.blazevic@tuni.fi (V.B.);

Tel.: +358-50318-6868 (K.T.); +358-50421-1054 (V.B.)

Abstract: Vaccines based on mRNA and viral vectors are currently used in the frontline to combat the
ongoing pandemic caused by the novel Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-
CoV-2). However, there is still an urgent need for alternative vaccine technologies inducing/boosting
long-lasting and cross-reactive immunity in different populations. As a possible vaccine candidate,
we employed the rotavirus VP6-protein platform to construct a fusion protein (FP) displaying
receptor-binding domain (RBD) of SARS-CoV-2 spike protein (S) at the N-terminus of VP6. The
recombinant baculovirus-insect cell produced VP6-RBD FP was proven antigenic in vitro and bound
to the human angiotensin-converting enzyme 2 (hACE2) receptor. The FP was used to immunize
BALB/c mice, and humoral- and T cell-mediated immune responses were investigated. SARS-CoV-2
RBD-specific T cells were induced at a high quantity; however, no RBD or S-specific antibodies
were detected. The results suggest that conformational B cell epitopes might be buried inside the
VP6, while RBD-specific T cell epitopes are available for T cell recognition after the processing and
presentation of FP by the antigen-presenting cells. Further immunogenicity studies are needed to
confirm these findings and to assess whether, under different experimental conditions, the VP6
platform may present SARS-CoV-2 antigens to B cells as well.

Keywords: SARS-CoV-2; COVID-19; delivery platform; vaccines; VP6; T cells; antibodies; immune re-
sponse

1. Introduction

Since the recent emergence of Severe Acute Respiratory Syndrome Coronavirus-2
(SARS-CoV-2) in December 2019 causing the COVID-19 disease and pandemic [1], there
have already been several vaccines approved for human use, and numerous vaccine
candidates are in the different phases of clinical trials or under early development [2].
Most of the vaccine candidates against SARS-CoV-2 target the spike (S) protein, especially
its receptor binding domain (RBD) responsible for cell attachment, entry, and, therefore,
infection [3]. The neutralizing (Ne) antibodies against SARS-CoV-2 RBD are considered the
main correlates of protection from infection and disease [4]. All vaccines currently used to
mass immunize the human population, including mRNA-based BNT162 (Pfizer/BioNTech,
Mainz, Germany) and mRNA-1273 (Moderna, Inc., Cambridge, MA, USA) or adenovirus
vector-based AZD1222 (Oxford/AstraZeneca, Cambridge, UK), induce high levels of Ne
antibodies up to several months after the vaccination [5]. However, it is still unknown
whether long-lasting and cross-protective immunity against newly emerging SARS-CoV-2
variants of concern [6] will be generated with the currently available vaccines. Therefore, a
better understanding and characterization of the immune responses against SARS-CoV-
2 and the role of T cell immunity in protection is needed. In different viral infections,
including influenza virus [7,8], T cell immunity plays a crucial role in memory B cell
response generation and cross-protective and long-lasting immunity. There is increasing
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evidence that cellular immunity, namely SARS-CoV-2-specific CD8+ cytotoxic T cells
and/or Th1-biased CD4+ helper T cells, also plays an important role in long-term protection
against SARS-CoV-2 [9]. It is highly possible that different types of vaccine technologies
or/and additional, more conserved SARS-CoV-2 antigens will be needed to boost and
broaden the immune response after initial priming with the current vaccines. We and
others have previously stated that the recombinant rotavirus (RV) VP6 protein, produced
by the baculovirus (BV) insect cells protein expression system, in addition to being a
nonreplicating subunit RV vaccine candidate [10–13], possesses self-adjuvating abilities and
acts as a delivery vehicle for particulate antigens [14,15]. VP6 oligomeric nanostructures,
such as nanospheres or nanotubules, are optimal-sized particles (~100–1000 nm) to be
uptaken by antigen-presenting cells (APCs) [16,17], thus efficiently activating adaptive
immune responses. High immunogenicity and the intrinsic immunostimulatory effect of
VP6 have been further harnessed for the use of VP6 as a platform for heterologous antigen
presentation [18–20]. Recently, we showed [20] that VP6 easily accommodates foreign
antigen sequences (universal influenza virus antigens) from ca. 20 to 160 amino acids (aa)
at different insertion sites within the surface loops and both termini, making it an excellent
delivery platform for different vaccine antigens, including SARS-CoV-2. In the present
study, RV VP6 was employed as a platform to deliver and display the SARS-CoV-2 RBD
antigen at the N-terminus (N-t). The constructed fusion protein (FP) was used to immunize
BALB/c mice, and RBD-specific antibodies and T cell responses were investigated. This
type of a recombinant subunit protein vaccine exhibits a high safety profile and could be
used as a standalone vaccine or as a heterologous boost to different priming strategies with
mRNA, DNA, or virus vector-based vaccines.

