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Summary m The translation flame-monitoring mechanism has been suggested earlier, based on transient complementary contacts, 
between mRNA and rRNA. Recent studies related to the frame-monitoring mechanism are reviewed. The mechanism is well sup- 
ported by both new experimental and sequence analysis data. Experiments are suggested for further elucidation of the structural details 
of the mRNA-rRNA interaction in the ribosome. 
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Introduction 

Mechanistically, mRNA translation into a protein is a 
process of  sequential translocation of  the ribosome 
towards the T-end of  the mRNA in standard steps of 
three bases. The initial frame of the transloeation is 
provided by an initiation triplet, usually AUG, while 
all other coding triplets follow downstream at dis- 
tances multiple of  three bases. This canonical scheme 
is well illustrated by many known cases of the frame- 
shift mutations, when small deletions or insertions of  
sizes indivisible by three change the frame of the 3- 
base transloeations. The downstream sequence is read 
in wrong frame and translated into the wrong amino 
acid sequence. It also leads to premature termination 
of  the process, with an encounter of  a stop-codon. 
There are eases, however, when the system somehow 
becomes unstable in that frame, the ribosome counts 
one base more or one base less, finding itself in the 
correct frame again [ 1 ]. In other words, the ribosome 
corrects the effects of the textual change, frameshift 
mutation, by physically shifting on the mRNA mol- 
ecule, making an unusual step of  one or two bases - a 
translational frameshift. 

The question is" what is there in the mRNA 
sequence, that is recognized by the ribosome as the 
framing signal, synchronized with correct reading 
frame, so that the ribosome keeps that frame despite 
the textual frameshifting? 

Several years ago one particular frame-monitoring 
mechanism was suggested based on the analysis of  

mRNA and rRNA sequences [2]. The mRNA 
sequences have been shown to carry, well pronounced 
3-base periodical motif (GHN)n where H stands for 
non-G and N for any base. Ribosomal RNA of the 
small subunit, on the other hand, namely those parts 
of it that are believed to interact with mRNA, carry 
the complementary periodical pattern (NNC)°. There 
are at least three such sites in the small subunit rRNA: 
5'-gcCagCagCegCgguaau, 5'-guacaCacCgcCcguca and 
5'-gauCacCucCuua centered at positions 525, 1400 
and at the T-end (position 1535), respectively (the 
numbers correspond to coordinates along 16S rRNA 
of E coli). The (NNC), sites have been assumed to 
neighbor one another in the mRNA-rRNA complex in 
the ribosome, making together a kind of rack-gear of 
repeating NNC units, with which the mRNA makes 
imperfectly complementary contact involving the 
frequently repeating motif (GHN)n by keeping the first 
position G's of  the coding triplets always opposite to 
C's of the frame-monitoring rack-gear. 

This model of  involvement of both mRNA and 
rRNA in the frame keeping gained substantial support 
recently. In what follows some new experimental and 
theoretical evidence is reviewed, which provides also 
new details of  the frame-monitoring mechanism. 

Interactions of the rRNA framing sites with mRNA 

The 1400 site was first found in close vicinity of 
mRNA passing through the ribosome [3,4]. Its inter- 
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action with mRNA is well documented [5,6]. 
Involvement of two other sites, however, has been 
firmly established only recently. 

The 525 site was found to be exposed to interaction 
with complementary probes [7,8] and mapped by 
DNA hybridization electron microscopy on the back 
side of the neck of the small ribosomal subunit [8]. A 
51-base long mRNA fragment has been cross-linked 
to the 525 site, as well as to the 1400 site [6]. Recent 
observation on the tertiary interaction of the bases 
524--526 of the 525 loop with the bases 505-507 of 
the nearby bulge [9] indicates that, perhaps, a confor- 
mational 'switch' occurs in this region of the 16S 
rRNA structure [9]. Obviously, only the open loop 
alternative, without the tertiary contact, can take part 
in the interaction with the mRNA. 

The 3'-end of the 16S rRNA is known to be 
involved at the translation initiation stage, by making 
complementary contact with the Shine-Dalgarno 
sequence upstream from AUG initiation triplet 
[10,11]. Its involvement in elongation was first indi- 
cated by mRNA sequence analysis [12]. It was found 
that the 1535 site shows clear above average comp- 
lementarity to mRNA in one of its three frames. That 
such complementary contact, indeed, exists during 
elongation was proven by introducing point mutations 
into the 1535 sequence and mRNA sequence which 
resulted in well predictable changes in efficiency of 
translational frameshifting in one particular case [ 13]. 

