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Single-cell transcriptome analysis of diffuse
large B cells in cerebrospinal fluid
of central nervous system lymphoma

Haoyu Ruan,1,8,9 Zhe Wang,2,9 Yue Zhai,7 Ying Xu,7 Linyu Pi,7 Jihong Zheng,7 Yihang Zhou,7 Cong Zhang,2

Ruofan Huang,3 Kun Chen,4 Xiangyu Li,4 Weizhe Ma,5 Zhiyuan Wu,4 Jie Shen,6 Xuan Deng,1 Chao Zhang,2,*

and Ming Guan1,10,*

SUMMARY

Diffuse large B cells in the cerebrospinal fluid (CSF-DLBCs) have offered great
promise for the diagnostics and therapeutics of central nervous system lym-
phoma (CNSL) leptomeningeal involvement. To explore the phenotypic states
of CSF-DLBCs, we analyzed the transcriptomes of more than one thousand
CSF-DLBCs from six patients with CNSL diffuse large B-cell lymphoma (DLBCL) us-
ing Smart-seq2 single-cell RNA sequencing. CSF-DLBCs were defined based on
abundant expression of B-cell markers, the active cell proliferation and energy
metabolism properties, and immunoglobulin light chain restriction. We identified
inherent heterogeneity of CSF-DLBCs, which were mainly manifested in cell cycle
state, cancer-testis antigen expression, and classification based on single-cell
germinal center B-cell signature. In addition, the 16 upregulated genes in CSF-
DLBCs compared to various normal B cells showed great possibility in the homing
effect of the CNS-DLBCL for the leptomeninges. Our results will provide insight
into the mechanism research and diagnostic direction of CNSL-DLBCL leptome-
ningeal involvement.

INTRODUCTION

Primary central nervous system lymphoma (PCNSL) is a rare and aggressive extranodal non-Hodgkin lym-

phoma (NHL), accounting for up to 1% of NHL and about 3% of all primary brain tumors (Villano et al., 2011).

PCNSL is confined to the brain, eyes, spinal cord, or leptomeninges without systemic involvement and re-

garded as an ‘‘immune-privileged’’ lymphoma (Han and Batchelor, 2017). The majority of PCNSL cases

(>95%) are diffuse large B-cell lymphoma (DLBCL) with expression of B-cell markers (Giannini et al.,

2014). In contrast to PCNSL-DLBCL, systemic DLBCL at diagnosis or relapse involved both within and

outside the central nervous system (CNS) is defined as secondary CNS lymphoma (Baraniskin et al.,

2018). Due to the poor central nervous system penetration of drugs and the prolonged overall survival

of patients, the incidence of CNS-DLBCL has been increasing in recent decades (Baraniskin et al., 2018).

For patients with suspected CNS lymphoma, a histopathologic diagnosis by stereotactic brain biopsy is the

gold standard (Khatab et al., 2014). However, brain biopsy is an invasive method with a risk of complica-

tions, and decreased sensitivity of biopsies as a result of the administration of corticosteroids can delay

the initiation of systemic therapy (Onder et al., 2015). Considerable recent improvements in neuroimaging

techniques have provided the requisite sensitivity for diagnosis of central nervous system lymphoma

(CNSL) and are able to define the site and extent of the disease, but neuroimaging findings are not specific

(Nabavizadeh et al., 2016). In recent years, multimodal investigations of cerebrospinal fluid (CSF) have

greatly facilitated the CNSL diagnosis. Positive cytopathological examination of the CSF is still regarded

as the ‘‘gold standard’’ for a definitive diagnosis of CNSL leptomeningeal involvement (Baraniskin and

Schroers, 2014). In addition, the advent of immunophenotypic, molecular genetic mutations and interleu-

kins further expand the diagnostic value of CSF (Hiemcke-Jiwa et al., 2018; Sasagawa et al., 2015). CSF ob-

tained through lumbar puncture has the advantage of minimal risk and can be sampled multiple times,

which is beneficial to monitor the progress of CNSL. The treatment of CNSL has evolved from the use of

whole-brain radiotherapy alone to multimodality regimens that include chemotherapy, monoclonal
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antibodies, and autologous stem cell transplantation (Chukwueke and Nayak, 2019; Nayak and Batchelor,

2013). The development of new technologies and approaches has improved the diagnosis and therapy of

CNSL, but the overall prognosis for PCNSL remains relatively poor with a mean survival period of less than

5 years (Camilleri-Broet et al., 2006).

Until now, a comprehensive understanding of CNSL-DLBCL mechanisms is still lacking. To make break-

throughs in tackling the clinical challenge of CNSL-DLBCL, we analyzed the transcriptome characteristics

of diffuse large B cells (DLBCs) in CSF (CSF-DLBCs) from six patients with CNSL-DLBCL. In order to avoid

the disadvantages of RNA sequencing in bulk, we obtained the transcriptional profiles of CSF-DLBCs by

Smart-seq2 single-cell RNA sequencing (scRNA-seq), which could capture the heterogeneity of DLBCs.