2. Materials and Methods
2.1. Cloning and Production of VP6-RBD Fusion Protein

A recombinant VP6-RBD FP was designed by inserting SARS-CoV-2 RBD (aa 319–541,
GenBank ID QHD43416.1, PANGO lineage B [21]) at N-t of human RV VP6 (1–397 aa,
GenBank ID GQ477131) by genetic fusion as previously described [20]. A flexible linker
sequence ([G4S]3) was inserted between RBD and the VP6 backbone to sustain the correct
folding of both domains. The FP DNA sequence was synthetized and cloned into pFast-
Bac™1 vector by GeneArt (Thermo Fisher Scientific, Waltham, MA, USA) and further used
to generate recombinant bacmids by the Bac-to-Bac® Baculovirus Expression system (Invit-
rogen, Carlsbad, CA, USA). The recombinant bacmids were used to transfect Spodoptera
frugiperda (Sf9) insect cells to generate baculovirus stock, which was amplified as earlier
described [10,20]. Sf9 cells were infected with high titer baculovirus stock at a density of
1 × 106 cells/mL and multiplicity of infection (MOI) of 1 and 6 days postinfection. Cell
pellet was collected by centrifugation (1000× g, 20 min, +4 ◦C).

2.2. Extraction and Crude Purification of VP6-RBD Fusion Protein

To extract VP6-RBD FP from the cell pellet, a method described by O’Shaughnessy
and Doyle [22] was exploited. Briefly, pellet was disrupted by lysis buffer (25 mM Tris–HCl,
10 mM NaCl, 5 mM MgCl2, pH 7.5) in the presence of protease inhibitors (PMSF and
leupeptin) and 10% nonyl phenoxypolyethoxylethanol (NP-40, all from Sigma-Aldrich,
St. Louis, MO, USA). After centrifugation (10,000× g, 15 min), 5% sodium deoxycholate
(Sigma-Aldrich) was added to disrupt nuclei, releasing DNA, which was digested o/n
(+4 ◦C) with DNase I (Thermo Fisher). The pellet was treated with two-step addition of
solubilization buffers with an increasing urea concentration (25 mM Tris–HCl, 1 mM EDTA
containing 2 or 8 M urea). As the FP still predominately remained insoluble in the pellet
(Western blot analysis, data not shown), the pellet was dissolved in 6 M guanidine–HCl
supplied with 20 mM dithiothreitol. Guanidine was removed by dialysis (20K MWCO
Slide-A-Lyzer™ cassette, Thermo Fisher) against 6 and 3 M urea in 50 mM Tris-HCl
and subsequently against phosphate buffered saline (PBS). After centrifugation (10 min,
4000× g), the pellet was resuspended in 8 M urea in 25 mM Tris-HCl, following the
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refolding of FPs by sequential dialysis against a slowly decreasing urea concentration
(5–0 M urea in 50 mM Tris-HCl, pH 8). Finally, the soluble protein preparation was clarified
by centrifugation (10,000× g, 10 min) to separate the supernatant, containing soluble FP,
from insoluble material remaining in the pellet.

