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Abstract

The problem of handling non-ignorable non-response has been typically addressed under

the design-based approach using the well-known sub-sampling technique introduced by

Hansen and Hurwitz [1946, Journal of the American Statistical Association, Vol 41(236),

Page 517- 529]. Alternatively, the model-based paradigm emphasizes on utilizing the under-

lying model relationship between the outcome variable and one or more covariate(s) whose

population values are known prior to the survey. This article utilizes the model relationship

between the study variable and covariate(s) for handling non-ignorable non-response and

obtaining an unbiased estimator for the population total under the sub-sampling technique.

The main idea is to combine the estimates obtained from the sample on first call and the

sub-sample from second call using separate model relationships. The contribution of this

paper helps us in providing unbiased estimates with an improved efficiency under model-

based paradigm in presence of non-ignorable non-response. The provided method is more

economical than the available estimators under callback methods as we are working sub-

sampling and also increase response rate as a stronger mode of interview is employed for

data collection. A numerical study using Monte Carlo is presented to illustrate the behavior

of the proposed and the efficiency comparison.

1 Introduction

In statistical investigations, once data collection is completed, one has to bear some, perhaps a

considerable amount of non–response. Although a significant resource can be employed to

improve data collection process to avoid the non-response about 20% non–response rate is

commonly accepted. Item non-response occurs when one or more questions in the question-

naire are left unanswered during the survey. While a unit non-response occurs when one or

more unit(s) do not response at all or are missing. Non–response in sample surveys leads to

non-sampling error in estimation of the population parameters and yields biased estimates

which ultimately spoils inference about the population of interest. When non-response occurs

completely at random then the best way to deal with is to impute the projected values of the

outcome variable corresponding to non-respondents. On contrary, when non-response factor

(e.g, age, sex or/and income status etc.) is correlated with the outcome variable then the usual

imputation methods fail to cope with the situation. In such situations, the population

PLOS ONE | https://doi.org/10.1371/journal.pone.0222701 October 10, 2019 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ahmed S, Shabbir J (2019) Model based

estimation of population total in presence of non-

ignorable non-response. PLoS ONE 14(10):

e0222701. https://doi.org/10.1371/journal.

pone.0222701

Editor: Max O. Souza, Universidade Federal

Fluminense, BRAZIL

Received: November 16, 2018

Accepted: September 5, 2019

Published: October 10, 2019

Copyright: © 2019 Ahmed, Shabbir. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and Supporting Information

files.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0001-6328-7270
https://doi.org/10.1371/journal.pone.0222701
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222701&domain=pdf&date_stamp=2019-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222701&domain=pdf&date_stamp=2019-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222701&domain=pdf&date_stamp=2019-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222701&domain=pdf&date_stamp=2019-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222701&domain=pdf&date_stamp=2019-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222701&domain=pdf&date_stamp=2019-10-10
https://doi.org/10.1371/journal.pone.0222701
https://doi.org/10.1371/journal.pone.0222701
http://creativecommons.org/licenses/by/4.0/


parameters and the behavior of the population may differ among the responding population

(respondents) and the responding populations (non-respondent).

There are several approaches for checking whether there is a difference between the popula-

tions of respondents and non-respondents and evaluating potential bias due to non–response:

(i) specific follow-up of non-respondents and (ii) analysis of the characteristics of respondents

and non-respondents which are known prior to survey. [1] used demographic information

(education, age, employment status, state of residence, field of employment etc.) to compare

the respondents and the non-respondents. Information regarding non-respondents may come

from previous surveys of same population (in the case of longitudinal surveys or with rotation

groups) or by using some external data sources (e.g. administrative data etc.). [2] suggested a

method for adjustment of non-ignorable non-response in studies involving one or more addi-

tional attempts to contact initial non-responders. [3] worked on changing in survey estimates

as a function of additional calls under the similar protocol as well as under a different protocol.

[4] considered the use of level-of-effort paradata to model the mechanism of non–response in

surveys and for adjusting non–response bias, specially bias that is not missing at random

(NMAR) or non-ignorable. The approach was based on unconditional maximum likelihood

estimation model that adapted and extended the prior work to cope with the complexities

encountered in large-scale surveys.

For similar situation, [5] examined whether non-participation in a census-based health

study was related with poorer health status, using the Hordaland Health Study conducted in

western Norway in 1997-1999. They aimed to determine whether health problems were over–

represented in nonparticipants and to explore the consequences of participation bias on rela-

tion between outcomes and exposures. Statistical techniques for dealing with non–ignorable

non–response based on a propensity–to–respond score has been developed by [6] assuming

both item as well as unit non–response. Moreover, [7] proposed an approach of increasing

blood supply by collecting blood more frequently from the selected donors for studying the

relationship between ageing the population and blood transfusion. The primary aim of their

proposed INTERVAL trial was to observe whether donation intervals can be acceptably and

safely decreased to optimize blood supply while maintaining the health status of donors. The

health status of a cohort of 1991 Gulf War veterans was periodically assessed by [8]. They com-

pared various health outcomes of veterans with those of their peers in military who were not

posted to the Gulf. Another example in which one can make utilization of sub-sampling

method can be found in [9], where missing data and incomplete randomized interventions

were common. These problems complicate the analysis as well as interpretation of controlled

randomized trials (CRT), and are rarely handled well in practice. [10] modeled the non-

response probabilities as logistic functions of the survey variable and related covariates in the

survey with callback. They proposed maximum likelihood semi-parametric estimators of the

parameters in the response probabilities. They further proposed, an efficient estimator for the

mean of the study variable using the estimated response probabilities. The method was

employed to data taken from the Singapore Life Panel Survey, a survey of health spending uti-

lizing a census-based sample of individuals 50-70 years old, assuming that non-response was

related to the health status.

