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Bioactive compounds can provide health benefits beyond the nutritional value and are
originally present or added to food matrices. However, because they are part of the food
matrices, most bioactive compounds remain in agroindustrial by-products. Agro-industrial
by-products are generated in large quantities throughout the food production chain and
can—when not properly treated—affect the environment, the profit, and the proper and
nutritional distribution of food to people. Thus, it is important to adopt processes that
increase the use of these agroindustrial by-products, including biological approaches,
which can enhance the extraction and obtention of bioactive compounds, which enables
their application in food and pharmaceutical industries. Biological processes have several
advantages compared to nonbiological processes, including the provision of extracts with
high quality and bioactivity, as well as extracts that present low toxicity and environmental
impact. Among biological approaches, extraction from enzymes and fermentation stand
out as tools for obtaining bioactive compounds from various agro-industrial wastes. In this
sense, this article provides an overview of the main bioactive components found in
agroindustrial by-products and the biological strategies for their extraction. We also
provide information to enhance the use of these bioactive compounds, especially for
the food and pharmaceutical industries.
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1 INTRODUCTION

The world produces large amounts of agroindustrial raw materials, mainly used for human and
animal consumption and energy production (FAO, 2017; Sadh et al., 2018a). However, losses of up to
50% of the raw materials are estimated and occur mainly during harvest, post-harvest, slaughter,
transport, processing, storage, and consumption (Arah et al., 2016; Lemes et al., 2020a). The losses
can represent about 680 billion dollars per year (Dora et al., 2020) and correspond to about 25%–35%
of the food produced in the world. These losses of raw material can be equivalent to 1.3 billion tons a
year of material that is no longer consumed or transformed from appropriate processes
(Ishangulyyev et al., 2019).

Due to its composition, residues can show slow degradability, resulting in accumulation and
negative environmental impact (Sadh et al., 2018a). Thus, it is relevant to identify new applications to
convert these residues into high-value-added products (Irmak, 2017). In general, agro-industrial
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residues present considerable concentrations of compounds such
as fibers, lipids, carbohydrates, peptides, carotenoids, phenolic
compounds, and other compounds, which have multiple
functionalities and bioactivities and can be applied as
ingredients in other products (Varzakas et al., 2016; Coman
et al., 2020; Lopes and Ligabue-Braun, 2021).

The bioactive compounds present in the residue matrices can
be potentially used in the prevention and treatment of several
diseases, such as hypertension (Oliveira Filho et al., 2020),
diabetes (Valencia-Mejía et al., 2019), cardiovascular disease
(Rangel-Huerta et al., 2015), and neurological disease (Mohd
Sairazi and Sirajudeen, 2020). In addition, bioactive compounds
can be incorporated into foods, increasing their nutritional,
sensorial, and technological properties (e.g., water and oil
holding capacities, foaming, emulsion, and gelatinization)
(Egea et al., 2018; Guimarães et al., 2019).

The proper use of agro-industrial matrices requires the
production/extraction of bioactive compounds through
ecofriendly strategies instead of conventional processes,
followed by optimizing process conditions (Lemes et al.,
2016a; Heemann et al., 2019). In this context, biological
processes stand out, as they can enhance the production,
extraction, and application of components from agro-
industrial matrices in a more attractive way (Jegatheesan et al.,
2020). Due to their selectivity, biological strategies present some
advantages, including the production of extracts with high quality
and bioactivity, as well as low toxicity (Chen, 2015; Habeebullah
et al., 2020; Wang and Lü, 2021). Among the biological
approaches, one consists of (1) extraction using enzymes that
release compounds from the matrix under optimized conditions,
making the process efficient (Marathe et al., 2019), and another is
the (2) fermentation using different microorganisms that
transform waste into products of interest, such as ethanol,
proteins, peptides, enzymes, and pigments (Sadh et al., 2018b;
Martínez-Espinosa, 2020).

In this sense, this article provides an overview of the main
bioactive components found in agro-industrial by-products and
the biological strategies for their extraction. We also provide
information to enhance the use of these bioactive compounds,
especially for the food and pharmaceutical industries.

2 GENERATION OF AGRO-INDUSTRIAL
WASTE

The agroindustry generates large amounts of waste regardless of
the production chain step (Palhares et al., 2020; Chauhan et al.,
2021). This waste generation can impact the environment
according to factors that include the degree of development of
the countries, education, population awareness, public policies,
overexploitation, and waste of natural resources (Bedoić et al.,
2019; Palhares et al., 2020). For example, in the steps involving
food processing, losses reaching up to 40% of production are
verified, mainly due to inefficiency in the production processing
and management system, deformed or damaged products, and
packaging disposable, among others, which generate refusal on
the part of consumers (Dora et al., 2020).

Waste can be from plant or animal sources (Figure 1). The
vegetable by-products include leaves, stems, seeds, bark, straw,
fibers, bagasse, and fruit skins, among others (Ezejiofor et al.,
2014). For fruits and vegetables, for example, the production of
industrial solid waste is verified, which includes items removed
from fruits and vegetables during cleaning, processing, cooking,
and packaging (EPA, 2012). For cereals, the waste generation
corresponding to 35% of the total production is verified,
including liquid residues (rice milling wastewater, parboiled
rice effluent, corn steep liquor, and bakery wastewater) and
solid wastes (corn pericarp, corn grits, and brewer’s spent
grain), which are highly polluting due to large amounts of
organic load, solid waste, and nutrients (Hassan et al., 2021).
In general, vegetable residues present high carbohydrates (starch,
cellulose, and hemicellulose), lignin, organic acids, minerals, and
vitamins (Kumar et al., 2020).