Our study is the first one to investigate systematic and comprehensive characterization of more than

one thousand CSF-DLBCs at the single-cell transcriptome level.

RESULTS

Profiles of individual cells in CSF

In this study, we enrolled patient CSF samples from seven patients with CNSL-DLBCL (P1-P7) and per-

formed scRNA-seq on 2,631 target cells (Table 1). In addition, some normal CSF cells and blood T/B cells

were also included for data analysis (BioprojectID PRJNA602172). According to the selection criteria, 2,114

cells with high-quality transcriptome data were retained for subsequent analysis, including 1,481 cells from

CSF samples of patients with CNSL (Table 1). Cell-cycle-based correction of CSF cell data was clustered by

t-distributed stochastic neighbor embedding (t-SNE) (van der Maaten and Hinton, 2008). On the basis of

their preferential or distinctive marker gene expression (Figures 1A–1C and S2), three clusters of nonma-

lignant cells were annotated as T cells (760 cells), B cells (139 cells), or monocytes (121 cells; Table 1).

The majority of patient CSF cells strongly clustered according to the patient of origin, in addition to

some normal leukocytes (Figure 1A). At the molecular level, we defined 1,093 CSF-DLBCs (422 cells from

P1, 22 from P2, 238 from P3, 155 from P4, 32 from P5, 224 from P6; Table 1) with transcriptome signatures

for B-cell markers and proliferation genes (Holmes et al., 2020) associated with the S-G2-M stages of the

cell cycle (Figures 1B, 1C, and S2), especially MKI67, a classical proliferation marker commonly used in

immunohistochemistry of clinical examinations. Patient (P) P3-1 and P3-2 samples were collected from

the same patient within a two-month time interval. The proportion of DLBCs in the P3-1 CSF sample was

2% by cytopathological analysis, whereas in the P3-2 CSF sample, it was 60%, indicating tumor progression

Table 1. Summary of cell-type identity in scRNA-seq results of six patient CSF samples, three normal CSF samples, and blood-T/B samples.

Patient ID Diagnostics

Number of

sequenced cells

Number of QCd

filtered cells T Cells B Cells Monocytes

Diffuse large

B cells

P1 SCNSLa-DLBCL 519 425 1 1 1 422

P2 PCNSLb-DLBCLc 36 32 0 1 9 22

P3-1 PCNSL-DLBCL 348 118 61 6 48 3

P3-2 384 252 13 0 4 235

P4 PCNSL-DLBCL 480 197 36 6 0 155

P5 PCNSL-DLBCL 48 41 4 3 2 32

P6 SCNSL-DLBCL 336 228 1 0 3 224

P7 PCNSL-DLBCL 480 188 188 0 0 0

N1 Control 288 213 176 1 36 0

N2 Control 240 145 138 3 4 0

N3 Control 83 41 27 0 14 0

Blood T Normal 168 113 113 0 0 0

Blood B Normal 168 121 2 118 0 0

Total 3,591 2,114 760 139 121 1,093

aSCNSL: secondary central nervous system lymphoma.
bPCNSL: primary central nervous system lymphoma.
cDLBCL: diffuse large B-cell lymphoma.
dQC: quality control.
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during the twomonths. The P3-1 sample had three DLBCs (the rest are leukocytes) in the P3-2 DLBC cluster

though they had undergone independent cell sorting, library construction, and sequencing (Figure 1A).

There was no significant heterogeneity in mapping quality and gene coverage across patient samples.

The clustering pattern was not driven by technical variability and batch effect.

Transcriptome signatures of diffuse large B cells in CSF

We performed gene set enrichment analysis (GSEA) to further determine the functional enrichment in CSF-

DLBCs compared to normal B cells in B-cell cluster (Figure 1A). We discovered that cell proliferation cate-

gory was significantly enriched in CSF-DLBCs from six patients consisting of cell cycle and DNA replication

and repair pathway (p value < 0.05; Figures 2A and S3). The metabolism category significantly enriched in

CSF-DLBCs from P1, P2, and P3 (p value < 0.05; Figures 2A and S3) contained pentose phosphate, glycol-

ysis gluconeogenesis, pyruvate metabolism, tricarboxylic acid (TCA) cycle, glutathione metabolism, fatty

acid metabolism, fructose and mannose metabolism, and PPAR (proliferator-activated receptor) signaling

pathway. These energy metabolism pathways are critical for tumor growth and the energy demand in the

brain. The enriched energy metabolism pathways of patient P4, P5, and P6 CSF-DLBCs were not as obvious

and significant as other patients (p value < 0.05; Figures 2A and S3). The observed downregulation of the

antigen processing and presentation pathway and the B-cell receptor (BCR) signaling pathway in CSF-

DLBCs (p value < 0.05; Figures 2A and S3) suggested their decreased capacity as immune cells. To further

delineate immune characteristics of CSF-DLBCs, the ImmuneScore was computed based on ESTIMATE R

package (Yoshihara et al., 2013). The result showed normal B cells had higher ImmuneScore than CSF-

DLBCs, except for those from P4, which also indicated the loss of features related to their immune identity

(Figure 2B; p value < 0.001, Kruskal-Wallis test).