In real surveys, as discussed in above cited works, non-response occurrence is not missing

at random (NMAR) or, in other word, it is non-ignorable. When the occurrence of non-

response in sample survey is related to the outcome of the survey, a valid statistical inference

about the target population is quiet difficult. One can make efficient utilization of the sub-sam-

pling method instead of call back. To fill this gap, [11] introduced a well known procedure for

sub-sampling (follow-up) the non-respondents. The method includes sub-sampling a portion

of non-respondents from the first sample with the assumption that some stronger mode of
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interview is applied for the purpose of sub-sampling non-respondents, consequently, all per-

sons give full response on second call. On the basis of sub-sampling procedure introduced by

[11], many authors including [12, 13], [14] and [15] worked on mean estimation under

designed-based approach ignoring model relationship between the study variable and the

known covariates. [16] suggested Hansen and Hurwitz [11] type estimator under Bayesian par-

adigm using squared error loss function (SELF). Later on [17] considered Bayesian approach

of estimation under a general model using [11] technique. In survey sampling, usually one

assumes the population as a finite collection of distinct and countable units. The measure-

ments on the variable under investigation in the population are considered to be non-stochas-

tic. The focus lies in estimation of population parameters i.e. functions of the population

measurements on the study variable in the population (such as mean, total, proportion etc),

which are also non-stochastic consequently. A sample is considered just as a smaller collection

of population units and inference is carried out typically under the probability distribution

formed by the random mechanism employed to draw the sample, which is termed as sampling

design (S.D). Desirable properties of the estimators such as unbiasedness and efficiency are

established by averaging out the values of the estimators over all possible samples.

While in model-based inference, a population is considered as a collection of realizations of

a set of stochastic variables with a specified but unknown mean and a specified variance (usu-

ally assumed to be known). While a sample is a collection of identically distributed and inde-

pendent variables for some fixed S.D. The parameters to be estimated are characteristics of the

distribution of the original stochastic variables such as mean, and lower order moments,

which are assumed to be constant quantities under the frequentist point of view.

Under model-based statistical inference [18] worked on estimation of a finite population

mean. [19] attempted to obtain optimal model-unbiased estimators of the population mean

and total using least square (LS) estimation method and the well known Gauss-Markov Theo-

rem (GMT) assuming linear population model. [20] introduced the linear least-square predic-

tion approach for estimation of finite population parameters under two-stage sampling. Other

related works on estimation of mean and total under model-based approach can be found in

[21], [22], [23], [24], [25], [26], [27] and [28]. [29] adapted mixed model prediction in small

areas. Furthermore, [30] compared the model-based approach with model-assisted approach.

For an updated comparison of the model-based and the designed based frameworks see [31].

A detailed review of the model-based estimation can also be found in [32]. As we already men-

tioned that the presence of non-response in sample surveys not only creates problem of small

sample size but also spoils the inference when the behavior (underlying model relationship) of

the population of respondents and non-respondents are different.

In current article, a model unbiased linear predictor for the population total in presence of

non-ignorable non-response is proposed assuming unit non-response. The sub-sampling tech-

nique introduced by [11] is used to obtain samples under a fixed sampling design. We provide

a revision of model-based approach for estimation of superpopulation total in Section 2. Our

proposed estimator and its properties under assumed model are given in Section 3. Some

shortcomings of the proposed estimation technique and their possible solutions are discussed

in Section 4. A numerical study with real data set and a Monte Carlo simulation are respec-

tively provided in Sections 5 and 6. A discussion with concluding remarks is given in

Section 7.

2 Model-based estimation of population total

Consider a finite population of N distinct units U = {1, 2, ‥i‥, N}. Let y = (yi, i 2 U) be the vec-

tor of the realized values of a stochastic vector Y = (Yi, i 2 U) of order N × 1 and x = (xij, i 2 U,

Model based estimation in non-response
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j = 0, 1, 2, . . ., p) be a matrix of (p+1) auxiliary variables whose values are assumed to be

known for every unit in U. We start with multiple linear regression model Y = xβ + �, where

β = (β0, β1, . . .., βp)T and � = (�1, �2, . . .., �N)T be the vectors of regression coefficients and the

random error terms respectively. Let s = {1, 2, 3, . . ., n} be a member of S of all possible samples

of size n that can be drawn from U using some S.D. Further, the random vector of the study

variable Y, the known auxiliary matrix x and the random error vector � are splited into sam-

pled (s) and non-sampled ð�sÞ as: Y ¼ ðY s;Y�sÞ
T
, x ¼ ðxs; x�sÞ

T
and � ¼ ð�s; ��sÞ

T
, where

�s ¼ U � s. The population total Ty (which is assumed to be random under model-based

approach) is expressed as Ty ¼WT
s Y s þWT

�s Y�s , where W = (wi, i 2 U) is the vector containing

1’s for every units in population. For obtaining population mean W are taken as vector of 1/N
for all units. Optimal values of w0is are found by minimizing the prediction variance which is

considered as good practice in model based approach [32]. For further statistical inference

about the estimated parameter assumption of normally distributed error term is also necessary

specially in case of small sample sizes. After observing ys as the realized values of Ys the prob-

lem is to predict sub-vector Y�s using the information contained in the sample and the auxiliary

information through model relationship between the study variable and the auxiliary variable

(s). Under linear population model, a predictor for Y�s is x�sb, where the vector b = (b0, b2, . . ..,

bp)T is the solution of the normal equations xT
s xsb ¼ xT

s ys which is obtained by minimizing the

sum of squared residuals. The model-based estimator given in [33] is

T̂ y ¼WT
s ys þWT

�s x�sb: ð1Þ

Note that the total estimator given in (1) works only when error terms are iid with zero

mean and constant variance [27]. T̂ y posses all the properties with respect to the model as the

predictor of y�s does [18, 19]. When all OLS assumptions fulfill the estimator T̂ y is model unbi-

ased with the model-variance after averaging over all possible sample of same S.D.

EDfVmðT̂ yÞg ¼ s
2ED½W�sfx�sðxT

s xsÞ
� 1xT

�s þ IN� ngW
T
�s �; ð2Þ

where the subscript D is used to show that the expectation is applied with respect to S.D and

IN−n is the identity matrix of order (N − n) × (N − n). Setting p = 0 the linear regression model

reduces to homogeneous population model i.e. Y = x0β0 + �, where x0 is vectors of 1’s. Care

should be taken while selecting a suitable set of predictors which comes under the domain of

variable selection (inclusion and exclusion) [34]. Moreover, when variance of the error term

depends on some function of the auxiliary variable(s), weighted least square (WLS) estimator

is preferred for estimating β as alternative to OLS. Moreover, if the number of regressors

exceeds number of observations in the sample then ridge regression is preferred [27, 35]. We

discuss these problems for our proposal later in Section 4.