2.3. RV VP6, SARS-CoV-2 Proteins, and Synthetic Peptides

Recombinant human RV VP6 protein, used as a control antigen for analytical in vitro
assays, was produced by our laboratory as previously described [10,23]. Active SARS-CoV-
2 trimeric S protein in the prefusion conformation (CoV-2 S, R&D Systems, Minneapolis,
MN, USA) was used as a standard SARS-CoV-2 vaccine antigen to immunize mice [24] and
as an antigen in analytical assays. Recombinant SARS-CoV-2 RBD (CoV-2 RBD, Sanyou
Biopharmaceuticals Co., Ltd., Shanghai, China) and nucleoprotein (CoV-2 NP, Sanyou
Biopharmaceuticals) were used as antigens for the analytical methods only. PepTivator
SARS-CoV-2 S1 (15-mer sequences with 11 aa overlap, covering the N-terminal S1 domain,
aa 1-692) and NP (15-mer sequences with 11 aa overlap, covering the complete sequence of
NP) peptide pools were obtained from Miltenyi Biotec (Lund, Sweden).

2.4. VP6-RBD Fusion Protein Characterization and Receptor Binding

The expression and purity of VP6-RBD FP were characterized with SDS-PAGE using
Mini Protean TGX Precast gels (Bio-Rad Laboratories, Hercules, CA, USA) and PageBlue
Protein Staining Solution (Thermo Fisher). Total protein concentration was determined
with a Pierce BCA kit (Thermo Fisher) following densitometric analysis with a ChemiDoC
XRS Imager (Bio-Rad) to determine FP quantity in the soluble protein preparation. The FP
identity and antigenicity was confirmed by Western blot as previously described [20] using
rabbit anti-RV polyclonal antibody (1:500, Antibodies-online GmbH, Aachen, Germany)
and rabbit anti-SARS-CoV-2 S1 antibody (1:200, Invitrogen), following 1:5000 diluted
anti-rabbit HRP-conjugated antibody (Abcam, Cambridge, UK). The binding of VP6-RBD
FP, trimeric CoV-2 S (a positive control), and CoV-2 NP (a negative control) to human
angiotensin-converting enzyme 2 (hACE2) receptor was performed as earlier described [25]
with slight modifications. hACE2 (aa 18-740), hFc Tag Recombinant Protein (Invitrogen)
was immobilized on a 96-well polystyrene plate (Corning, New York, NY, USA) at 1 µg/mL
in PBS (o/n, +4 ◦C). VP6-RBD, CoV-2 S, and NP proteins were added with increasing
concentration (0–240 ng/well) on the plate. After washing the plate, hACE2-bound proteins
were detected with rabbit anti-SARS-CoV-2 S1 antibody (Invitrogen) and anti-rabbit IgG-
HRP. OPD substrate (Sigma-Aldrich) was added for 30 min, and after stopping the reaction
with 2 M H2SO4, optical density at 490 nm (OD490) was measured using a microplate
reader (Victor2, Perkin Elmer, Waltham, MA, USA). A background signal, obtained from
hACE2-coated wells incubated with the sample buffer only, was subtracted from all OD
readings at a plate.

2.5. Mice Immunization

Three groups of six-week-old female BALB/c mice (Envigo, Horst, The Netherlands)
were immunized subcutaneously two times (on study week 0 and 3) with 55 µg VP6-RBD
(6 mice/group), 10 µg active trimer CoV-2 S (R&D Systems, 4 mice/group, a positive
control group), or carrier (PBS) only (4 mice/group, a negative control group). VP6-RBD
was adjuvanted with aluminum hydroxide (100 µg/dose), and two of the positive control
mice received CoV-2 S adjuvanted with alum (100 µg/dose), while two received CoV-2 S in
PBS only. Mice were sacrificed on study week 5, and whole blood (serum) and splenocytes
were collected and frozen as previously described [26]. All procedures were authorized
and conducted under the guidelines of the Finnish National Animal Experiment Board
(permission number ESAVI/10800/04.10.07/2016).
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2.6. SARS-CoV-2 and RV VP6-Specific Serological Immunoassays

RV VP6 and SARS-CoV-2-specific antibodies in immunized mice sera were measured
by enzyme-linked immunosorbent assay (ELISA) [26]. RV VP6 (2 µg/mL in PBS), CoV-2 S,
RBD, or NP (each 1 µg/mL in PBS) were coated on 96-well ELISA-plates (Corning) o/n
at +4 ◦C. Mice sera were diluted twofold from 1:100 and added to the plates. The bound
antibodies were detected by 1:4000 diluted antimouse IgG-HRP (Sigma-Aldrich) and OPD
substrate as described above. Negative control mouse sera were used to determine the
cutoff value (mean OD490 + 3 × SD). Samples with a net OD490 above the set cutoff value
and >0.1 OD were considered positive. The end-point antibody titers were defined as a
reciprocal of the highest sample dilution with an OD490 above the set cutoff value. If the
starting dilution resulted in an OD value below the set cutoff, the sample was given an
arbitrary value half of the starting dilution. Sera of mice immunized with VP6-RBD FP
were pooled (1:100 dilution) to detect CoV-2 RBD, CoV-2 S, and VP6 in a Western blot as
previously described [20].