Figure 1. Clustering and analysis of single-cell expression data of CSF (cerebrospinal fluid) samples

(A) 2D representation of sample correlations by t-SNE dimensionality reduction including eight patient CSF samples (P),

three normal CSF samples (N), blood T and B cells.

(B) Heatmap showing expression of selected gene panels in different samples.

(C) Feature plots demonstrating the expression of selected gene panels on the t-SNE plot (Figure 1A). Scaled expression

levels are depicted by the number of expressing markers. No marker expression, gray; one marker expression, orange;

two markers expression, red; more than two markers expression, dark red. Leukocyte (Leu) marker gene: PTPRC; T-cell (T)

marker genes: CD2, CD3D/E/G; monocyte (Mon) marker genes: CD14, CD68, CD163; B-cell (B) marker genes: CD19,

MS4A1, CD79A, CD79B, BLNK, CD22; proliferation (Pro)-associated genes: PCNA, MKI67, CDK1, and CDC20.

See also Figures S1 and S2.
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To address the fundamental differences in the expression program of the pure CSF-DLBC population, we

employed the DESeq2 method to assess whether a gene is differentially expressed between normal B cells

and CSF-DLBCs within each patient. It has been reported that B cells show no transcriptional changes

between blood and CSF samples (Schafflick et al., 2020); therefore, we compared CSF-DLBCs to normal

B cells of B-cell cluster (Figure 1A). Overall, 3516 genes were identified as differentially expressed genes

(DEGs) in at least 1 sample, and 167 DEGs were identified in all six patients (adjusted p value < 0.05; |log2(-

fold-change)| R 1). In order to determine the genes specifically expressed in CSF-DLBCs, we selected out

45 genes upregulated in all six patients and the percentage of cells where the gene is detected in normal B

cells was fewer than 5% (the percentage of cells where the gene is detected [PCT] <5%; Table S2). We also

performed the DEG analysis between CSF-DLBCs and 30 normal CSF B cells from GEO databases

(GSE138266) (Schafflick et al., 2020). Among the 45 genes, the 24 genes (adjusted p value < 0.05; |log2(-

fold-change)| R 1, PCT <5%; Table S3), namely, CCDC167, CENPU, CHCHD1, DMAC1, DUS1L, EML6,

EZH2, HAUS1, LAS1L, METTL26, MRPL13, MYBL2, NCAPH2, NT5DC2, NUSAP1, PHF19, PHF6, PKMYT1,

PTTG1, RGS16, RRM2, SH3TC1, SMC4, and TIMM50 were also defined as DEGs upregulated in DLBCs

compared to normal CSF B cells (Figure 2C). EZH2 (enhancer of zeste homolog 2) functions as a transcrip-

tional repressor by methylating H3K27 (histone H3 at lysine 27), whose mutations and over-expression have

Figure 2. Characteristics of DLBCs (diffuse large B cells) in CSF (cerebrospinal fluid) using single-cell

transcriptome analysis

(A) GSEA showing significantly upregulated (red gradient) or downregulated (blue gradient) KEGG pathways in CSF-

DLBCs of patient P1, P2, and P3 compared to normal B cells in B-cell cluster (Figure 1A), p value < 0.05.

(B) The immune signature of cells quantified by the ImmuneScore computed from the ESTIMATE algorithm, showing the

significant difference between the B-cell group and the individual patient CSF-DLBC group (***p value < 0.001, Kruskal-

Wallis test). Data are represented as mean G SEM.

(C) Heatmap showing the 24 selected genes (Table S3) upregulated in CSF-DLBCs of all six patients compared to normal

B cells.

See also Figure S3.
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been shown to be oncogenic and promote tumor progression in many cancers, especially associated with

DLBCL deriving fromgerminal center (GC) B cells (Chase andCross, 2011; Velichutina et al., 2010), although

previous study showed up to 96% PCNSLs have similarity with DLBCLs of the activated B-cell (ABC) type

(Hiemcke-Jiwa et al., 2018). In addition, the genes PHF19 (Ning et al., 2018), CENPU (Zhang et al., 2018),

PKMYT1 (Schmidt et al., 2017), NCAPH2 (Wallace et al., 2019), PTTG1 (Huang et al., 2018), SMC4 (Steffen-

sen et al., 2001), LAS1L (Castle et al., 2010), MRPL (Cai et al., 2021), MYBL2 (Iness et al., 2019), NUSAP1

(Simonetti et al., 2019), PHF6 (Warmerdam et al., 2020), and RRM2 (Shu et al., 2020) play important roles

in cell cycle and proliferation. The 24 genes deserve further study due to their expression specificity in

CSF-DLBCs.