On the other hand, animal by-products comprise large
amounts of carcasses, skins, hooves, heads, feathers, viscera,
bones, fat, meat trimmings, blood, and other animal fluids
(Ockerman and Hansen, 2000; Waldron, 2007), as well as
meat out of specification and significant amounts of milk
processing residues such as whey and other fractions from the
separation process (Ben-Othman et al., 2020). The meat sector,
for example, records losses of up to 23% of everything produced,
including consumption losses, industrial processing, distribution,
inadequate storage conditions, and failures in the freezing process
(Karwowska et al., 2021). The dairy industry generates around 4
to 11 million tons of waste per year, including whey, dairy sludge,
and wastewater (processing, cleaning, and sanitary), with great
pollutant potential (Ahmad et al., 2019; Lemes et al., 2020a). In
general, animal residues present high levels of proteins, lipids, and
minerals (Jayathilakan et al., 2012; Jain and Anal, 2016;
Maysonnave et al., 2020).

Due to the complex chemical composition, animal and
vegetable residues can be used as a low-cost raw material to
obtain bioactive compounds using suitable processes (Lemes
et al., 2016a; Prado et al., 2020).

3 BIOACTIVE COMPOUNDS

Bioactive compounds can be used with functions like to (1)
improve quality in conventional food (nutritional, sensory, and
technological properties), (2) produce functional foods that
provide physiological benefits in terms of essential nutritional
aspects, (3) produce nutraceuticals, isolated components of food
or agroindustrial wastes that provide proven physiological
benefits (Birch and Bonwick, 2018; Daliu et al., 2018; Aguiar
et al., 2019; Reque and Brandelli, 2021), (4) and compose films for
application as smart, active, and/or bioactive food packaging
(Nogueira et al., 2020; Oliveira Filho et al., 2021). This wide
application of bioactive compounds occurs due to several effects
attributed to bioactive compounds, including protection of the
immune system, anti-inflammatory action, reduction of damage
from cell oxidation, and the occurrence of chronic
noncommunicable diseases (Silva et al., 2019; Alongi and
Anese, 2021).
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Several wastes can be used to obtain bioactive compounds,
including cereal bran, which is rich in phenolic compounds,
flavonoids, glucans, and pigments (Pauline et al., 2020); fruit and
vegetable wastes, which are sources of phenolic compounds
(Trombino et al., 2021); and complex carbohydrates (Pérez
et al., 2002), as well as animal wastes, e.g., fish wastes rich in
omega 3 (Bonilla-Méndez and Hoyos-Concha, 2018) and milk
processing wastes as sources of peptides (Pires et al., 2021).

Among the main bioactive compounds found in agro-
industrial wastes with more interest for application in the food
and pharmaceutical industries are (1) bioactive peptides, (2)
phenolic compounds, (3) carbohydrates, and (4) other
molecules with distinct biological and technological properties.
Below we describe these bioactive compounds of interest.

1) Bioactive peptides are protein fragments with up to 20
amino acid residues and that have an impact on body functions,
which depend on their composition and amino acid sequence in
the structure (Lemes et al., 2016b). Due to their high protein
value, cakes and meals can serve as a source of peptides or amino
acids that, once released, demonstrate higher biological activity
such as antioxidant, antihypertensive, anti-inflammatory, and
immune-modulating activities (Lemes et al., 2016b; Lemes
et al., 2020b; Velliquette et al., 2020).

Peptides with antioxidant activity exert biological effects on
the human body and have attracted great interest for their safety
and wide distribution (Brandelli et al., 2015). When applied
directly to food, peptides can decrease the occurrence and
speed of oxidation reactions, which is especially interesting in
replacing synthetic antioxidants related to toxic effects on human
health. Currently, studies report the antioxidant activities of

plant-derived hydrolysates, such as soybean (Yang et al.,
2019), sunflower (Prado et al., 2020), corn (Zhang et al.,
2019), beans (Paula et al., 2020), and peanut flour (Yu et al.,
2021), as well as hydrolysates from animal by-products such as
fish (Hemker et al., 2020) and poultry (Bouhamed et al., 2020).

The antihypertensive property has been mentioned for several
peptide molecules with the potential to inhibit the activity of
renin, angiotensin-converting enzyme, and angiotensin II
receptors in vitro and in vivo, increasing the levels of nitric
oxide in the blood (Lemes et al., 2020b). As a result, peptides
show potential for application in antihypertensive prevention and
treatment, reducing cardiovascular complications, mainly when
associated with physical activity and a healthy diet.

2) Phenolic compounds are one of the main groups of
secondary metabolites produced by plants and are of
particular interest due to their bioactive properties such as
antioxidant, antihypertensive, and antimicrobial activities and
inhibition of carcinogenesis (Tanase et al., 2014; Tanase et al.,
2019). In addition, phenolic compounds have been suggested for
applications in food as active agents to control lipid oxidation and
microbial growth in foods (Huang et al., 2020; Zhang et al., 2020)
and in the pharmaceutical and cosmetic industries such as
mouthwashes, eye creams, and different herbal cosmetics
(Petti and Scully, 2009; Saraf and Kaur, 2010; Gaur and
Agnihotri, 2014).

3) Carbohydrates are an important energy source and play
numerous key roles in all living organisms (Jiang et al., 2021).
They are at high levels in residues of vegetable origin, especially
starch, lignocellulose (cellulose, hemicellulose, and lignin), and β-
glucans, among others (Kumar et al., 2020). Starch is the main

FIGURE 1 | General steps that involve the generation of agroindustrial wastes and their use to produce bioactive components.
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storage carbohydrate in plants and is a mixture of two glucose
polymers: amylose and amylopectin (Lovegrove et al., 2017).
Starches are used in various sectors of the industry in a wide
range of products besides food applications (Di-Medeiros-Leal
et al., 2021). Lignocellulose is the main polymeric compound
formed by plant metabolism as structural material and is widely
present in agro-industrial waste. This carbohydrate type has
variable amounts of cellulose, hemicellulose, and lignin and
can be converted into different high-value products,
contributing to waste reduction (Fortunati et al., 2016). β-
Glucan is a polysaccharide with several biological activities
with scientifically proven beneficial health effects. Cereal
wastes from barley, oats, and residual yeast biomass can also
be used as a source of β-glucan (Tosh et al., 2010; Du et al., 2014;
Vieira et al., 2017; Guedes et al., 2019; Liu et al., 2021).