Proximity of the 525, 1400 and 1535 sites to one 
another 

One would expect the synchronizing sites in the 
rRNA to be in a juxtaposition to be able to make one 
continuous or almost continuous C-periodical pattern. 
Their close proximity to one another is also suggested 
by the overall size of the mRNA-rRNA contact. 
Indeed, the minimal estimate of this size is given by 
total length of the (NNC), rack with its 10 x 3 = 
30 bases. This coincides with the estimated length of 
mRNA involved in the contact with the ribosome 
[14,15]. The physical length of the contact is, mini- 
mally, about 30 × 3.4 A = 100 A. Since the diameter of 
the small subunit neck is about 65 A [16], this would 
mean that the mRNA passes largely around the neck 
and, perhaps, cuts through it. This is consistent with 
the observation that the 3'- and 5'-ends of the mRNA 
fragment engaged in the ribosome meet on the same 
side of the neck [17]. The experimental evidence on 
the spatial disposition of the sites in the body or on 
the surface of the 30S subunit is rather controversial 
and usually of low accuracy since much of the evi- 
dence is obtained by electron microscopy [8]. 

Analysis of the sites in the small ribosomal subunit 
that are protected by tRNA, in combination with 

cross-linking data, indicated that the sites 525 and 
1400 are located on opposite sides of the neck, separ- 
ated by at least 65 A [16]. Modelling of  3-D-folding 
of  the 16S rRNA in the ribosome, by taking into 
account all protein-protein, RNA-RNA and RNA- 
protein distances known or, rather, estimated, also 
leads to the same conclusion on the substantial separ- 
ation between the 525 and 1400 sites [18]. Worth 
noting is, however, that the total length of  the 525 and 
1400 sites put together end-to-end in form of the 
double-helical imperfect complementary structure 
made of contacting mRNA and rRNA, is minimally 
about 21 x 3.4 A = 71 A. This spans the estimated 
large distance between the sites. 

By using a complementary probe to the 525 site, its 
position on the surface of the 30S subunit has been 
determined by immune electron microscopy [19]. The 
site was found on the right side of the neck, which is 
close enough to the decoding 1400 site, in the base of 
the cleft, to be considered as its immediate neighbor. 
DNA hybridization electron microscopy of the small 
ribosomal subunits, with biotinylated DNA probes, 
locates the two sites close to one another as well 
[8,20], but in different p.ositions: 525 site on the back 
of the neck and 1400 site on the left side of it [21], 
rather than in the cleft [22,23]. 

A recent cross-linking study using mRNA ana- 
logues with photoreactive thio-U residues in various 
positions demonstrated conclusively that the 525 and 
1400 sites are in close vicinity to one another, being 
cross-linked to the same short piece of model mRNA 
in the elongation 70S complex [24]. The 525 site is 
found in contact with mRNA, several bases down- 
stream from the triplet interacting with the decoding 
site. By the same technique but with several thio-U 
residues in one mRN,A fragment, the cross-linking 
was detected of the 3-end of rRNA to mRNA few 
bases upstream from AUG triplet in the initiation 30S 
complex [251. This new technique of cross-bridging 
by pieces of RNA [24,251 appears to be the most 
appropriate for determination of the spatial relation- 
ships among the rRNA-mRNA binding sites. It not 
only shows that both the 525 site and 1535 site are 
within a few bases of the 1400 site, but it also poten- 
tially allows to determine exact distances and the 
order of the sites along the mRNA, both at the initia- 
tion and at the elongation stages. Whatever the order 
is, the experiments provide conclusive support for one 
of the main suppositions of our frame-monitoring 
scheme: the close proximity of the framing sites 525, 
1400 and ! 535 to one another within the ribosome. 

Involvement of the 1535 site in the translational 
frameshifting 

The idea that the site 1535, the anti-Shine-Dalgamo 
sequence, would be involved in the frame-keeping 



process [2] was the most vulnerable part of  the hypo- 
thesized frame-monitoring scheme. The site is known 
as one of the key elements of  the translation initiation 
process. It does bind complementarily to the Shine- 
Dalgarno sequence immediately upstream of the in- 
itiation triplet, but nothing was known about its poss- 
ible binding to the coding part of  the mRNA, except 
for one indication from the mRNA sequence analysis 
[12]. 

This second involvement of the site had been 
recently established by elegant experiments where 
concerted point changes were introduced in mRNA 
and rRNA sequences [13]. Complementarity of the 
1535 site to the sequence 8 bases upstream from the 
translation shift site in a certain mRNA construct was 
found crucial for the efficiency of  the translational 
frameshifting. Remarkably, in that complementary 
position the framing cytosines of the 1535 site 
(gauCacCucCuua) were found in register with the first 
triplet positions of  the new frame. Apparently, the 
translational frameshifting in this case was caused by 
the complementarity of the mRNA sequence (in the 
new frame) to the C-periodical 1535 site, in accord- 
ante with its role in the hypothetical frame-monitor- 
ing mechanism. 