3 Model-based estimation of population total in presence of non-

response

In voluntary surveys, a common threat to the validity of the survey estimates is the problem

of non–response. Different surveys possess different response rates, the surveys that ask ques-

tions which seem interesting and relevant to the respondents are tend to achieve the highest

response rates. In recent years, response rates have been declined even in popular surveys, and,

as a consequence, worries about non-response bias have been increased. As we discussed in

introduction section that non-response is considered as problematic only if the population of

non-respondents is an informative sample of the total sample. Unfortunately, this appears

Model based estimation in non-response
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almost in majority of practical applications. In household surveys, for instance, there is a lot of

evidence that non-respondents are often younger than respondents, and that women are more

likely to persuade to take part than men. Similarly, response rates are also tend to be lower in

deprived areas than the areas with abundance of facilities. All of these examples show that the

pattern of achieved samples for surveys mostly do not reflect the population that is meant to

represent very well. These surveys typically may over-represent women, and the persons elder

than certain age. And often under-represent those living in less developed cities and deprived

areas. When values of such demographic variable(s) are known for whole target population,

we can stratify the population as the respondents and the non-respondents. The problem is

then to choose a variable which more accurately stratifies the population as respondents and

non-respondents. Suppose that R is a stratification vector defined as R = (Ri, i 2 U), where Ri =

1(0) according to the ith unit belongs to the population of respondents (non-respondents). In

case of missing completely at random (MCAR) non-response factor R and the study variable Y
are uncorrelated and one can ignore the non-response or just apply different imputation tech-

niques [36]. When the stratification variable R is related to the study variable Y, the model for

the respondents differs from that of the non-respondents such as in above example the popula-

tion models may differ among men and women, youngers and elders and deprived and settle

areas. To capture this difference, we specify the model of respondents and non-respondents in

the population separately according to the values of R such that

Y1 ¼ x1βr þ �1 for Ri ¼ 1 ð3Þ

Y2 ¼ x2βnr þ �2 for Ri ¼ 0 for i 2 U; ð4Þ

where βr and βnr are the vectors of regression coefficients corresponding to the respondents

the non-respondents respectively. Consequently, we get sub-populations U1 and U2 such that

U = U1 [ U2, where U1 and U2 are the subsets of U denoting populations of respondents and

non-respondents with sizes N1 and N2 respectively. It is assumed that the error terms are inde-

pendently and identically distributed (IID) with means Em(�1) = Em(�2) = 0 with model vari-

ances Vmð�1Þ ¼ s
2
1
IN1; and Vmð�2Þ ¼ s

2
2
IN2, where IN1

and IN2
are the identity matrix of order

N1 and N2 respectively. Separation of model is straight forward when we have exact knowledge

about the occurrence of non-response and a related stratification variable which is almost

impossible in real world problem. As it is not possible to have such information that separates

the underlying model exactly into the respondents and the non-respondents. One way to over-

come this problem may be to use two phase sampling for obtaining information on stratifica-

tion variable. In which we select a larger sample on first phase and observe the stratification

variable (i.e. respondents are marked as respondents according to their behavior to respond

the first phase survey are observe such factor which cause non-response) and estimate the pro-

portions of units fall in sub-populations i.e. λ1 = N1/N and λ2 = N2/N. These information then

can be used at second phase for estimating population parameters of the study variable. Before

going toward our proposal, we discuss the estimation of population total without sub-sampling

non-respondents which help us in knowing how the non-response creates biasedness in esti-

mation of total.

3.1 Estimation of total without sub-sampling

For a sample s of size n assume that only n1 units respond while remaining n2 units don’t

respond. The prediction problem given in Section 2 becomes Ty ¼WT
s1
Y s1
þWT

�s1
Y�s1
þWT

2
Y2,

where WT
s1

, WT
�s1

, and WT
2
, are vectors of weights associated with n1 respondents, N1 − n1 non-

sampled units from responding population, and N2 units from non-responding population

Model based estimation in non-response
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respectively. Further, WT
�s1
Y�s1
þWT

2
Y2 is unknown and can be predicted using sample at hand

and the auxiliary information for the non-responded and non-sampled values. A predictive

estimator for population total based on respondents only, can be found as follow:

T̂ y1 ¼WT
s1
ys1
þWT

�s1
x�s1

b1 þWT
2
x2b1; ð5Þ

where b1 is the vector of OLS estimates of β1 based on n1 respondents. The model bias of T̂ y1 is

BmðT̂ y1Þ ¼WT
s1
x2ðβ1 � β2Þ: ð6Þ

See Appendix A1 for proof. T̂ y1 is unbiased estimate of Ty if the vectors of coefficients for

the responding and non-responding sub-populations are same i.e. β1 = β2, this is equivalent to

regression imputation. This situation occurs when Behavior of the responding and the non-

responding populations are same allowing us to ignore the non-response just as reduced sam-

ple size. We obtain model mean squared error (M-MSE) of the total estimator T̂ y1 as

MSEmðT̂ y1Þ ¼ fBmðT̂ y1Þg
2

þ VmðT̂ y1Þ

¼ fBmðT̂ y1Þg
2

þ s2
1
ðn1 þWT

�s1
x�s1
ðHs1
Þ
� 1xT

�s1
W�s1
Þ

þs2
2
ðWT

2
x2ðHs1

Þ
� 1xT

2
W2Þ:

ð7Þ

The subscript m shows that expectation is applied over model. The model-mean squared

error (M-MSE) given in (7) depends on random sample under designed-based point of view.

Consequently, it varies with sampling fluctuations. To obtain a fix value, we apply expectation

with respect to S.D.

3.2 Estimation of total with sub-sampling

As we already discussed, there are several approaches for handling the problem of non-

response in sample literature. A suitable approach may be chosen according to the type of

non-response (full or partial), the accessibility of the auxiliary variable(s) and the validity of

the underlying response model for handling the problem. In general, re weighting is used to

deal with full (non-availability of units) non-response. Imputation is preferably applied for

dealing with partial non-response although it can be applied for full non-response if appropri-

ate auxiliary information is available. Re-weighting eliminates or at least reduces total non-

response bias [36, 37]. While the sub-sampling method introduced by [11] provides a good

adjustment for non-response bias and yield unbiased estimator for the population mean when

the non-response variable R is significantly correlated with the survey outcome.