The analysis of variable region of light chain (VL) in CSF-DLBCs

When analyzing the differences of CSF-DLBCs among six patients with CNSL-DLBCL, we further removed

cells that had fewer than 1000 covered genes, and 624 CSF-DLBCs were retained (289 cells from P1, 22 from

P2, 125 from P3, 75 from P4, 31 from P5, 82 from P6, Figure S4). The immunoglobulin light chain restriction

(LCR) indicates monoclonality of the proliferating mature B cells. CSF-DLBCs of a patient had monoclon-

ality of the variable region of the light chain (Figure 3A). The VLmoleculemainly expressed in P1 is IGKV2-30

(IGKV, immunoglobulin kappa variable), in P2 is IGLV4-69 (IGLV, immunoglobulin lambda variable), in P3 is

Figure 3. Characterization of immunoglobulin light chain variable molecules in CSF-DLBCs (cerebrospinal fluid diffuse large B cells)

(A) Heatmap displaying the distribution of expression of immunoglobulin light chain variable molecules in CSF-DLBCs (IGKV, immunoglobulin kappa

variable; IGLV, immunoglobulin lambda variable).

(B) Violin plots displaying the distribution of immunoglobulin light chain variable molecule expression in CSF-DLBCs of six patients (***p value < 0.001,

Wilcoxon rank-sum test).

(C) Cells (red) expressing both IGKV and IGLV shown on the t-SNE plot of 624 CSF-DLBCs (Figure S4A).

See also Figure S4.
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IGLV3-1, in P4 is IGLV2-23, and in P5 is IGKV1-12 (Figures 3A and 3B). Additionally, other VL molecules were

detected in CSF-DLBCs with lower expression (Figures 3A and 3B). P6 was atypical; the expression levels of

four VL molecules were similar in P6 CSF-DLBCs (IGLV2-14, IGLV9-49, IGLV6-57, and IGKV1-33, Figures 3A

and 3B).

As we know, DLBCL exhibits allelic exclusion in which only a single class of light chain is expressed (either

lambda l or kappa k). However, there have been increasing numbers of reports that a double class of light-

chain gene rearrangements can occur in B-cell malignant neoplasms (Xu, 2006). P6 is such a sample with

60.98% (50/82) of CSF-DLBCs expressing k and l light chains (Figure 3C). P3 also had 58/125 CSF-DLBCs

expressing dual k/l light chains (Figure 3C), though the transcription level of IGKV4-1 was lower than

IGLV3-1. The remaining patients had few CSF-DLBCs with dual k/l light chain expression (9/289 cells of

P1, 1/22 of P2, 7/75 of P4, 2/31 of P5, Figure 3C).

For VL expression of normal B cells, normal B cells were polyclonal and only 6 of 92 (6.5%) cells had dual k/l

light-chain transcriptions (Figure 3A), which is consistent with previous reports that 0.2%–3.4% of normal

maturing B cells have dual k/l light-chain expression (Diaw et al., 2000; Giachino et al., 1995).

Gene expression heterogeneity of CSF-DLBCs

The analysis of cell-to-cell correlation showed significant heterogeneity between CSF-DLBCs within a given

patient in spite of themonoclonality of VL (correlation coefficients ranging from�0.043 to 0.693; Figure 4A).

The correlations between CSF-DLBCs within individual patients (intra-patient) were much higher than

those among different patients (inter-patient; mean correlation coefficient �0.012 vs. 0.025, p value <

2.2 3 10�16, Wilcoxon rank-sum test; Figures 4A and 4B). CSF-DLBCs from patients who had undergone

chemotherapy (P1, P3, P6) showed considerably greater intercellular heterogeneity than those from pa-

tients who had not received chemotherapy (P2, P4, P5), which is consistent with the view that chemotherapy

promotes the progression of tumor (mean correlation coefficient 0.0244 vs. 0.0345, p value < 2.2 3 10�16,

Wilcoxon rank-sum test; Figure 4B).

Cell cycle heterogeneity of CSF-DLBCs

A total of 811 differentially expressed genes exclusively or preferentially expressed in one individual patient

with CNSL-DLBCL were identified (p value < 0.05, fold-change >1.5; Figure 4C and Table S4). From the dif-

ferential gene expression list, we could see many cell cycle-related genes upregulated in P3 and P6 CSF-

DLBCs (Figure 4C). To characterize this different proliferation state of CSF-DLBCs, we used gene signatures

to denote G1/S or G2/M phases (Tirosh et al., 2016). Cell cycle phase-specific signatures were highly

expressed in a subset of CSF-DLBCs, distinguishing cycling cells from noncycling cells (Figure S5A). These

signatures revealed variability in the fraction of cycling cells across six patients. The proportion of CSF-

DLBCs in the cycling state was higher in P3 (44%) and P6 (50%) than that in the other patients (Figure 4D).

In addition, compared to non-cycling cells, the cell cycle genes TOP2A, CCNB2, CDC20, and SMC4 were

greatly upregulated in cycling cells regardless of the tumor proliferation state of the patient (Figures S5B

and S5C). These genes are candidates for proliferation markers as MKI67 in the diagnosis of CSF-DLBCs

and greatly important for CSF-DLBC proliferation.