4) Other molecules can be obtained, including lipid molecules
such as lycopene-type carotenoids that can act as natural
pigments in their application in foods and fatty acids.

Lycopene is a carotenoid, not a vitamin A precursor, mainly
found in tomatoes and by-products of tomato processing
(Anarjan and Jouyban, 2017). In addition to acting as a
natural pigment giving a red-orange color, lycopene can react
to free radicals, preventing cellular compounds’ degradation,
including DNA (Moritz and Tramonte, 2006; Caseiro et al.,
2020; Adetunji et al., 2021). All fractions of tomato can be
used, including the skin, which contains about 510–734 mg of
lycopene/kg of dry matter (DM), in addition to significant
amounts of lutein, β-carotene, and cis-β-carotene (Knoblich
et al., 2005; Nour et al., 2018), and the seed, which has a
lycopene content of ~130 µg lycopene/kg DM (Knoblich et al.,
2005). Solid fractions can also be used for lycopene extraction
(Trombino et al., 2021) from the use of solvents, supercritical
extraction (Machmudah et al., 2012; Urbonaviciene and Viskelis,
2017; Hatami et al., 2019), pulsed electric field-assisted extraction
(Pataro et al., 2020), and ohmic technology (Coelho et al., 2019),
among others. In addition to lycopene, tomato by-products
contain tocopherols, sterols and terpenes, fatty acids, phenolic
compounds, and flavonoids, showing great versatility in
obtaining several bioactive compounds (Kalogeropoulos et al.,
2012).

Polyunsaturated fatty acids (PUFAs) of the omega-3 and
omega-6 types are in vegetable oils, fish, and nuts. As with
marine products, vegetable and nut by-products can be a
source of PUFA that is underutilized. Fish by-products that
are sources of marine oils can be used in the production of
enzymatic PUFA synthesis of acylglycerols directly from glycerol
and omega-3 fatty acid concentrates. The main acids present in
omega-3 are docosahexaenoic acid (DHA), eicosapentaenoic acid
(EPA), and α-linolenic acid, while acids present in omega-6 are
arachidonic and linolenic acids (Dave and Routray, 2018).

4 BIOLOGICAL VS. NON-BIOLOGICAL
APPROACHES

The recovery of compounds of interest from agricultural wastes
and by-products involves conventional and novel solid–liquid

and liquid–liquid extractions. Conventional methods are based
on the extraction capacity of different solvents and applying
thermal factors and/or homogenization, such as maceration,
infusion, Soxhlet extraction, and hydro-distillation. However,
these methods have presented some disadvantages such as
long duration in the case of solid–liquid extraction, e.g., low
extraction selectivity and specificity, decomposition of
thermolabile compounds, and low purity of the product after
the purification process, as well as high operation pressure, energy
need, and amount of solvent with high purity (Gligor et al., 2019;
Becerra et al., 2021).

On the other hand, novel extraction methods had been
proposed, such as substituting molecular solvents with ionic
liquids, eutectic solvents, and supercritical fluids or using
different nonthermal energies (ultrasound, microwave, and
pulsed electric field). However, the cell wall of plant matrices
(and their components, cellulose, hemicellulose, starch, pectin,
lignin, and proteins) can make the extraction of compounds a
challenge.

In biological conversion processes (enzymatic or
fermentation), cell wall recalcitrance is a resistance of plant
cell walls to biological deconstruction for enzymes and
microorganisms (Zeng et al., 2017) that varies among plant
species and phenotypes (Silveira et al., 2013). However,
extensive research has been carried out to establish effective
protocols for pretreatment of cell wall material, such as
lignocellulose, before using the waste for biological conversion
(Baruah et al., 2018; Mankar et al., 2021). Available pretreatments
include physical (milling, microwave, extrusion, and
ultrasonication), chemical (alkali, acid, ionic liquids,
organosolv, and deep eutectic solvents), physicochemical
(steam, ammonia and CO2 explosion, and liquid hot water),
and biological (whole-cell and enzymatic pretreatment) methods
(Baruah et al., 2018).

Biological processes using microorganisms or enzymes can
hydrolyze molecules, disrupt cell walls, increase permeability, and
allow intracellular materials to be accessible for extraction. The
microorganisms can utilize agricultural wastes as substrates
under specific pH, temperature, moisture, and water activity
conditions for their growth and production of the compounds
of interest. The use of enzymes frommicroorganisms, plants, and
mammalian cells and tissues—which catalyze reactions with high
specificity, regioselectivity, and mild conditions—could improve
the extraction efficiency of different compounds (polyphenols,
carotenoids, terpenoids, and others) or even convert this
compounds into valuable compounds as biofuels, surfactants,
and pharmaceuticals (Gligor et al., 2019; Marathe et al., 2019;
Becerra et al., 2021; Sharma et al., 2021).

4.1 Extraction of Bioactive Components
With Enzymes From Agro-industrial Wastes
The enzyme-assisted extraction (EAE) method can be employed
in pretreatments of raw materials, improving extraction time,
solvent use, and the quality and purity of a product while lowering
production costs compared with classical extraction processes.
Different enzymes could be applied including cellulases,
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TABLE 1 | Examples of enzyme-assisted extraction of bioactive compounds from agroindustrial by-products.