In this study, we develop a model-based estimator for population total by adjusting non-

response using sub-sampling procedure. As the models described in (3) and (4) have different

parameters it is inevitable to obtain information about both sub-populations. The sample

information obtained from respondents alone leads to biased estimate for the population total

of the whole population. For estimating the relationship between the study and the auxiliary

variables for the population of non-respondents and estimating total, we need some informa-

tion from non-respondents as well. The sampling mechanism in Section 2 is based on the

respondents from first sample which don’t provide any information about the population

model of non-respondents. The sub-sampling introduced by [11] is the best alternative to han-

dle such situation of non-response which assumes the mode of data collection on first round

was inexpensive and then a more stronger mode of interview is employed for sub-sampling

non-respondents. The rationale behind taking a sub-sample instead of following all non-
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respondent is the fact that taking information from all non-respondents by using stronger

mode of interview increases survey cost. Sometime randomized response techniques (more

expensive and complex) are applied to gather information on second call [38]. The method

assumes sub-sampling �n2 ¼
n2

k (k> 1) units from n2 units selected and not respond on first

round, using some stronger mode of interview (face to face survey, telephonic survey etc). The

estimation process covers two prediction problems (i) predicting N1 − n1 non-sampled units

from the sample taken from the first round using model given in (3) and (ii) predicting N2 −
n2 (non-sampled)+ n2 − �n2 (non-responded) units on the basis of sample obtained on second

round using the model relationship given in (4). Let �s2 be the sub-sample of size �n2 selected

from s2 and ��s 2 ¼ U2 � �s2 be the set representing non-sampled values from the population of

non-respondents. Now the outcome vector for respondents is further partitioned as Y1 ¼

ðY s1
: Y�s1
Þ

T
and for non-respondents Y2 ¼ ðY�s2

: Y��s 2
Þ

T
. The matrix x, the vector W and the

random error vector � are also partitioned into sampled and non-sampled parts in same way.

The population total of the study character is now expressed as Ty ¼WT
s1
Y s1
þWT

�s1
Y�s1
þ

WT
�s2
Y�s2
þWT

��s 2
Y��s 2

after replacing known values of the response units, we have

Ty ¼WT
s1
ys1
þWT

�s1
Y�s1
þWT

�s2
y�s2
þWT

��s 2
Y��s 2

. The problem is to predict WT
�s1
Y�s1
þWT

��s 2
Y��s 2

. The

first part is predicted on the basis of sample obtained on first round along with model given in

(3) and the second part is predicted on the basis of sample obtained on second round and the

model given in (4). Under the sub-sampling technique a linear unbiased predictor for Ty is

T̂ �y ¼WT
s1
ys1
þWT

�s1
x�s1

br þWT
�s2
y�s2
þWT

��s 2
x��s 2

b2; ð8Þ

where WT
s1

, WT
�s1

, WT
�s2

and WT
��s 2

are the vectors of known weights for the values corresponding

to the groups mentioned in subscripts. The estimates of model parameters β1 and β2 are

obtained by solving the normal equations ðHs1
Þb1 ¼ xT

s1
ys1

and ðH�s2
Þb2 ¼ xT

�s2
y�s2
¼ H�s2

respec-

tively, where Hs1
¼ xT

s1
xs1

and H�s2
¼ xT

�s2
x�s2

are the hessian matrix for the first round sample

and sub-sample respectively. The well-known GMT provides the evidence that the OLS esti-

mators are the best linear unbiased estimators (BLUE) of the parameters β1 and β2 when the

observations obtained on first round sample s1 and the second round sample ��s 2 follows two

different population models with independently and identically distributed error terms. In

designed based point of view, the selection of sub-sample �s2 depends on the selection of s1,

hence the assumption of independence is no more valid. To proceed we need the assumption

of model independency only. The separation of population as the respondents and the non-

respondent is based on the values of R which is already discussed in previous section. The role

of the variable R is same as the role of stratification variable in stratified sampling which is

merely used to separate populations into respondents and non-respondents. Hence more cor-

relation between the non-response factor (R) and the study variable is a requirement for using

the sub-sampling approach. The case of low correlation between the study variable and the

non-response variable can be handled through weighting adjustment and imputation tech-

niques discussed in literature review. However the literature of sub-sampling technique reveals

that the efficiency of the sub-sampling estimator is not affected by this correlation. But in case

of presence of significant correlation proceeding with just respondents on first call may pro-

duce invalid and inconsistent statistical inference.

Note that respondents on first sample always represent the responding population U1.

While the non-respondents on first sample may or may not represent the population of the

non-respondent U2 as it depends on the degree of relationship between R and Y and the nature

of occurrence of non-response (whether it is ignorable or not). The model bias of T̂ �y is derived
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in Appendix A 2, and given by

BmðT̂ �yÞ ¼WT
�s1
½x�s1

β1 � x�s1
β1� þWT

��s 2
½x��s 2

β2 � x��s 2
β2� ¼ 0: ð9Þ

T̂ �y is model unbiased if all of the OLS assumptions are satisfied for the populations of the

respondents and non-respondents. Assuming unbiasedness model variance of the total estima-

tor under non-response is obtained as

VmðT̂ �yÞ ¼ n1s
2
1
þ �n2s

2
2
þ s2

1
WT

�s1
x�s1
ðHs1
Þ
� 1xT

�s1
W�s1
þ s2

2
WT

��s 2
x��s 2
ðH�s2
Þ
� 1xT

��s 2
W��s 2

ð10Þ

Taking expectation with respect to S.D we get

EDfVmðT̂ �yÞg ¼ N1s
2
1
þ N2s

2
2
þ ED1

s2
1
WT

�s1
x�s1
ðHs1
Þ
� 1xT

�s1
W�s1

h

þs2
2
ED2
ðWT

��s 2
x��s 2
ðH�s2
Þ
� 1xT

��s 2
W��s 2
Þ
i
;

ð11Þ

where ED1
and ED2

are expectations with respect to S.D used for selecting first sample and sub-

sample respectively. The first component of the expected model-variance depends on the error

variances while the second component depends on the inverse of the matrix H = xTx for the

first sample and the sub-sample. Hence, for smaller variance the population units with larger

sampled values of all included covariates should be prefer. [39] provided a detail discussion on

optimum selection of units under different population models.