2.7. ELISPOT-IFN-γ

An enzyme-linked immunospot assay (ELISPOT) was used to quantify IFN-γ produc-
tion from VP6-RBD FP, CoV-2 S, or mock (PBS) immunized mice splenocytes in response
to SARS-CoV-2 S1 (covering the RBD domain) and SARS-CoV-2 NP-derived synthetic
peptide pools as previously described for other peptides [26]. Briefly, 96-well MultiScreen
HTS-IP filter plates (Millipore, Billerica, MA, USA) were coated with antimouse IFN-γ
(Mabtech Ab, Nacka Strand, Sweden). The S1 peptide pool (0.2 and 1 µg/mL), NP pool
(1 µg/mL, a negative control), or Concanavalin A (ConA, Sigma-Aldrich, 10 µg/mL),
used as a positive viability control, were added to stimulate individual mice splenocytes
(0.2 × 106 cells/well). Cell culture medium (CM) was used as a background control. The
plates were incubated for 20 h at 37 ◦C and 5% CO2, following spot development as pre-
viously described [26]. The plates were analyzed using an ImmunoSpot® automatic CTL
analyzer (CTL-Europe GmbH, Bonn, Germany). The results are expressed as mean spot
forming cells (SFCs)/106 live splenocytes. A sample was considered positive if the quantity
of SFC/106 cells was above the maximum background level (cutoff value) calculated from
CM wells (mean SFC/106 cells + 3 × SD).

2.8. Statistics

A Mann–Whitney U-test was used to compare differences in nonparametric observa-
tions between two independent groups. Statistical significance was defined as p < 0.05, and
all hypothesis testing was two tailed. Statistical analyses were conducted using GraphPad
Prism (San Diego, CA, USA) version 8.3.0.

3. Results
3.1. Production and Characterization of the Crude Purified VP6-RBD Fusion Protein

In preliminary experiments, the insect-cell-produced VP6-RBD was found intracellu-
larly located and insoluble (data not shown). Therefore, cell pellets were subjected to pellet
extraction and protein solubilization procedures as described in the Materials and Methods.
The presence of VP6-RBD (theoretical size app. 70 kDa) after extraction/solubilization
procedures was confirmed by SDS-PAGE (Figure 1a, lane A) and VP6-specific Western blot
(Figure 1b, lane A) analysis. These analyses also showed that VP6-RBD remained in the
supernatant (Figure 1a,b, lane B) after the final centrifugation step, indicating successful FP
solubilization. The presence of SARS-CoV-2 RBD-insert was confirmed by SARS-CoV-2 S
antibody staining in the Western blot (Figure 1c, lane B). Moreover, the immunoblotting
experiments of VP6-RBD FP revealed that the majority of VP6 protein, as well as RBD,
is in a conjugated form (Figure 1b,c). The total protein concentration of the final protein
preparation was 1.37 mg/mL, and the percentual fraction of VP6-RBD FP was determined
by densitometry analysis of the SDS-PAGE-separated proteins shown in Figure 1a (lane
B) (data not shown). The theoretical FP concentration (calculated from the densitometry
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results, respectively) in the final preparation was 0.288 mg/mL, and the total FP yield was
2.5 mg/L. Functionality and structural integrity of the RBD-insert in the VP6-RBD FP was
investigated using hACE2 receptor binding experiments. Recombinant CoV-2 S trimer was
used as a positive and CoV-2 NP as a negative control in the assay. FP binding to hACE2
(Figure 1d) demonstrated that RBD is expressed and is functional. Approximately 60×
more RBD in the FP was needed to obtain a binding profile to the hACE2 receptor similar
to the spike protein (2.4 µg compared to 0.04 ug/well). The negative control CoV-2 NP did
not bind to hACE-2 (Figure 1d).