Enzymes Matrix/Metabolite Extraction conditions References

Pectinase, alpha-amylase, hemicellulase,
cellulase, and glucoamylase

Guarana (Paullinia cupana) seeds/
Caffeine and tannins

Solvent-biomass ratio: 5 ml/g, solvent: water,
50–70°C, enzyme loading: 0.1–1% v/v biomass,
5.5 h, 200 rpm

Ribeiro et al. (2012)

Proteases, pectinase, cellulase, and
hemicellulase

Flaxseed meal/polyphenols and
proteins

Solvent-biomass ratio: 6.58 ml/g, solvent: water or
10% ethanol v/v, 50°C, enzyme loading: 0.3–2.0%,
v/v, 1.5 h, 200 rpm

Ribeiro et al. (2013)

Cellulase, glucosidase, and pectinase Grape skins/Anthocyanins and
flavanols

Solvent-biomass ratio: 20 ml/g, solvent:12.5%
ethanol solution with 4 g/L tartaric acid, pH 3.6,
20–30°C, enzyme loading: 15 mg/L, 72 h

Nogales-Bueno et al. (2020)

Pectinase, and α- and β-Glycosidase Grape pomace/aroma compounds
(alcohols, esters, terpenes, and
others)

Particle diameter: < 500 μm, Solvent-biomass ratio:
0.6 ml/g, solvent: 70% ethanol/Milli-Q water
solution, pH 5.0, 35°C enzyme loading: 0.9 g/10 ml,
48 h, 120 rpm

Liang et al. (2020)

Protease Blue crab (Portunus segnis) shells/
carotenoproteins

Solvent-biomass ratio: 5 ml/g, solvent: water (pH
8.0), 50°C, enzyme loading: 20 U/g biomass, 60 min

Hamdi et al. (2020)

Proteases and cellulase Salvia officinalis leaves/Rosmarinic
acid

Solvent-biomass ratio: 25.76 ml/g, solvent: water
(pH 6.9), 54.3°C, enzyme loading: 4.49%, w/w, 2 h
with stirring

Su et al. (2020)

Pectinase Spent coffee ground/flavonoids Solvent-biomass ratio: 15 ml/g, solvent: sodium
acetate buffer (200 mM, pH 5.5), 37°C, enzyme
loading: 0.67% v/v, 60 min

Khairil Anuar et al. (2020)

Cellulase and hemicellulase Japanese Peppermint (Mentha
arvensis) leaves/essential oil

Solvent-biomass ratio: 10 ml/g, solvent: water, 40°C
enzyme loading: 2%w/v, 3 h, 120 strokes/min

Shimotori et al. (2020)

Polygalacturonase, pectin lyase, celulase, and
xylanase

Unsold ripened tomatoes/
carotenoids

solvent: acetate buffer (100 mM, pH 5.5), 50°C,
enzyme loading: 25 U/g, 180 min

Lombardelli et al. (2020)

Lysozyme Spirulin (Arthrospira platensis)/
C-phycocyanin

Solvent-biomass ratio: 8 ml/g, solvent: phosphate
buffer (100 mM, pH 6.8), 37°C, enzyme loading:
0.6% w/v, 16 h + US: 20kHz, 50% amplitude,
2.5 min

Tavanandi and
Raghavarao, (2020)

Proteases, hemicellulase, pectinase, and
cellulase

Tiger nut (Cyperus esculentus)/oil Particle diameter: < 600 μm, Solvent-biomass ratio:
10 ml/g, solvent: water, pH 4.9, 45°C enzyme
loading: 2% w/v, 180 min, 120 rpm; MW: 2.45GHz,
300 W, US: 25 KHz, 460 W, 30 min, 40°C

Hu et al. (2020)

Polygalacturonase, celulase, and
hemicellulases

Opuntia ficus-indica cladodes/
isorhamnetin conjugates

Solvent-biomass ratio: 5 ml/g, solvent: ethanol/
water 90/10, pH 4.0, 40°C enzyme loading: 1.5%w/
v, 30 min, scCO2: pressure 100 bar, flow rate: 18 g/
min, 10–40 min, 60°C, co-solvent: 20% ethanol

Antunes-Ricardo et al.
(2020)

β-glucosidase, tannase, and cellulase Citrus pectin by-product/aglycone
flavanones

Solvent-biomass ratio: 12.5 ml/g, solvent: acetate
buffer (20 mM, pH 5.0), 40°C, enzyme loading:
20 U/g biomass, 24 h, 120 rpm

Barbosa et al. (2021)

Cellulase, xylanase, and pectinase Red beets/betalains Solvent-biomass ratio: 15 ml/g, solvent: acetate
buffer (pH 5.5), 25°C, enzyme loading: 24 U/g, 4 h

Lombardelli et al. (2021)

Cellulase, hemicellulase, and pectinase Licorice roots/glycyrrhizic acid Particle diameter: < 2 μm, Solvent-biomass ratio:
5 ml/g, solvent: acetate buffer, pH 5.0, 45°C enzyme
loading: 2% w/v, 1 h with stirring

Giahi et al. (2021)

Beta-glucanase, pectinase, protease, and
ferulic acid esterase

Sweet cherry (Prunus avium)
pomace/polyphenols

Solvent-biomass ratio: 2.63 ml/g, solvent: sodium
phosphate buffer (100 mM), pH 10.0, 70°C enzyme
loading: 2–140 μl/g, 18.4–40 min, 750 rpm

Domínguez-Rodríguez et al.
(2021)

Cellulase Passion fruit/polyphenols Particle diameter: < 180 μm, Solvent-biomass ratio:
50 ml/g, solvent: water, pH 5.0, 30°C enzyme
loading: 6% w/v, 47 min, US: 50 kHz, 300 W

Wang et al. (2021)

α-Amylase, β-glucanase, protease,
hemicellulases, lipase, phytase, cellulases,
and pectinase

Mango peel/phenolic acids Solvent: sodium phosphate buffer, pH 4.5–7.5,
37–63°C enzyme loading: 2.3–4.1% w/v,
60–120 min, US: 40 kHz, 45–120 W

Sharif et al. (2021)

(Continued on following page)

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org January 2022 | Volume 9 | Article 8025435

Lemes et al. Biological Extraction of Bioactive Compounds

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


hemicellulases, pectinases, amylases, proteases, and lipases, as free
or immobilized forms. The enzyme behavior depends on
operational conditions such as pH, temperature, enzyme and
substrate concentration, solid/liquid ratio, the particle size of the
substrate, and reaction time (Becerra et al., 2021).