Cancer-testis antigen heterogeneity of CSF-DLBCs

The differentially expressed genes list among patients also included cancer-testis antigens (CTAs, Fig-

ure 4C). CTAs have particular characteristics of high immunogenicity with restricted expression in normal

male germ cells and offer extraordinary opportunities for cancer diagnosis and immunotherapy (Salmani-

nejad et al., 2016). Several studies have evaluated the expression of CTAs in NHL to date Hudolin et al.

(2013) (Inaoka et al., 2012), but little is known about the expression of CTAs in CSF-DLBCs. We examined

the expression of 276 selected CTAs (http://www.cta.lncc.br/modelo.php) in CSF-DLBCs and discovered

substantial inter-tumor heterogeneity and intra-tumor heterogeneity of CTAs (Figure S6). The number of

expressed CTAs in CSF-DLBCs is different among patients, and patient P1 exhibited expression of the

most CTAs (Figure 4E). In addition, the expression of PAGE5, TDRD1, CTAG2, MAEL, CT45A1, PAGE2B,

and MAGEA9B was greatly restricted to P1 CSF-DLBCs (Figure S6). ATAD2 (29%, 181/624) and

MPHOSPH10 (29.17%, 182/624) were ubiquitously and highly expressed in CSF-DLBCs of all patients

and had the potential to serve as immunotherapy targets (Figure S6).
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Germinal center B cell signatures define CSF-DLBC subgroups

The DLBCL has been classified into two subtypes by the cell-of-origin (COO) classification: the GC B cell-

like (GCB) DLBCL which apparently originates from LZ B cells and the activated B-cell-like (ABC) DLBCL

which commits to plasmablast (PBL) differentiation, respectively (Alizadeh et al., 2000). Up to 96% of PCNSL

cases are classified as ABC type (Hiemcke-Jiwa et al., 2018). In order to define the origin of CSF-DLBCs, we

Figure 4. The heterogeneity of diffuse large B cells in cerebrospinal fluid (CSF-DLBCs) among different patients and within individual patients

(A) The pairwise correlations between the expression profiles of CSF-DLBCs from six patients with CNSL-DLBCL (central nervous system lymphoma-diffuse

large B-cell lymphoma).

(B) Heterogeneity analysis showing the mean correlation coefficient for CSF-DLBCs within patients with individual CNSL-DLBCL (intra-patient), among

patients with CNSL-DLBCL (inter-patient), and within patients with individual CNSL-DLBCL with chemotherapy (P1, P3, P6; Che) or without chemotherapy

(P2, P4, P5; No-Che). Data are represented as mean G SEM.

(C) Heatmap of differentially expressed genes (adjusted p value < 0.05, fold-change > 1.5) that are exclusively or preferentially expressed in one individual

patient with CNSL-DLBCL. The names of selected genes are labeled. Gene names marked in blue (black) are cell cycle-related genes (cancer-testis

antigens; CTAs).

(D) Estimation of the cell cycle state of every CSF-DLBC (circles) on the basis of relative expression of G1/S (x axis) and G2/M (y axis) gene sets in different

CNSL-DLBCL patients. Cells are colored by presumed cell cycle states. Red, cycling cells (score >0.2); pink, intermediate (0 < score %0.2); gray, noncycling

cells (score %0).

(E) Boxplot showing the number of CTAs (y axis) expressed in CSF-DLBCs from six patients with CNSL-DLBCL (x axis) and the difference between any two

patients (***p value < 0.001, **p value < 0.01, *p value < 0.05, Wilcoxon rank-sum test). Data are represented as mean G SEM.

See also Figures S5 and S6.
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apply the Seurat v3 Integration method (https://satijalab.org/seurat/v3.2/integration.html) to classify CSF-

DLBCs based on the scRNA-seq signatures of thirteen single-cell GC (sc-GC) clusters (GSM4148370 and

GSM4148371) of DZ (dark zone), INT (intermediate), LZ (light zone), PBL , or PreM (precursor memory

B cells) (Holmes et al., 2020). The results showed that in both, �85% of the 624 CSF-DLBCs could be

assigned to one sc-GC cluster with high confidence (prediction score R0.3, Table S5). The majority of

CSF-DLBCs were shown to be related with LZ_b cluster (49.92%, 312/624), especially in P1 (48.26%, 139/

288), P2 (100%, 22/22), P3 (85.60%, 107/125), P5 (77.42%, 24/31), and P6 (24.39%, 20/82) (Figures 5A and

S7A). P4 is a special patient with PCNSL; 57.33% of 75 CSF-DLBCs were classified into the DZ cluster,

whereas 29.33% of cells were labeled as PBL_a (Figures 5A and S7A). Of note, 35.42% of P1 CSF-DLBCs

and 1.33% of P4 CSF-DLBCs were assigned to PreM cluster (Figures 5A and S7A), which were consistent

with previous observations associating as many as one-quarter of ABC-DLBCL cases to PreM B cells

(Holmes et al., 2020). In total, clusters DZ_a, DZ_b, LZ_b, PBL_a, and PreM displayed significant enrichment

for CSF-DLBCs. In addition, the top 50 upregulated and downregulated genes from each sc-GC cluster

signature (Holmes et al., 2020) were used to test the five clusters of CSF-DLBCs, and the results showed

that every CSF-DLBC was properly classified using Seurat v3 Integration based on the sc-RNAseq signa-

tures (Figure 5B).