4 Estimation of total with sub-sampling under super-collinearity

and heteroscedasticity

While applying linear regression model for predicting the non-sampled values from the

population of non-respondents the number of input variables (regressors) may greatly

exceeds the number of observations i.e. �n2 < ðpþ 1Þ as we are sub-sampling a relatively

small portion of non-respondents. In such situations, fitting the full model to the non-

respondents without penalization will result in wider prediction intervals, and the normal

equations may not have trivial solution as the matrix H�s2
does not possess the full rank prop-

erty. It is not possible to estimate the parameters of the model when H�s2
is singular i.e. not of

full rank. This situation is called super-collinearity or ill-conditioning. The problem of

super-collinearity can be solved using ridge regression. To get an estimate for β2, when

there is super-collinearity in x2, we use ad-hoc fix method proposed by [40] for resolving sin-

gularity of H�s2
. We simply replace H ¼ H�s2

by HðvÞ ¼ H�s2
þ vIpþ1 with v 2 [0,1]. The sca-

lar v is called tuning parameter or penalty parameter. A clearly defined estimator for β2

obtained even for high-dimensional data matrix ð�n2 � pÞ for a strictly positive v is

b2ðvÞ ¼ HðvÞ� 1xT
�s2
y�s2

. Using b2(v) in (8), we obtain a partially ridge regression (PRR) estima-

tor (as the concept of ridge regression is used for non-responding part only) for population

total which is given by

T̂ �y ¼WT
s1
ys1
þWT

�s1
x�s1

b1 þWT
�s2
y�s2
þWT

��s 2
x��s 2

b2ðvÞ: ð12Þ

The expressions for model-bias and expected model-MSE of the PRR estimator of the total

in presence of non-response are obtained by replacing H(v) by H in (10) and (11). Following

[41] a range for v in which the model-MSE of x��s 2
b2ðvÞ is smaller than the model-variance of
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x��s 2
b2 is

0 < v <
2

½� minð0;c2Þ�
; ð13Þ

where ψ2 is the minimum eigen-value of the matrix ðH�s2
Þ
� 1
�
β2β

T
2

s2
2

. PRR is also applicable for

predicting non-sampled respondents when n1 < (p + 1) leading to super-collinearity in the

respondents.

Another major problem that arises in estimation of so called superpopulation parameters is

the violation of assumption of homoscedasticity is violated. In presence of heteroscedasticity

one has

VmðY1jx1Þ ¼ s
2
1
V1 for R ¼ 1 ð14Þ

VmðY2jx2Þ ¼ s
2
2
V2 for R ¼ 0; ð15Þ

where V1 = diag(V1ii,i 2 U1) and V2 = diag(V2ii, i 2 U2) units specific variances for respondents

and non-respondents respectively. Here V1ii = Vm(Y1i|x1i) = υ(x1i) and V2ii = Vm(Y2i|x2i) = υ
(x2i), where x1i and x2i are the vectors of the auxiliary variables corresponding to the ith unit in

respondents and non-respondents respectively. In such situations, OLS estimators for the

regression coefficients may have higher variances. If we have information about the variance

structure for the populations of respondents and non-respondents (assuming zero correlation

between the units), we can adopt weighted least square (WLS) method of estimation. The WLS

estimators of β1 and β2 are b1wls ¼ ðxT
s1
V � 1

s1
xs1
Þ
� 1xT

s1
V � 1

s1
ys1

and b2wls ¼ ðxT
�s2
V � 1

�s2
x�s2
ÞxT

�s2
V � 1

�s2
y�s2

respectively, where V1 ¼ ðV s1
;V�s1
Þ

V1 ¼

V s1
0

0 V�s1

2

4

3

5 and V2 ¼

V�s2
0

0 V��s 2

2

4

3

5:

The sub-matrices are also diagonal assuming zero correlation between the error terms cor-

responding to the respobndents and the non-respondents. A WLS estimator for Ty in presence

of non-response is obtained by replacing b1wls and b2wls by b1 and b2 respectively in (8). It is

assumed that the variance structures of the responding and non-responding population are

known and depend on covariates whose values are known for each population unit. In prac-

tice, for many types of data set, the structure of weights (inverse of variance) is usually

unknown, so one has to perform an ordinary least squares (OLS) regression first to estimate

the variance structure and obtain estimates for the population regression coefficients after per-

forming an iterative process which is commonly known as generalized least square (GLS).

5 Application

A real data set taken from [42] is applied to investigate the behavior of our proposed model-

based estimator. The data set is given as supporting information S1 Data 7 to this paper. The

data consist of 748 blood donors on following variables:

y = Monetary total blood donated in c.c., x1 = Time (months since first donation), x2 =

Recency (months since last donation) and x3 = Frequency (total number of donation). Consid-

ering the above 748 blood donors as our population of interest, we select a sample of size 100

using simple random sampling without replacement. The scatter plot matrix between the vari-

ables in the sample selected on first call and the sub-sample collected on the second call
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represents the relationship between the variables in the population of respondents and non-

respondents for response rates λ2 = 0.4 (Figs 1 and 2) and λ2 = 0.4 (Figs 3 and 4). Fig 1 shows

the relation between the study variable y and the predictors x1, x2, and x3 for the sampled

respondents which shows that the study variable y, is highly related to x3 and moderately

related to x1 but weakly related to x2. Fig 2 portrays the relationship between variables for the

sub-sampled non-respondents which is different from the relationship in Fig 1 which shows

the relevancy of the data to our proposed sampling mechanism. One can observe the similar

Fig 1. Behavior of non-respondents with λ2 = 0.4.

https://doi.org/10.1371/journal.pone.0222701.g001

Fig 2. Behavior of respondents with λ2 = 0.4.

https://doi.org/10.1371/journal.pone.0222701.g002
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relationship between the variables for λ = 0.2 from upper triangle of Figs 3 and 4. Hence our

proposal works here as the relationship between the total monetary blood donated and its

three determinants have different relationship for the population of the respondents and the

sub-population of the non-respondents which is the main assumption of our data collection

mechanism. We select half (k = 2) of the non-respondent selected on first call for sub-sampling

on second call.