Among the advantages related to enzyme’s use at the industrial
scale is the cost reduction since enzymes acting as catalysts
provide process savings compared to conventional strategies
(Singh et al., 2016). To further reduce the cost of applying
processes using enzymes, agro-industrial waste available in
large quantities can be used in the production of enzymes
(Lemes et al., 2016a) using simpler purification protocols or
coupling techniques to purify the target product (Lemes et al.,
2014; Lemes et al., 2019). Another factor that supports the
application of enzymes and cost reduction in the process is
the possibility of their immobilization, resulting in their
recyclable use, allowing their application in defined cycles, and
maintaining their selectivity, catalytic activity, and the generation
of products in large quantities (Braga et al., 2014; Basso and
Serban, 2019).

Greener processes have also been proposed by combining
enzymes with ultrasound, microwave, and alternative solvent-
based extraction methods, which can result in higher product
quality, decreased production costs and solvents, or increased
enzymatic treatment efficiency and extraction yields. These
complementary treatments may be employed before or after
EAE and simultaneously with the process, and their features
consist of shortened extraction periods, nontoxicity, non-

flammability, use of recyclable solvents, overall simplified
steps, and customizable process parameters (Gligor et al.,
2019; Wen et al., 2020; Picot-Allain et al., 2021). Table 1
shows examples of the use of enzymes in the extraction and
recovery of these bioactive compounds from agro-industrial
wastes.

4.2 Fermentation Processes as a Tool to
Obtain Bioactive Compounds From
Agro-industrial Wastes
The fermentation process as a tool for obtaining bioactive
compounds from agroindustrial wastes can be seen under
different perspectives (Figure 2) as follows: (1) the target
compound is the main product of microbial fermentation of
agro-wastes, (2) the target compound is one of the products
resulting from microbial fermentation of agro-wastes, and (3)
microbial fermentation of agro-wastes produces enzymes, which
will be applied to recover the target compound from a particular
substrate.

4.2.1 Production of Bioactive Compounds Using
Fermentation of Agro-industrial Wastes
The production of bioactive compounds through fermentation
can be carried out with various microorganisms and their
respective species (bacteria, yeasts, filamentous fungi, and
others) (Moreira et al., 2018; Shin et al., 2019; Gulsunoglu
et al., 2020; Jiang et al., 2020; Silva et al., 2020; Sinha et al.,

FIGURE 2 | Perspectives about the fermentation process to obtain bioactive compounds (BC).

TABLE 1 | (Continued) Examples of enzyme-assisted extraction of bioactive compounds from agroindustrial by-products.

Enzymes Matrix/Metabolite Extraction conditions References

Pectinases Pomelo (Citrus maxima) peel by-
products/flavonoids

Particle diameter: < 149 μm, Solvent-biomass ratio:
142.99 ml/g, solvent: water, enzyme loading:
3.45% w/v, 65.23 min + US: 40 kHz,
69.26 min, 30°C

Anh et al. (2021)

Cellulase, pectinase, and tannase Olive pomace/polyphenols Solvent-biomass ratio: 15 ml/g, solvent: water, pH
5.0, 60°C enzyme loading: 2% w/v, 17 min,
120 rpm, MW: 2.45 GHz, 600 W

Macedo et al. (2021)
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2021). In addition, wild or genetically modified microorganisms
(Cipolatti et al., 2019; Yang et al., 2020) can be applied in
fermentative processes to obtain high-added-value compounds.
The fermentation product can be part of the cell metabolism of
microbial species or be extracted from the substrate by the
microorganism’s action. The target compound can also be
produced by the microorganism intracellularly (Rodrigues
et al., 2019)—which needs cell rupture steps after fermentation
for the compound recovery (Gomes et al., 2020)—or
extracellularly (Acosta et al., 2020).

Fermentative strategies differ between solid (SSF) and
submerged (SmF) states. The choice of the fermentation
process will depend on the used microorganism and the
process recovery of target compounds. In the SmF approach,
microorganisms are grown in a liquid medium containing the
nutrients (Dey et al., 2016). The target compounds are secreted
into the fermentation medium and then recovered in a separation
step, such as centrifugation. SmF offers better control of
cultivation conditions and is most suitable for bacteria and
yeasts requiring high moisture content. SmF also allows the
proper mixing of nutrients due to the high amount of free
water and is a method of easy handling and scaling up.
Nevertheless, the target products tend to be diluted at the end
of fermentation (Bagewadi et al., 2018; Sánchez et al., 2021).

In contrast, SSF utilizes solid substrates in the absence or near
absence of free water, which is a more appropriate condition for
the growth of filamentous fungi (Soccol et al., 2017). Microbial
growth and product formation occur on the surface of a solid
substrate that works as support or on an inert material
impregnated with nutrient solution (Thomas et al., 2013).
After the SSF process, the target compounds are recovered
through extraction and separation steps. SSF presents minimal
problems with microbial contamination due to the low water
contents in the medium and offers high volumetric productivity,
concentrated target compounds, tolerance of high substrate
concentration, and less wastewater generation (Manan and
Webb, 2017; Krishania et al., 2018).

In both fermentation strategies, agro-industrial wastes can be
utilized as a nutritional source for microorganism species to
obtain bioactive compounds (Kaur et al., 2019; Reque et al.,
2019; Abdeshahian et al., 2020; Jiang et al., 2020; Sharma and
Ghoshal, 2020; Sinha et al., 2021). Regarding the complex
matrices of some wastes, pretreatments are applied before the
fermentation to facilitate the microorganism’s access to nutrients
(Acosta et al., 2020).