We also performed the DEG analysis between our CSF-DLBCs assigned to DZ_a (41 cells), DZ_b (35 cells),

LZ_b (312 cells), PBL_a (27 cells), or PreM (104 cells) cluster and normal GC B cells in DZ_a, DZ_b LZ_b,

PBL_a, or PreM cluster, respectively, by DESeq2 method. We paid attention to these 24 genes upregulated

Figure 5. The classification of CSF-DLBCs based on the signatures of single-cell germinal center (sc-GC) cluster

(A) Distribution of the CSF-DLBCs by Seurat v3 Integration according to sc-GC cluster assignments (Holmes et al., 2020, Figure 2). Each cluster was labeled as

DZ (dark zone), INT (intermediate), LZ (light zone), PBL (plasmablast), or PreM (precursor memory B cells). Gray depicts the fraction of CSF-DLBCs that remain

unclassified (Unclass) by Seurat v3 Integration (the score of sc-GC classification less than 0.3).

(B) Heatmap summarizing the sc-GC-based classification of CSF-DLBCs. Each column represents a sc-GC cluster of CSF-DLBCs, and each row displays the

relative mean expression of a sc-GC cluster gene. The sc-RNAseq signatures of a specific sc-GC cluster on the left of the heatmap include the top 50

upregulated and the top 50 downregulated genes in each sc-GC cluster (Holmes et al., 2020, Table S2).

See also Figure S7.
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specifically in CSF-DLBCs compared to normal blood B cells and normal CSF B cells (Tables S2 and S3) and

found some genes still served as DEGs in the five paired clusters, especially in the LZ_b cluster (Table S6).

As the major sc-GC classification of CSF-DLBCs, the 16 upregulated genes, namely, CCDC167, EML6,

EZH2, HAUS1, LAS1L, METTL26, NCAPH2, NT5DC2, NUSAP1, PHF19, PKMYT1, PTTG1, RRM2, SH3TC1,

SMC4, and TIMM50 in CSF-DLBCs of LZ_b cluster (Table S6) have great importance in the CNS-DLBCL.

In addition, we performed the comparison of transcriptional programs by the GSEA method between

the CSF-DLBCs and GC B cells assigned to the LZ_b cluster. We discovered that cell cycle pathway,

DNA replication and repair pathway, and metabolism category containing pyruvate metabolism, citrate

cycle TCA cycle, glutathione metabolism, fatty acid metabolism, and PPAR signaling pathway were

enriched in CSF-DLBCs, whereas the antigen processing and presentation pathway and the BCR signaling

pathway were downregulated in CSF-DLBCs (FDR q-value < 0.05; Figure S7B), which were same as

functional enrichments when DLBCs compared to B cells of B-cell cluster (Figures 2A and S3).

DISCUSSION

In this study, we analyzed the transcriptomes of CSF-DLBCs at the single-cell level from six patients with

CNSL-DLBCL. CSF-DLBCs mainly clustered according to patient of origin, whereas P2 and P5 CSF-DLBCs

were in the same cluster but they had different variable regions of light chainmolecules (Figures 3A and 3B).

Immunoglobulin LCR is a typical feature of DLBCs. Individual patient DLBCs showed monoclonality of VL,

and three CSF-DLBCs in the P3-1 sample were same as CSF-DLBCs in the P3-2 sample expressing IGLV3-1.

Therefore, we analyzed the transcriptomes of CSF-DLBCs based on individual patients.

scRNA-Seq enabled us to directly compare the transcriptomes of entirely pure normal B cells and CSF-

DLBCs. Compared to normal B cells, gene expression in CSF-DLBCs was enriched in the cell proliferation

and energy metabolism pathways, which are critical for tumor growth and energy demand in the CSF-

DLBCs. As reported, consensus cluster classification has grouped DLBCLs into the BCR/proliferation clus-

ter (BCR-DLBCL), the OxPhos cluster (OxPhos-DLBCL), and the host response (HR) cluster with a brisk host

inflammatory response (Monti et al., 2005). Compared to BCR-DLBCL, OxPhos-DLBCL has enhanced

oxidative phosphorylation, TCA cycle, fatty acid oxidation program, PPAR signaling pathway, pyruvate

metabolism, glucose-derived metabolites, and glutathione synthesis but does not display active/func-

tional BCR signaling (Caro et al., 2012). Based on the active metabolism characteristics of CSF-DLBCs,

CNS-DLBCL might be grouped into the OxPhos-DLBCL cluster with downregulated BCR signaling

pathway, especially in patients P1, P2, and P3 (Figures 2A and S3). As is well known, adhesive cell-cell

and cell-matrix interactions generally play important roles in tumor metastases and drug resistance (Wu

et al., 2015). Whether the general downregulated cell adhesion molecule pathway (Figures 2A and S3) in

CSF-DLBCs affects CNS-DLBCL metastases and drug resistance deserves further study.