Fig 3. Behavior of non-respondents with λ2 = 0.2.

https://doi.org/10.1371/journal.pone.0222701.g003

Fig 4. Behavior of respondents with λ2 = 0.2.

https://doi.org/10.1371/journal.pone.0222701.g004
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Further to see the magnitude of the prediction error, we provide a bootstrap sampling pro-

cedure taking different non-response rate (say λ2) in the population. We generate a new vari-

able R associated with each 748 cases which posses value 1 if the ith unit has an outcome

greater than the λ2 th percentile of all the y values in the data set otherwise zero.

1. A sample of size n (for n = 100, 200) is taken from the data using simple random sampling

without replacement and divide it them into the respondents and the non-respondents

according to the value of R and observe n1 and n2.

2. Select a sub-sample of size �n2 ¼
n2

k (taking k = 2,4) from n2 non-respondents again using

simple random sampling without replacement and compute the estimator using informa-

tion obtain from first and second samples. We take p = 2 to avoid the problem of super-col-

linearity in our situation.

3. Repeat Step 2, 2000 times to get expected value from the sub-sampling. The sub-sampling

does not alter results of T̂ 1 as it is based on sample from respondents only.

4. Repeat Steps 1-3, 5000 times to obtain a stable value of prediction variance and bias for

both estimators.

The prediction bias and variances are computed as follows:

RBðT̂ y1Þ ¼ ED1ED2

T̂ y1 � Ty

Ty

" #

ð16Þ

RMSEðT̂ y1Þ ¼ ED1ED2

T̂ y1 � Ty

Ty

" #2

ð17Þ

The RB and RMSE for the [11]-type estimator for the population total are obtained by

replacing T̂ y1 by T̂ �y in Eqs (16) and (17) respectively. Table 1 provides relative bias (RB) and

relative mean squared error (RMSE) of the total estimator based on the sample on first call for

different combinations of n, λ2 and k.

Table 1. Relative bias and MSE.

n k RBðT̂ y1Þ RBðT̂ �yÞ RMSEðT̂ y1Þ RMSEðT̂ �yÞ

λ2 = 0.5

100 2 -0.56463 0.03325 0.32017 0.01014

4 0.01626 0.02009

200 2 -0.56646 0.04592 0.32130 0.00575

4 0.03085 0.00996

λ2 = 0.25

100 2 -0.36311 0.01615 0.13352 0.00766

4 -0.00332 0.02661

200 2 -0.36719 0.02492 0.13554 0.00371

4 0.01449 0.00732

λ2 = 0.10

100 2 -0.19545 -0.00931 0.04023 0.42009

4 -0.02266 0.47775

200 2 -0.19806 -0.00607 0.04005 0.03924

4 -0.00239 0.04046

https://doi.org/10.1371/journal.pone.0222701.t001
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The results in Table 1 are reported assuming non-response rate λ2 at 50%, 25%, and 10%.

RB of both estimators go to zero as non-response rate falls toward zero which assures that for

full response it vanishes while the sub-sampling method produce ignorable bias as compared

to direct method which is the attractive feature of this method. Further from Table 1, one can

observe that RMSE is smaller in case of sub-sampling non-respondents, i.e. taking interview of

additional non-respondents through some stronger mode of interview, for every choices of λ2.

RB and RMSE of T̂ �y tend to increase with decrease in non-response rate in the population

which shows that our proposed technique works well for higher non-response rates as com-

pared to lower smaller ones. RB and RMSE of the model based total estimator go down while

increasing sub-sample size �n2 (decreasing k) as expected. Further, this error decreases when

population has smaller non-response rate λ2. In upcoming section, we provide a simulation

study to provide a detailed picture of the performance of estimators in terms of design bias

and mean squared error.

6 Simulation study

To see the long run behavior of the proposed estimators in terms of bias and efficiency, a

simulation study, generating a hypothetical population, is conducted. Following [43], a matrix

z = (zij, i = 1, 2, 3, . . ., N, j = 1, 2, . . ., p) with p variate each generated from N(100,1), has been

constructed with N = 10,000 observations. The ijth element of the auxiliary matrix x is com-

puted as xij = (1 − ρ)0.5 × zij + ρ × zij, where ρ is the degree of linear relationship between x and

z to be fixed in advance. The vector of the study variable (y) is then obtained by using the rela-

tionship y = xγ + �, where γ is the vector of coefficients which are computed as the averaged

eigen vectors corresponding to the eigen values of H = xTx that are greater than unity and

�* N(0, σ2IN) is randomly generated error term. It is assumed that the variance is of homo-

scedastic nature with constant diagonal σ2. We fix σ2 at 0.01, 0.1 and 1. The data consist of (y,

1N, x, Ri), where 1N is the vector of 1’s. Ri takes value 1 if the ith value of variable y falls in a

threshold lower than (1 − λ2)th quantile in the population, where λ2 is non-response rate in

the population. In real life, we suggest to choose R in form of some observable covariates or

latent variables. The simulation study is conducted in following three steps.

• Take a random sample of size n from the population generated through the mechanism

described above and split it into n1 respondents and n2 non-respondents according to the

values of Ri.

• Select a sub-sample of size �n2 from n2 non-respondents for fix k.

• Estimate the population total (Ty) using estimated models from samples obtained on Steps 1

and 2.

• Simulate Steps 2–3 500 times and average the values of estimates.

• Repeat Steps 1–4 2000 times to obtain prediction errors to obtain 2000 estimated values.

The bias (B) and mean squared error (MSE) of the proposed total estimators are computed

using the formula given in Eqs (16) and (17) respectively after removing the denominators as

the generated values are already standardized. The subscript v is used for the results where pre-

diction is performed using PRR.

Tables 2–4 provide the bias of the PPR estimator and mean squared error of both estimators

for different combinations of σ2, λ2, ρ, n and k in nested order. We obtain results for p = 5 and

p = 8 but the result for p = 5 is not reported here for the sake of space. Tables 2, 3 and 4 provide

the prediction error measures (B and MSE) for σ2 = 0.01, σ2 = 0.1 and σ2 = 1 respectively.
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Table 2. Bias and MSEs with σ2 = 0.01 and p = 8.