Figure 1. Characterization of VP6-RBD fusion protein. Rotavirus VP6 protein was used as a backbone to generate fusion
protein (FP) carrying SARS-CoV-2 Spike (S) protein derived receptor-binding domain (RBD) as described in the Materials
and Methods. The FP was crude purified from Sf9 insect cell pellets after 6-day culture with recombinant baculovirus and
separated (5 µg/lane of total protein) under reducing conditions in SDS-PAGE following staining with Coomassie blue (a)
or immunoblotting using primary antibodies against VP6 (b) or SARS-CoV-2 S protein (c). VP6-RBD FP (~70 kDa) before (A)
and after (B) final clarification step is indicated by an arrow (a–c). Wild-type VP6 (~42 kDa) and commercial RBD protein
(~23 kDa, migrating as a higher molecular weight due to glycosylation) were used as positive controls in SDS-PAGE and/or
Western blot. Molecular weight marker (M) is shown with the respective molecular sizes (kDa). Binding of VP6-RBD,
SARS-CoV-2 S (CoV-2 S, a positive control), and SARS-CoV-2 nucleoprotein (CoV-2 NP, a negative control) to immobilized
human angiotensin-converting enzyme 2 (hACE2) by an ELISA-based binding assay (d). Optical density (OD) values at 490
nm of VP6-RBD (0–2.4 µg/well), CoV-2 S, and NP (both 0–0.04 µg/well) binding to 0.05 µg/well hACE2 are shown.

3.2. SARS-CoV-2 and RV VP6-Specific Antibody Responses

Individual serum samples of VP6-RBD FP and CoV-2 S immunized mice were tested
for the presence of SARS-CoV-2-specific antibodies in ELISA against CoV-2 S and RBD
recombinant proteins. VP6-RBD completely failed to induce a SARS-CoV-2-specific IgG
response (Figure 2a). To the contrary, CoV-2 S, used as a positive immunization control
antigen, induced a robust IgG response (Figure 2a,b) in each animal against CoV-2 S
and RBD with GMT 86108 (95% CI 21,493–344,968) and 10763 (95% CI 1108–104,580),
respectively. As comparable results were obtained in the positive control group of mice
immunized with or without the adjuvant (data not shown), the results were combined. We
next performed an immunoblotting experiment with denatured CoV-2 S and RBD (soluble
monomer) to investigate if there were antibodies generated to nonconformational epitopes
in VP6-RBD immunized mice. The results show that there were no antibodies detected in
either of these proteins, only in the recombinant wild-type VP6 used as a control (Figure 2c).
As pooled sera of six mice were used in the immunoblotting experiment, we determined
the IgG antibody response of individual mice against the VP6 carrier protein in ELISA.
A robust anti-VP6 response in VP6-RBD FP immunized mice (Figure 2d,e) with GMT
36204 (95% CI 19,699–66,537) was detected, confirming successful immunization. Negative
control mice sera were negative for SARS-CoV-2 and VP6-specific antibodies (Figure 2a,d,
respectively).
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Figure 2. SARS-CoV-2 and VP6-specific antibody and T cell responses. Serum IgG antibody responses in mice following
immunization with VP6-SARS-CoV-2 receptor-binding domain (VP6-RBD) fusion protein (FP), SARS-CoV-2 Spike (CoV-2 S,
a positive control), or carrier only (PBS, a negative control) were analyzed by antigen-specific ELISAs and/or Western blot.
SARS-CoV-2 S, RBD, and nucleoprotein (NP)-specific IgG antibodies are shown, represented by mean optical density (OD)
values with standard error of the mean (SEM) of sera diluted 1:100 (a) and serum titration curves of CoV-2 S immunized
mice (b). VP6-RBD FP immune sera were further used as a pool of individual sera (1:100 dilution) to detect SARS-CoV-2
RBD, S, and VP6 (each 1µg/lane) proteins under denaturing conditions in a Western blot (c). Molecular weight marker (M)
is shown with the respective molecular sizes (kDa). VP6-specific IgG responses of VP6-RBD FP immunized and control
mice are illustrated by mean OD values with SEM (d) and geometric mean titer (GMT) with 95% confidence intervals (e).
If the starting dilution resulted in an OD value below the set cutoff, the sample was given an arbitrary value half of the
starting dilution (ctrl, (e)). T cell responses of immunized and control mice splenocytes were analyzed by ELISPOT IFN-γ
against SARS-CoV-2 S1 and NP (a negative control) peptide pool stimulation (f). Cell culture medium (CM) alone was used
to determine background cytokine release. Mean IFN-γ spot-forming cells (SFC)/106 live splenocytes of duplicate wells
with SEM are shown. Dashed horizontal lines in the panels represent the cutoff value for ELISA ((a,b,d,e), mean OD490 + 3
× SD and at least 0.1 OD of negative control mice) and ELISPOT ((f), mean SFC/106 cells + 3 × SD of CM wells). Statistical
significance was defined as p < 0.05 and hypothesis testing was two tailed. ns: not significant p-value.