On the distributional nature of the translational 
frameshifting 

Like in many other cases of biomolecular recognition 
and unlike the unequivocally specific interaction be- 
tween DNA and restriction enzymes, the choice of the 
right reading frame by the ribosome is of  a distri- 
butional recognition nature [26]. That is, there are 
many structural elements in the ribosome and in mRNA 
as well as additional factors securing all together the 
reading frame or its change when required. Individual 
contributions of  these 'signal' components are differ- 
ent in every particular case. Sometimes only one or 
two of them are sufficient. 

In particular, translational frameshifting can be 
caused by 'shifty' tRNA [27], by runs of the same 
base [28], by downstream mRNA hairpins [29] or ter- 
tiary mRNA folding [30], by the 3-base periodical 
pattern in the mRNA [2], or by combinations thereof. 
In every case one or another factor prevails, depend- 
ing on particular sequence requirements unrelated to 
the frame-monitoring function. Thus, there is no 
necessity for the simultaneous presence of all of these 
'signal' components together in every case of the frame- 
shifting. The distributional nature of  the framekeeping 
function explains why, for example, the G-periodicity 
sometimes is not present [2]. Notwithstanding these 
exceptions, the 3-base periodicity appears to be the 
factor most frequently involved in the translational 
frameshifting. 
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Components of the 3-base periodicity 

The periodical signal carried by the protein-coding 
sequences is itself of  distributional nature. Indeed, the 
stability of the presumed imperfect complementary 
contact between mRNA and rRNA depends on at least 
three different sequence features corresponding to 
basic physical components of the interaction. First, 
these are isolated complementary base oppositions 
G.C, A.U and G.U flanked by the non-complementary 
ones. Second, the stability of the contact is substan- 
tially higher when neighboring bases in mRNA are 
complementary to the respective two bases of rRNA. 
In this case strong stacking interaction between the 
neighboring base pairs is the stabilizing factor. Last, 
but also essential, is the destabilizing contribution of 
non-complementary base oppositions, especially of 
the similar-named ones: A.A, C.C, G.G and U.U [31]. 
For the mRNA-rRNA contacts to be sufficiently stable 
in the correct frame at every stage of the 3-base trans- 
locations, the number of the single complementary 
contacts should be higher and/or the number of com- 
plementary dinucleotides should be higher and/or the 
number of the bad mismatches should be lower than 
in the other two frames. The role of the first factor is 
reflected, in particular, by the frequent occurrence of 
G in the first positions of the triplets [2]. Special ana- 
lysis with the emphasis on the possible role of the 
dinucleotides, excluding the mononucleotide back- 
ground, resulted in detection of the excessive dinu- 
cleotides UG in the third positions of the mRNA tri- 
plets and CU in the second positions (Lagunez-Otero, 
Trifonov, submitted). This allows to express original 
degenerate pattern (GHN), carried by mRNA in more 
detailed form: (GCU),. The same pattern is generated 
when avoidance of the bad base oppositions is taken 
into account [32]. Thus, the predominant 3-base perio- 
dical motif of the mRNA, reconstructed from the 
components of the presumed distributional framing 
recognition of mRNA by rRNA, is 5'-(GCU),. 
Remarkably, this pattern, extracted from mRNA 
sequences, without any a priori information on ribo- 
somal RNA structure, turned out to be almost perfect- 
ly complementary to the proofreading 525 site (Lagu- 
nez-Otero, Trifonov, submitted) as shown in figure 1. 
This is the only such site in the 16S rRNA, comple- 
mentary to the (GCU), mRNA pattern. The mRNA 
sequence, therefore, carries in it not just the framing 
3-base periodicity, but information about the rRNA 
structure as well. This also points to an exceptional 
role of the universally conserved 525 site in the ribo- 
some function(s). The mRNA sequence analysis 
potentially could lead, perhaps, to a complete descrip- 
tion of the sequence structure of the mRNA-rRNA 
contact, including all the contact sites and their rela- 
tive positions and distances along mRNA, as soon as 
they are reflected in the mRNA sequences. 
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3 '-U 525 C 
G A 

GCGCCGACG A 
III I III c 

5'-U G C U G G UG C A G U G G 
illl 
CGCC 

C A 
3 '-C 1400 C 

Fig I. Complementarity of mRNA periodical motif (GCU), 
to the 525 site. The framing cytosines are indicated by dots. 