The choice of substrate will depend on the nutritional needs of
the microbial species to produce the target compounds. A
combination of wastes from different sources can also be an
alternative to supply the nutritional requirements for microbial
growth (Otero et al., 2019). In addition, the fermentation of
wastes to produce bioactive compounds can be optimized
through some approaches including response surface
methodology (Moayedi et al., 2018; Rodrigues et al., 2019;
Abdeshahian et al., 2020; Yang et al., 2020) and one factor at
a time (Amorim et al., 2019; Kaur et al., 2019). The main bioactive
compounds that can be produced using the biological approach
were highlighted, as well as the particularities of each process.

Protein hydrolysates with biological actives can be obtained
using one-step fermentation from wastes (Mechmeche et al.,
2017; Fontoura et al., 2019). Moayedi et al. (2016) established
a fermentative process with the Bacillus subtilis strain to convert
tomato waste proteins into antioxidant and antibacterial
hydrolysates. Mechmeche et al. (2017) investigated the
bioconversion of tomato seed meal extract into antioxidant
peptides through a fermentative process with Lactobacillus
planetarium, which showed a promising ability to degrade and
convert tomato seed proteins into peptides, also contributing to
the antioxidant activity of the hydrolysates. Maciel et al. (2017)
explored the keratinolytic potential of Chryseobacterium sp. and
Bacillus sp. to convert feathers into protein hydrolysates with
better in vitro nutritional features, suggesting a good prospect for
their use in animal feed. Similarly, Fontoura et al. (2019) obtained
protein hydrolysates with antioxidant properties through SmF of
feathers with Chryseobacterium sp. Jiang et al. (2020) proposed an
optimized production of bioactive peptides with antioxidant
activity by B. subtilis from corn gluten meals.

Some studies have investigated the production of phenolic
compounds through bioconversion of wastes. Shin et al.
(2019) evaluated the fermentation of black rice by
Aspergillus species under SSF to produce antioxidant
phenolic compounds. After 3 days of fermentation, a
maximum production of 1,660 µg protocatechuic acid/g of
substrate was achieved. The authors also pointed the
requirement to pretreat the waste for the extraction of
phenolic compounds. Reque et al. (2017) addressed the
bioprocessing of wheat middlings by Bacillus sp. to increase
its antioxidant phenolic compound content. Besides changes
in the phenolic profiles, the bioprocessed wheat middlings
exhibited higher antioxidant capacity and total phenolic
amounts than the unfermented waste. In the same way,
Gulsunoglu et al. (2020) evaluated the effect of SSF with
four Aspergillus spp. as a strategy to enhance the contents
of phenolic compounds of apple peels. As a result, the 7-day
fermentation enhanced apple peels’ phenolic contents and
antioxidant activity by between threefold and fivefold. The
enhancement of antioxidant phenolic compounds through
bioprocessing of by-products from fig (Buenrostro-Figueroa
et al., 2017) and apricot (Dulf et al., 2017) is also reported. The
bioprocessing of brewer’s spent grain can favor both its
phenolic compound and bioactive peptides contents, thus
contributing to its antioxidant activity (Verni et al., 2020).

Potential prebiotic oligomers can be produced under
microbial fermentation of wastes (Amorim et al., 2019; Reque
et al., 2019). Wheat middlings, a by-product from wheat flour
production, showed good aspects to be utilized as a substrate for
xylooligosaccharide (XOS) production by B. subtilis,
demonstrating prebiotic activity through in vitro tests with
Lactobacillus acidophilus, a commercial probiotic strain (Reque
et al., 2019). Likewise, brewers’ spent grain was fermented by a
genetically modified B. subtilis to produce arabino-
xylooligosaccharides (AXOS), and after optimizing the
fermentation process, AXOS with a degree of polymerization
(DP) of 2–6 were obtained. Furthermore, AXOS yield using a
genetically modified strain increased 33% in comparison to the
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wild type (Amorim et al., 2018). In both cases, the bioconversion
of wastes into xylooligomers occurred due to the ability of strains
to secrete xylanases, the main enzymes involved in XOS
production. Yang et al. (2020) proposed an efficient
preparation of oligogalacturonides (OGS) using fermentation
of citrus peel wastes with an engineered Pichia pastoris strain.
The one-step fermentation of mandarin and orange peel wastes
resulted in OGS with a DP of 2–7 and 2–6, respectively, and a
maximal OGS yield of 26.1% after process optimization.

β-Glucan, a polysaccharide with several biological activities, is
commonly extracted from cereal by-products (Karimi et al., 2019)
and brewing/winery spent yeasts (Pinto et al., 2015; Varelas,
2016). However, β-glucan can also be produced by fermentation
processes from wastes. Abdeshahian et al. (2020) investigated the
production of extracellular β-glucan from sugarcane straw by
Lasiodiplodia theobromae. The highest β-glucan yield and
productivity were 0.047 g/g glucose and 0.014 g/L·h,
respectively, at 72 h of fermentation. Acosta et al. (2020)
evaluated the use of soybean molasses (unhydrolyzed and
hydrolyzed forms) as a raw material for the fermentative
production of β-glucan by L. theobromae. Maximum β-glucan
production (1.06 g/L) and yield (0.13 g/g) were obtained in
fermentations using unhydrolyzed molasses. Bzducha-Wróbel
et al. (2020) proposed the valorization of waste potato juice
water for β-glucan preparation with the Candida utilis strain,
resulting in a β-glucan yield of 63 g/100 g yeast dry weight after
72 h of fermentation.