ρ = 0.5 ρ = 0.7 ρ = 0.9

λ2 n k BiasðT̂ �yvÞ MSEðT̂ �yÞ MSEðT̂ �yvÞ BiasðT̂ �yv MSEðT̂ �yÞ MSEðT̂ �yvÞ BiasðT̂ �yvÞ MSEðT̂ �yÞ MSEðT̂ �yvÞ

0.2 100 1.5 -1.9045 2632.5429 3410.3629 0.1861 2501.6722 3101.5096 -3.5464 3615.4525 4146.0974

2 -3.0774 15332.5627 18264.6392 -0.9490 14016.4277 16670.4440 0.8504 22387.5100 24270.7100

3 -4.7323 63897.5500 67396.2853 -6.8877 17623.5750 18316.7489 -6.1958 102069.3970 105702.5531

150 1.5 -0.1320 182.0770 181.8869 -0.0860 177.5572 177.5734 -0.0015 0.0115 0.0004

2 -0.1403 237.1414 238.3950 -0.2664 233.9038 233.6031 0.8081 200.9532 283.5728

3 0.1429 998.3503 1041.6369 -4.7654 11861.0556 15667.4757 -4.5923 12698.1924 14579.8670

200 1.5 -0.2404 124.6444 124.7199 0.0072 0.0472 0.1311 -0.0021 0.0776 0.0007

2 -0.2501 141.0534 140.9511 0.0491 13.0456 30.5921 -0.0023 0.0682 0.0006

3 -0.2724 225.3042 230.9373 -2.1225 756.4574 1453.1401 -1.2813 556.3236 888.3302

0.2 100 1.5 -0.0017 0.1004 0.0005 -0.5134 309.4638 309.6424 -0.0082 285.7515 286.0365

2 -0.1018 2.0960 16.3657 -0.5683 399.1314 399.0764 -0.3330 368.5770 369.1162

3 -1.3227 1081.2742 5169.5272 -0.1887 703.9439 703.9108 -0.3322 681.8513 686.7257

150 1.5 -0.0010 0.0189 0.0002 -0.3027 176.2154 176.2077 -0.3701 169.2124 169.2489

2 -0.0015 0.0676 0.0003 -0.2734 222.5153 222.6088 -0.1682 203.0450 203.0715

3 -0.0023 0.4645 0.0010 -0.5970 336.7227 337.0286 -0.7045 315.0578 314.8267

200 1.5 -0.0003 0.0057 0.0001 -0.0077 136.3723 136.3636 -0.1989 124.4898 124.5128

2 -0.0010 0.0167 0.0002 0.0665 166.4728 166.5163 -0.1507 151.5523 151.5717

3 -0.0016 0.1027 0.0004 0.3372 237.1700 237.1535 -0.0540 217.1780 217.2875

https://doi.org/10.1371/journal.pone.0222701.t002

Table 3. Bias and MSEs with σ2 = 0.1 and p = 8.

ρ = 0.5 ρ = 0.7 ρ = 0.9

λ2 n k BiasðT̂ �yvÞ MSEðT̂ �yÞ MSEðT̂ �yvÞ BiasðT̂ �yv MSEðT̂ �yÞ MSEðT̂ �yvÞ BiasðT̂ �yvÞ MSEðT̂ �yÞ MSEðT̂ �yvÞ

0.2 100 1.5 0.0527 761.5122 6.0175 -0.1304 712.9594 32.4517 0.1087 779.5891 101.4044

2 0.3897 3072.4058 597.1933 -0.1384 2957.2573 884.0712 0.3682 3096.5782 960.3027

3 -4.1239 18395.7554 12510.7762 -2.1398 18856.2093 13943.7068 0.4578 17867.0923 16000.5730

150 1.5 -0.0018 102.4919 0.0004 -0.0013 93.5663 0.0004 -0.0018 98.2044 0.0004

2 -0.0031 320.7221 0.0007 -0.0021 307.4636 0.0007 -0.0031 312.4716 0.0007

3 -0.0853 2119.3799 393.5367 -0.1952 1936.9254 120.3755 0.2440 2012.8939 584.2767

200 1.5 -0.0010 31.2990 0.0002 -0.0007 27.9423 0.0003 -0.0006 30.3235 0.0003

2 -0.0019 103.3161 0.0003 -0.0014 83.5846 0.0003 -0.0012 96.0962 0.0003

3 -0.0032 501.3613 0.0008 -0.0027 543.5329 0.0007 -0.0024 486.4563 0.0008

0.4 100 1.5 -0.0012 34782.8600 0.0002 -0.0024 35656.4700 0.0002 -0.0013 36537.1700 0.0002

2 -0.0022 76289.3900 0.0003 -0.0031 73245.7900 0.0003 -0.0032 335.3555 0.0008

3 -0.0042 202559.5000 0.0012 -0.0052 184955.9000 0.0009 -0.0069 1811.6840 0.0031

150 1.5 -0.0055 272320.5567 0.0016 -0.0064 247252.1500 0.0012 -0.0094 -21830.7495 0.0043

2 -0.0070 356208.8767 0.0021 -0.0078 321901.8650 0.0015 -0.0122 -39193.4925 0.0058

3 -0.0085 440097.1967 0.0027 -0.0092 396551.5800 0.0019 -0.0150 -56556.2355 0.0073

200 1.5 -0.0100 523985.5167 0.0032 -0.0106 471201.2950 0.0022 -0.0178 -73918.9785 0.0087

2 -0.0115 607873.8367 0.0037 -0.0120 545851.0100 0.0026 -0.0207 -91281.7215 0.0102

3 -0.0130 691762.1567 0.0043 -0.0134 620500.7250 0.0029 -0.0235 -108644.4645 0.0117

https://doi.org/10.1371/journal.pone.0222701.t003
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From Tables 2–4, one can see that the bias of the PRR total estimator tends to increase with

increase in k. This implies selecting a smaller sub-sample increases the bias in estimation due

to sampling error although this bias depends on the magnitude of the tuning parameter v.