Compensation effects 

The decomposition of the 3-base periodical pattern of 
mRNA in the three components of the distributional 
recognition mRNA-rRNA as described above implies 
also their compensatory relationships. In particular, if 
the first position G of the originally suggested pattern 
(GHN),, and second position H (non-G) are consi- 
dered as two distributional signal elements, then in the 
mRNA sequences lacking GNN griplets, the triplets 
nHn should be overrepresented, to compensate the 
lack of another component of the pattern. That is, if 
there are not enough guanines in the first triplet posi- 
tions, their avoidance in the second positions should 
become even stronger. This, indeed, is found to be the 
case [32]. The avoidance of G in the second positions 
is explained by the predominant occurrence of G in 
the second positions of 3'-(CNN)n sequence of the 
rTzain 525 framing site, since the opposition G.G 
appears to be one of the most destabilizing base oppo- 
sitions in RNA structure [31]. 

Another interesting example of such compensation 
is the human alpha-fibrinogen gene that lacks the 
canonical G in the first positions of the triplets of a 
large repeat region of the gene [2, 33]. It turned out 
that the dinucleotide CU of the second positions of the 
triplets is overrepresented in this case, apparently to 
keep the mRNA pattern (gCU), sufficiently comp- 
lemer~tary to the 525 site [32]. 

The compensation effects of the distributional recog- 
nition can be generally utilized for consecutive extrac- 
tion of unknown signal elements from the sequence, 
as a signal detection and purification technique. 
Indeed, if in a given set of recognition sites the nor- 
mally, present signal features are underrepresented, it 
shoula be compensated by overrepresentation of other 
signa~ elements, undetected earlier. 

Suggested experiments 

Informative as they are, the computational approaches 
to the study of the mRNA-rRNA interactions can and 
should be complemented by direct experiments. A 
straightforward experiment would be to use RNA 

probes complementary to the framing sites, as competi- 
tors for mRNA. Initiation of translation and, perhaps, 
elongation are expected to be inhibited by the probes. 
One known observation can be interpreted this way. A 
short RNA sequence was discovered that strongly 
inhibits translation in vivo [34]. The sequence carries 
a strong periodical pattern (GNN), and, thus, should 
bind well to the framing sites. In figure 2, two possibi- 
lities are shown. The small RNA possesses significant 
complementarity to both sites, 525 and 1400. Perhaps, 
one of these contacts, or both, are actually responsible 
for the inhibitory activity of the small RNA. 

This example also suggests the way to experimen- 
tally determine relative positions and distances be- 
tween the rRNA contact sites along the mRNA. For 
this purpose probes could be synthesized carrying 
simultaneously sequences complementary to two dif- 
ferent framing sites. By varying positions of the comp- 
lementary sequences along the probe one could, thus, 
determine the spatial relationships between the sb'es in 
the ribosome. 

Similarly, by taking the sequences with no comp- 
lementarity to the rRNA framing sites, and introducing 
the sequences in mRNA, one can design the especially 
'shifty' loci in the designed mRNA. The frameshifting 
at these loci is expected to be even more efficient if 
the sequences immediately downstream would contain 
a strong (GCU), motif  in a new frame. The best 
designs, presumably, would be the ones that carry 
several such non-complementary sequences reflecting 
the spatial relationships between the contact sites. 
Perhaps, the most 'shifty" sequences would be the 
ones that carry the segment 5 ' -UAAUGGCGCCGAC- 
GACCG anticomplementary to the main 525 framing 
site. Here the similar-named bases are chosen to 
oppose the bases of the 525 site all along the antipar- 
ralel contact, to make it maximally unstable [31 ]. 

Concluding remarks 

The frame-monitoring mechanism, as proposed ear- 
lier, is well supported by both recent experiments and 

5 '-G mRNA motif U 
C C 

U G C U G C U G C U G  CUG 
IIIIII lllilll 
A U G G C G C C G A C G A C  

A o o o oC 
3 '-U 525 site G 

Fig 2. Possible contacts of small cytoplasmic RNA [35] 
with the framing sites 525 and 1400. 



nucleotide sequence analysis. Its main proposition, on 
the transient complementary contacts between mRNA 
and rRNA, is confirmed for one of  three framirig sites, 
site 1535 [13]. It remains to be demonstrated directly 
that the two other sites make as well the complemen- 
tary contacts with mRNA. Analysis of  mRNA se- 
quences and detection of  the universal pattern comp- 
lementary to the 525 site makes this site a good 
candidate as well. All three sites are found in close 
vicinity to one another [24,25] as suggested by the 
framing mechanism. The relative positions and actual 
distances among the sites along mRNA remain to 
be determined, and straightforward experiments are 
suggested to work this out. 

The framing mechanism is more than just a design 
to maintain correct reading frame. Indeed, the three 
framing sites, 525, 1400 and 1535 carry, as well, the 
most important functions of  proofreading, decoding 
and initiation of  translation, respectively. Further 
detailed studies of  the translational frameshifting and 
frame-keeping mechanism, therefore, are of  direct 
relevance to studies on the structural basis and 
mechanism of  translation in general. 
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