Natural pigments as carotenoids can be produced through
biotechnological processes from wastes (Cipolatti et al., 2019;
Otero et al., 2019). Corn steep liquor and sugarcane molasses
were used as substrates to produce carotenoids by the
Rhodotorula mucilaginosa strain through batch and fed-batch
fermentation. Among the two fermentation approaches
evaluated, the fed-batch process increased the carotenoid
production by 400% compared to the batch process
(Rodrigues et al., 2019). Onion peels, potato skin, mung bean
husk, and pea pods were also evaluated as substrates to produce
carotenoids under SmF with R. mucilaginosa. These wastes were
chosen based on the high concentrations of sugars (onion peels
and potato skin) and nitrogen (mung bean and pea pods). As a
result, it was found that onion peels and mung bean husk are
potential substrates for the production of microbial carotenoids
as β-carotene, phytoene, torulene, and torularhodin (Sharma and
Ghoshal, 2020). Olive mill wastes (Ghilardi et al., 2020), coffee
pulp and husk (Moreira et al., 2018), and wastes from the
vegetable and fruit markets (Sinha et al., 2021) were explored
in carotenoid production by Rhodotorula species, showing good
prospects as cheap substrates. Orange, carrot, and papaya peels
were used as substrates to produce β-carotene under SSF with
Blakeslea trispora, resulting in good yields in synthetic media
(Kaur et al., 2019).

4.2.2 Low-Cost Microbial Enzymes for Further
Recovery of Bioactive Compounds
Microbial enzymes produced by the fermentation of wastes are
extensively applied to recover bioactive compounds (Zanutto-
Elgui et al., 2019; Gautério et al., 2021a). Several studies have

already demonstrated the effective use of wastes to obtain
microbial hydrolases such as proteases, lipases, and
carbohydrases (Pereira et al., 2019; Ahmad et al., 2020;
Gautério et al., 2020).

The use of agro-industrial wastes reduces the production costs
of microbial enzymes, being an alternative to replace synthetic
and commercial substrates. The expenses related to the recovery
of target compounds are also positively affected, as enzymatic
extracts have a lower cost than pure commercial enzymes.
Nevertheless, it is necessary to verify if the application requires
purified enzymatic extracts since the inclusion of purification
steps would result in a more costly process (Lemes et al., 2014;
Lemes et al., 2019).

Zanutto-Elgui et al. (2019) produced bioactive peptides
from bovine and goat milk subjected to the proteolytic
activity of Aspergillus oryzae and Aspergillus flavipes
proteases. Proteolytic enzymes from fungal species were
effectively produced under SSF in wheat bran and then
applied in the hydrolysis of milk proteins. The milk
peptides showed broad antimicrobial and antioxidant
activities in vitro, thus demonstrating a good prospect for
biotechnological applications of these bioactive compounds.
Oliveira et al. (2015) evaluated the production of soy protein
hydrolysates with a microbial protease preparation. First, the
protease production occurred using SmF from feather meal
broth with the Chryseobacterium sp. strain. Then the
enzymatic hydrolysis of soy protein isolate (SPI) occurred
using the microbial protease extract, thus evaluating soluble
peptides, antioxidant activity, and emulsifying capabilities of
the hydrolysates. The authors pointed out that enzymatic
hydrolysis increased soluble peptide content and positively
affected SPI’s antioxidant and emulsifying properties.
Moreover, the enzymatic treatment was demonstrated as a
promising approach to obtain antioxidant compounds for food
application, besides providing functional properties.

Gautério et al. (2020) utilized rice bran as a xylan source to
produce xylanases by the Aureobasidium pullulans strain. In a
subsequent study, crude and partially purified xylanases from
A. pullulans CCT 1261 were applied in beechwood xylan
hydrolysis, resulting in XOS, and the pretreatment did not
influence the total concentration of XOS (Gautério et al.,
2021a). The optimization of the hydrolytic process also
demonstrated the successful use of crude xylanase to obtain
XOS with low xylose release (Gautério et al., 2021b).

Kupski et al. (2018) applied a fungal cellulolytic complex to
provide functional compounds—mainly proteins and phenolic
compounds—from soybean meal (SBM) and corn husk (CH).
The cellulolytic enzymes were obtained using SSF of rice husk
and bran with Rhizopus oryzae CCT 7560 and then used to
hydrolyze SBM and CH. Enzymatic hydrolysis resulted in 34%
cellulose reduction in SBM, whereas, in CH, it was 55%. This
reduction increased the protein (74%) and starch (95%)
digestibility in SBM. In CH, in turn, the reduction allowed
the release of phenolic compounds (21%). As mentioned by the
authors, available protein in SBM can be used as a food
supplement, whereas the phenolic contents from CH can be
applied as a food additive.
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4.2.3 Simultaneous Production of Bioactive
Compounds Using Fermentation of Agro-industrial
Wastes
The use of agro-industrial wastes to produce bioactive
compounds via fermentation strategies has undergone several
advances. One of them refers to co-production, which is cost-
efficient and meets the sustainable context of the circular
economy. Some examples include the simultaneous production
of antioxidant compounds and proteolytic enzymes (Lemes et al.,
2016a); lignocellulolytic enzymes and phenolic compounds (Leite
et al., 2019); xylanases and xylooligomers (Menezes et al., 2017;
Pereira et al., 2018); proteolytic enzymes and protein hydrolysates
(Bernardo et al., 2019); lipids and carotenoids (Kot et al., 2019;
Costa et al., 2020; Silva et al., 2020); and antioxidant peptides and
pigments (Bertolini et al., 2021), among others.

The co-production has some challenges to be overcome such
as (1) optimization of the fermentation process, which becomes
more complicated when the aim is to obtain the maximum yield
of all the target compounds; (2) application of treatments to
wastes, which can sometimes favor the production of only the
target compound; and (3) separation of compounds produced,
where questions related to the application and purity of the target
compounds—use of a mixture or use of each compound
separately—must be analyzed.