MSE of the total estimator under multiple regression and PRR both increase with increase in k
which shows that MSE of the estimators grows with smaller sub-samples from non-respon-

dents. The PRR total estimator is more sensitive to the change in k, in terms of MSE, as the

optimum value of the tuning parameter v is estimated from sub–sample. In practice v might be

computed using data available from previous surveys of the same population or through expert

judgment. The estimation methods of v by minimization of prediction error are available in

[43]. Moreover, whatever model we use for prediction, the MSE values of the total estimators

depend on the sample size of respondents and sub-sample of non-respondents. The simulated

results are provided for sample size 100, 150 and 250 with sub-sample size inversely propor-

tional to k = 1.5, k = 2 and k = 3. It can be noticed that MSE values are increasing with increase

in k. Comparing two portions of Tables 2–4, we observe that the MSE of proposed estimators

fall when non-response rate increases which conflicts the efficiency property of the [11] esti-

mator. The reason is the use of separate models and increasing λ2 from 0.2 to 0.4 implies(i.e.

we are using Model (2) for 40% of the data) which is the main contribution of our proposal in

terms of increased precision. Apart from the design parameters, the data generating process

also effects the efficiency of the total estimator which can be seen from three different column-

panels (for three different choices of the parameter ρ) assuming that the correlation between

the variables X and Z are same for all choices of j of Tables 2–4.

7 Conclusion

This article is concerned with utilization of model relationship between the outcome variable

and one or more covariate(s) for efficient estimation of population total of the outcome vari-

able in surveys with non-ignorable non-response. A model based version of [11] sub-sampling

Table 4. Bias and MSEs with σ2 = 1 and p = 8.

λ2 n k BiasðT̂ �yvÞ MSEðT̂ �yÞ MSEðT̂ �yvÞ BiasðT̂ �yv MSEðT̂ �yÞ MSEðT̂ �yvÞ BiasðT̂ �yvÞ MSEðT̂ �yÞ MSEðT̂ �yvÞ

0.2 1.5 -0.92480 61377.38088 2732.37605 -1.18547 64137.80092 2116.32394 -1.18547 64137.80092 2116.32394

100 2 -2.94078 98309.64742 27170.99000 -8.24624 98661.25065 25524.12997 -8.24624 98661.25065 25524.12991

3 -27.35530 167858.93049 198667.30000 -23.36264 156272.98600 200505.09000 -23.36264 156272.98600 200505.09930

1.5 -0.00095 32731.19000 0.00010 -0.00101 31548.83000 0.00007 -0.00101 31548.83000 0.00007

150 2 -0.00206 53798.86000 0.00057 0.66527 50745.12235 273.95232 0.66527 50745.12235 273.95232

3 -5.45773 98828.28093 18837.24500 -5.31764 95632.41642 20115.99933 -5.31764 95632.41642 20115.99933

1.5 -0.00050 17985.20000 0.00003 -0.00086 18345.49000 0.00003 -0.00086 18345.49000 0.00003

200 2 -0.00073 30170.24000 0.00007 -0.00107 32707.66000 0.00007 -0.00107 32707.66000 0.00007

3 -0.87860 62423.15344 236.95346 -0.58426 63258.35576 189.24416 -0.58426 63258.35576 189.24416

0.4 100 1.5 -0.00054 74174.77000 0.00005 -0.00054 73609.55000 0.00008 -0.26906 296990.10000 186.24990

2 -0.00123 137269.40000 0.00018 -0.00114 136571.00000 0.00019 -0.00118 142043.00000 0.00012

3 0.21696 304271.30000 1655.51200 -0.93803 292194.00000 877.38890 -0.26906 296990.10000 186.24990

150 1.5 -0.00016 27143.28000 0.00002 -0.00049 27164.02000 0.00002 -0.00094 133416.30000 0.00011

2 -0.00034 54688.47000 0.00004 -0.00062 57434.25000 0.00004 -0.00060 55799.30000 0.00004

3 -0.00097 138008.00000 0.00014 -0.00116 144321.40000 0.00014 -0.00094 133416.30000 0.00011

200 1.5 -0.00019 13010.95000 0.00001 -0.00030 12975.12000 0.00001 -0.00070 72677.00000 0.00005

2 -0.00021 27447.29000 0.00002 -0.00040 27325.85000 0.00002 -0.00039 27794.85000 0.00002

3 -0.00058 73274.17000 0.00005 -0.00077 75598.08000 0.00006 -0.00070 72677.00000 0.00005

https://doi.org/10.1371/journal.pone.0222701.t004
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technique is suggested which assumes that the responding and non-responding population

have different models. This assumption may hold for majority of real world situations where

the occurrence of non-response is observable like a stratification variable. In public health sur-

veys the non-response occurrence is based on the gender, ethical affiliation, age and other

demographic factors of the respondents. In such situations, respondents and non-respondents

may have different models. The method assumes that a stratification variable is available to

divide the population into respondents and non-respondents which is difficult to obtain in

most of real surveys although a two phase sampling method can provide a better stratification

variable to divide the population into respondents and non-respondents. It is shown that

under linear population model (linear in parameter as well as in variables) the total estimator

with sub-sampling is model-unbiased and has smaller model-variance as compared to predic-

tive estimator based on sampled respondents only. The linearity assumption emphasizes on

linear in parameters but not restricted to the linearity in variable. Polynomial regression mod-

els are also useful for handling non-response in demographic surveys using age as the predic-

tor. The problem of non-response can be well handled using polynomial regression models

which is an open area to work in future. While sub-sampling non-respondents the number of

observations may become smaller than the number of regressors included in the model leading

to problem of super-collinearity. To cope with super-collinearity problem, we suggest a version

of ridge regression named, called PRR, for predicting the non-sampled non-respondents. WLS

and GLS are suggested for obtaining estimates of the regression coefficients for respondents

and non-respondents when error terms for at least one model is of heteroscedasticity nature.

To confirm mathematical expressions a numerical study with blood transfusion data has been

carried out. The suggested method is applicable to telephonic or web household surveys where

households are first contacted with email or telephone call and then non-respondents are fol-

lowed via face to face surveys where it seems logical to select a sub-sample of non-respondents

through more expensive mode (face to face).

APPENDIX A1. Derivation of bias and MSE T̂ y1 without sub-sampling
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x2. The model variance of T̂ y1 is derived as
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The MSE of T̂ y1, is given by

MSEmðT̂ y1Þ ¼ fBmðT̂ y1Þg
2
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þs2
2
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Þ
� 1xT

2
W2Þ:

A2. Derivation of bias and MSE of T̂ y1 with sub-sampling
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The variance of the estimator, is given by
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Rearranging terms, we get
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