3.3. SARS-CoV-2-Specific T Cell Responses

To evaluate SARS-CoV-2-specific T cell responses in the VP6-RBD FP and CoV-2 S
immunized mice, individual mice splenocytes were stimulated with SARS-CoV-2 S1 and
NP peptide (negative control) pools, and IFN-γ production was measured by ELISPOT
(Figure 2f). The VP6-RBD immunized mice splenocytes responded to the SARS-CoV-2 S1
peptide pool stimulation ex vivo by robust IFN-γ production (233 ± 38 SFC/106 cells). A
similar level of IFN-γ production (p = 0.919) was detected by the S1 peptide pool stimu-
lated splenocytes from CoV-2 S immunized mice (205 ± 39 SFC/106 cells). Importantly,
there was no significant IFN-γ response detected against the negative control NP peptide
pool in any of the mice immunized with VP6-RBD FP (19 ± 7 SFC/106 cells) or CoV-2 S
(32 ± 9 SFC/106 cells). Mice immunized with PBS carrier only were negative for IFN-γ
production to both peptide pools (Figure 2f). Cell viability, controlled by Con A stimula-
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tion, was similar in all groups (data not shown), and background IFN-γ production by
splenocytes in CM only was < 40 SFC/106 cells.

4. Discussion

Although several SARS-CoV-2 vaccines are approved for human use worldwide, many
different vaccination approaches and vaccine candidates to, e.g., improve the longevity of
the protective immune responses and to induce cross reactivity against emerging SARS-
CoV-2 strains, are under development [2,24]. We have used the RV VP6 protein delivery
platform carrying SARS-CoV-2 RBD antigen as a vaccine candidate and investigated its
potential to induce RBD-specific antibodies and T cell responses. Of the several possible
insertion sites within the VP6 sequence [18–20], we selected the N-t, based on recently
published results [20], to avoid the steric hinderance on the VP6 structure by a large insert,
and to sustain the ability of VP6 to trimerize [18]. This type of a subunit protein vaccine
is extremely safe [27] and could be used as a standalone vaccine or as a heterologous
boost to different vaccination priming strategies. In particular, viral vector-based vaccines,
including different adenovirus vectors, may need a heterologous boost due to the vector-
induced immune responses over time [28]. In addition, platform technology is very
adaptable, enabling the rapid exchange of antigens of the continuously emerging SARS-
CoV-2 variants. SARS-CoVs use the hACE2 receptor to enter and infect host cells [29].
Current vaccine strategies against SARS-CoV-2 primarily aim to induce the high-level Ne
antibodies against the RBD of S protein to prevent the COVID-19 disease and infection.
Although we used alum, a Th2 type adjuvant, in our immunization experiments with VP6-
RBD FP, to our great surprise, no antibodies were detected against SARS-CoV-2 RBD or S
protein. However, SARS-CoV-2 RBD-specific T cells were induced at a similar quantity to
the full-length trimeric S-protein-induced responses. The reasons behind these observations
are not defined and require further investigation. It is known that a low antigen dose may
induce T cell responses in the absence of antibodies [30]. The 10-µg CoV-2 S protein dose,
which induced antibodies specific for S and RBD proteins, contains approximately 1.75 µg
RBD. Although there was ~20 µg SARS-CoV-2 RBD in the FP per dose used for immunizing
mice, it is possible that antibody binding sites are buried by the VP6 protein structure while
T cell epitopes are readily available after the FP uptake, processing, and presentation by
APCs. Indeed, the hACE2 binding results showed that approximately 60× more RBD in
the form of FP, compared to the S protein, is needed to obtain similar binding to the hACE2
receptor, indicating that binding sites in FP are at least partially masked by the VP6. In
similar fashion, these conformational sites on RBD might not be available at a sufficient level
for B cell receptor recognition and subsequent antibody generation in vivo. However, VP6-
RBD FP antigenicity was demonstrated in immunoblotting experiments as the polyclonal
antibody specific for SARS-CoV-2 S bound to denatured FP transferred on the blot. It is