Heterogeneities of CSF-DLBCs

We identified the transcriptome heterogeneity of CSF-DLBCs in the cell cycle state, the expression of

CTAs, and the classification by sc-GC B-cell signatures. In addition, the heterogeneities were also observed

in other aspects. First, the energy metabolism activity in CSF-DLBCs was different among patients to some

extent (Figures 2A and S3). Second, HLA-II (human leukocyte antigen class II) molecules (HLA-DRB5, HLA-

DQA1, HLA-DQB1, HLA-DMB, HLA-DRA) were highly expressed in P3 and P4 but not in other patients

(Figure S8). The frequent loss of HLA-II in CNS-DLBCL is mainly due to homozygous deletions in the

HLA region, which affects the onset and modulation of immune response for lack of activated CD4+ T

lymphocytes (Jordanova et al., 2003). Third, the patient clinical characteristics (Table S1) including age,

sex, intracranial tumor sites, therapies received or not before sample collection, and the time interval

from disease diagnosis to sample collection were different, which also contributed to the heterogeneity

of CSF-DLBCs among six patients with CNS-DLBCL.

Primary and secondary CNS lymphomas are completely different entities despite the share of CNS

involvement: this fact should be taken into account in the different analyses. In the analyses of GSEA, Im-

muneScore, the cycling state, CTA expression and CSF-DLBC classification by sc-GC B-cell signature, there

were no obvious difference between PCNSL and SCNSL. The great heterogeneities were mainly mani-

fested between different patients. The analysis of cell-to-cell correlation showed CSF-DLBCs from patients

with SCNSL (P1, P6) and showed considerably greater intercellular heterogeneity than that from patients

with PCNSL (P2, P3, P4, P5) (mean correlation coefficient: 0.0213 vs. 0.0397, p value < 2.23 10�16, Wilcoxon

rank-sum test). The DEG analysis showed 155 genes expressed specially in P1 and P6 (SCNSL) CSF-DLBCs,
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whereas 41 genes were upregulated in DLBCs of all 4 patients with PCNSL compared to normal B cells (the

screening criteria were same as those in Figure 2C, Tables S2, and S3). The difference between PCNSL and

SCNSL CSF-DLBCs needs to include more patients to analyze.

Taken together, our findings firstly investigated systematic and comprehensive transcriptome characteris-

tics of more than one thousand CSF-DLBCs at the single-cell level. We discovered that most CSF-DLBCs

displayed immunoglobulin LCR, active cell proliferation and energy metabolism properties, and inherent

heterogeneity which were shown on the cell cycle state, CTA expression, and classification by sc-GC B-cell

signature. Despite a few patients, our study revealed biological insights of the intricate machinery respon-

sible for CNS-DLBCL progression, and a larger validation cohort is required in the future.

Limitations of the study

Our study totally performed scRNA-seq on 2,631 target cells from 7 patients and retained 2,114 cells (1,093

CSF-DLBCs) for subsequent analysis; the number of cells analyzed is relatively small for lack of various im-

mune cells in the CSF tumor microenvironment. Our study mainly focused on CSF-DLBCs; the machinery of

CSF-DLBC immune evasion has been still unknown. The analysis of the immune cell characteristics in path-

ological CSF samples will be informative to understand a systems-level view of the CNS-DLBCL tumor

microenvironment. In addition, although CSF-DLBCs serving as one type of circulating tumor cells could

reflect the characteristics of CNSL from one aspect, they were in absence of information on tumor cells

from the primary location. The gene expression of DLBCs at CSF might be substantially different from

that of primary and leptomeningeal site which is worthy of further study.
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Ming Guan (guanming88@yahoo.com).

Materials availability

This study did not generate new unique materials

Data and code availability

1. Data

The accession number for original data of single-cell RNA sequencing reported in this study is Gene

Expression Omnibus (GEO): GSE175510.

2. Code

This study does not report original code. All codes were used in this study in alignment with recommenda-

tions made by authors of R packages in their respective user’s guide, which can be accessed at key re-

sources table.

3. Additional information requests

Any additional information required to reanalyze the data used in this study is available from the lead con-

tact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All human CSF sample (P: P1-P7) materials used in this study were collected with written informed consent.

The proposed studies were approved by Institutional Review Board of Huashan Hospital (HIRB). Clinical

information of patients is listed in Table S1, including diagnosis, age, gender, tumor sites, developmental

stage, chemotherapy received or not, etc. The seven CNSL patients included six males and one female, and

their ages ranged from 32-64. Sex and gender have no influence on the study.

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD45 BD Biosciences Cat#560973; RRID: AB_10565969

CD19 BD Biosciences Cat#564456; RRID: AB_2744309

CellTrace Calcein Blue AM Life Technologies Cat#C34853

Deposited Data

Single-cell RNA-seq data of DLBCs Smart-seq2 GSE175510

Software and Algorithms

STAR version 2.7 R package https://github.com/alexdobin/STAR

Seurat package version 3.1.1 R package https://cran.r-project.org/web/packages/

Seurat/index.html

Seurat v3 Integration method R package https://satijalab.org/seurat/v3.2/integration.

html

DESeq2 v3.9 R package https://bioconductor.org/packages/release/

bioc/html/DESeq2.html

ClusterProfile R package https://bioconductor.org/packages/release/

bioc/html/clusterProfiler.html
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METHOD DETAILS

Single-cell preparation and SMART-seq2 library construction

Patient CSF samples (P: P1-P7) were diagnosed through cytopathology (Figure S1A) and 3mL samples were

remained for fluorescence-activated cell sorting (FACS). P1-P6 CSF cells sorted were CD45 (Catalog num-

ber Cat#560973, BD Biosciences) and CD19 (Cat#564456, BD Biosciences) positive, and had a larger cell

diameter, showing greater forward scatter height (FSC-H) than the normal CSF leukocytes (Figure S1B).

Whereas P7 CSF cells was only sorted based on CD45 positive. Live candidate CSF cells (CellTrace Calcein

Blue AM+, Cat#C34853, Life Technologies, CA) were sorted into pre-prepared 96-well plates by FACS for

SMART-seq2 scRNA-seq (Table S1 and Figure S1B). All antibody and labeling dye were used according to

manufacturer recommendations. The construction of SMART-seq2 library was performed as the following

modifications (Ruan et al., 2020): (1) RNA was reverse transcribed and amplified using Maxima H Minus

Reverse Transcriptase (Cat#00724792, Thermo Fisher Scientific, MA) and KAPA HiFi Hot Start Ready Mix

(Cat#KE2502, KAPA Biosystems, MA), (2) cDNA library was purified and quantified using Agencourt XP

DNA beads (Cat#A63852, Beckman Coulter, CA) and a high sensitivity dsDNA Quant Kit (Cat#Q32854,

Life Technologies, CA), (3) full length cDNA libraries were tagmented and only 3’ end sequence

(500-1000 bp) was enriched for sequencing on an Illumina HiSeqX machine.

Generation of gene expression matrix

Sequenced reads were mapped to hg38 using the STAR (version 2.7; https://github.com/alexdobin/STAR)

with the default parameters. These uniquely mapped reads in the genome were used, and reads aligned to

more than one locus were discarded. The expression level of gene was quantified by the number of counts.

In addition to 8 patient CSF samples, 3 normal CSF samples, one blood T sample and one blood B sample

from the NCBI BioProject database under accession number PRJNA602172 were enrolled in the data anal-

ysis (Ruan et al., 2020). Then, in the gene expression matrix from 12 samples, genes expressed (counts > 0)

in less than 10 cells were filtered out. Cells were removed according to the following criteria: (1) cells had

fewer than 400 genes; (2) cells had over 20% mitochondrial-gene counts. A filtered gene expression matrix

including 2,114 cells were used in the following analysis (Seurat package version 3.1.1; https://cran.r-

project.org/web/packages/Seurat/index.html). In addition, when analyzing the differences of CSF-DLBCs

between six CNSL-DLBCL patients, we further removed cells with fewer than 1000 genes and 624 CSF-

DLBCs were retained.

Population identification

After filtration, a merged expression matrix of 12 samples was used for cell clustering by the Seurat 3.1.1

(Seurat package version 3.1.1), adapting the typical pipeline. In brief, gene expression was normalized

by the ‘‘NormalizeData’’ function. Highly variable genes were calculated by the ‘‘FindVariableGenes’’

method with the default parameters. Significant principal components were used for downstream

graph-based and semi-unsupervised clustering into distinct populations (FindClusters function in R), and

t-SNE dimensionality reduction was used to project these populations in two dimensions. To identify

marker genes, the clusters were compared pairwise for differential gene expression using the Wilcoxon

rank-sum test for single-cell gene expression (FindAllMarkers function, min.pct = 0.1, logFC.threshold =

0.25). Subsequently, cell clusters were annotated manually based on known markers.

Analysis of differential expression and gene enrichment

DESeq2 (R package DESeq2 v3.9; https://bioconductor.org/packages/release/bioc/html/DESeq2.html)

was used to detect DEGs (differentially expressed genes) between target samples (Love et al., 2014).

Functional enrichment analysis of KEGG (kyoto encyclopedia of genes and genomes) pathways were per-

formed by GSEA (ClusterProfile; https://bioconductor.org/packages/release/bioc/html/clusterProfiler.

html) (Subramanian et al., 2005).

Cell cycle analysis

CellCycleScoring function included in Seurat 3.1.1 (https://cran.r-project.org/web/packages/Seurat/index.

html) was used to perform cell cycle assignment. We identified cells that had either S.Score or G2M.Score >

0.2 as cycling cells; cells that had either 0 <S.Score or G2M.Score%0.2 as intermediate cells; and the other

cells as non-cycling cells.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Data are presented as the mean G standard error of the mean (SEM). Samples were analyzed using

Wilcoxon Rank-Sum test or Kruskal walls test for two groups and P-value < 0.05 was considered significant.
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