therefore possible that antibody priming, and generation in vivo, requires a larger quantity
of RBD antigen in the form of FP than used under our experimental conditions. However,
as these are novel and early observations, the results need to be confirmed by further
experiments. Immunogenicity studies in mice using a wide dose range of VP6-RBD FP,
different adjuvants (or a combination of these) and delivery methods, additional boosting
immunizations to promote antibody induction, and an extension of the study schedule
to investigate long-term immunity are warranted. It would be important to perform
immunization experiments with our candidate vaccine in yet another animal model, such
as in Syrian hamsters, which are susceptible to SARS-CoV-2 infection and are utilized to
study virus transmission between hosts [31]. This model could be used to determine the
protection from infection induced by the VP6-RBD vaccine candidate. Furthermore, VP6
platform technology fused with antigens derived from different emerging SARS-CoV-2
variants could be tested for protection as well. Yet another approach could employ VP6
surface loops to insert shorter stretch(es) from the RBD-enclosed receptor binding motif
(RBM), containing functionally important epitopes for ACE2 interaction [29,32], as we have
recently done with influenza virus antigens [20]. With this approach, only the key epitopes
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for Ne antibodies would be readily available for B cell recognition, which would reduce
the risk of adverse antibody-dependent enhancement (ADE) caused by the induction of
suboptimal non-neutralizing antibodies [33]. We also aim to determine which cell type [23]
is responsible for IFN-γ production in response to the SARS-CoV-2 S1 domain-derived
synthetic peptides that we detected. However, it is likely that both CD4+ and CD8+ T cells
are generated by the VP6-RBD FP immunization and secrete IFN-γ ex vivo. Typically, CD4+

and CD8+ T cells recognize 12–15-aa- and 8–10-aa-long peptide sequences presented by the
major histocompatibility complex (MHC) molecules on the surface of APC. The peptides
contained in the S1 pool are 15 aa long and therefore contain putative epitopes for both cell
types. In addition, we will investigate production of other cytokines, such as interleukin
(IL)-4, IL-5, IL-10, and IL-17, in immunized animals. As Th2-type cytokines, especially IL-5,
have been implicated in the induction of vaccine-associated disease enhancement [34,35],
it is necessary to confirm that our SARS-CoV-2 vaccine candidate does not induce adverse
immunity. An antigen delivery platform, such as the one described here, which would
primarily induce T cell immunity in the absence of antibody generation, might be a valuable
vaccination strategy against pathogens such as Mycobacterium tuberculosis, where T cell
response (especially IFN-γ production by CD4+ T cells) is the only protective response
needed [36]. In addition, such a vaccine platform carrying a foreign antigen could be
used in a combination or as a boost for vaccines with a negligent or absent T cell response
induction. The current SARS-CoV-2 vaccines approved for human use induce protection
associated with high S/RBD-specific antibody levels, which lasts up to several months [5].
It is still not known whether long-lasting protective immunity will be generated with the
current SARS-CoV-2 vaccines in use. Next-generation vaccine approaches will probably be
needed to boost prior immunized people. Booster vaccinations inducing SARS-CoV-2 T
cell immunity instead of Ne antibodies might be needed to prolong duration and to induce
cross-protective responses against emerging SARS-CoV-2 variants of concern. It has been
suggested that cross-reactive T cells induced by seasonal influenza vaccinations might
mediate protection from pandemic influenza virus infection in the absence of Ne antibodies
to hemagglutinin and neuraminidase [37]. T cell immunity may also play an important
role in the protection from SARS-CoV-2 infection and the induction of long-lasting, cross-
reactive protection, as is the case in other viral infections [7,37–39].
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