5 DOWNSTREAM PROCESSING OF
BIOACTIVE COMPOUNDS FROM
AGRO-INDUSTRIAL WASTES
The recovery and purification of bioactive compounds are
strongly related to the particularities of the target biomolecule
and its future application. Some bioactive compounds’
characteristics, such as the nature of the compound, cell
location (intracellular or extracellular), size, structure, charge,
and solubility, among others, will determine the steps to be
applied for its recovery and purification. Furthermore, the
purity required of the target compound as well as the
preservation of their bioactivity must also be considered when
establishing the purification steps.

Using agro-industrial wastes to obtain bioactive compounds
using biotechnological approaches also influences the subsequent
recovery and purification steps. Waste features such as particle
size, solubility, viscosity, and recalcitrance can interfere with the
extraction, cell disruption, and purification of the target
compound, in addition to determining the number of
downstream steps. Another critical point is related to the
separation of bioactive compounds produced simultaneously
in the same medium. All these aspects determine the
complexity and costs of purification designs (Lemes et al.,
2014; Lemes et al., 2020a).

Bioactive compounds produced by enzymatic hydrolysis or
SmF procedures can be separated from the medium using
solid–liquid techniques (e.g., filtration and centrifugation).
Target compounds produced by SSF need to be recovered
by extraction. The extraction approaches applied to bioactive

compounds include solvent extraction (e.g., organic, eutectic,
and ionic liquid solvents), ultrasound-assisted extraction,
microwave-assisted extraction, enzymatic-assisted
extraction, pulsed electric field, subcritical and supercritical
fluid extraction, aqueous two-phase system, and three-phase
partitioning (Zainal-Abidin et al., 2017; Sagar et al., 2018; Yan
et al., 2018). Some examples include the extraction of β-
carotene (Kaur et al., 2019) and phenolic compounds
(Gulsunoglu et al., 2020) using organic solvents after SSF of
fruit and vegetable peels; the extraction of lycopene using
organic solvent (ethanol) after enzymatic-assisted treatment
of tomato by-products (Azabou et al., 2016); the extraction of
phenolic compounds using ionic liquids (Magro and Castro,
2020) and ultrasound-assisted procedure (Ajila et al., 2011)
after SSF of lentil grains and apple pomace, respectively; and
the extraction of phenolic compounds from fermented orange
pomace using supercritical CO2 and cosolvents (Espinosa-
Pardo et al., 2017).

Regarding intracellular target compounds, a step of cell
disruption or cell permeabilization and subsequent extraction
procedure is required, and both can occur separately or
simultaneously (Kalil et al., 2017). The cell disruption/
destabilization techniques applied to releasing compounds
include bead milling, ultrasonication, high-pressure
homogenization, osmotic shock, freeze–thawing, and lysis
procedures with enzymes, chemicals, and heating (Gomes
et al., 2020).

Purification processes applied to bioactive compounds are
diverse and range from low- to high-resolution techniques.
Some of the mentioned procedures in the literature are
aqueous-phase separation (Wang et al., 2019), membrane
technology (Pezeshk et al., 2019; Singh et al., 2020), and
chromatography (Moayedi et al., 2018; Fontoura et al., 2019).
Each technique can be applied alone or combined in purification
designs, considering the aspects of the target compounds
mentioned above. The challenge is to establish a purification
process that results in desirable compound purity in the highest
yield possible (Lemes et al., 2014).

6 POTENTIAL APPLICATIONS OF
BIOACTIVE COMPOUNDS RECOVERED
FROM WASTE AND BY-PRODUCTS
The growing demand for foods with beneficial effects on health,
while contributing to the sustainable use of natural resources,
stimulates the use of by-products to obtain bioactive compounds
(Vilas-Boas et al., 2021), which have multiple applications in
food, acting as antimicrobials, antioxidants, natural dyes,
fortifying ingredients, texture modifiers, and others (Veneziani
et al., 2017).

Figure 3 shows an overview of the potential application of
bioactive compounds recovered from food by-products in meat,
dairy, bakery, chocolate, and juice products, where the
compounds are used as food ingredients with a defined role in
the protection and technological properties of food.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org January 2022 | Volume 9 | Article 8025439

Lemes et al. Biological Extraction of Bioactive Compounds

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


A large number of studies report the addition of bioactive
compounds from by-products in various food systems
(Table 2), being applied as antioxidant and antimicrobial
agents and also as agents to improve the nutritional and
functional value of food products such as frozen fish (Özen
et al., 2011), yogurt (Fidelis et al., 2020), dry cured sausage
“chorizo” (Lorenzo et al., 2013), beef patties (Zamuz et al.,

2018), bread (Rizzello et al., 2009; Peng et al., 2010), and petit
Suisse cheese (Deolindo et al., 2019).

The antioxidant potential of extracts from by-products is
frequently used in foods and has been mainly associated with
their content of total phenolic compounds determined through
different methods (Lorenzo et al., 2013; Zamuz et al., 2018; Fidelis
et al., 2020) since the compounds have chemical properties and

FIGURE 3 | Potential applications of bioactive compounds recovered from by-products.

TABLE 2 | Application of bioactive compounds in food products.

Bioactive compound Addition levels Food product Formulation properties References

Amaranthus spp. Seeds extract rich in
antifungal peptides

7.04 and 22.96% Bread ↑ nutritional value (protein and free amino acids) Rizzello et al.
(2009)Delay in the appearance of fungal mycelium in storage

No changes in taste and flavor

Phenolics and carbohydrate fractions
of okra seed and seedless pod

300 mg, 600 mg, and
1 g/500 g

Bread ↑ bread antioxidant activity Peng et al.
(2010)↓ antioxidant activity (30–40%) with thermal processing;

↓formation of harmful compound Nε-(carboxymethyl)lysine
Acceptable color change acceptable with little effect on quality

Grape seed extract powder 20 g CE/kg Frozen fish Inhibition of the formation of lipid hydroperoxides and
thiobarbituric acid reactive substances (TBARS)

Özen et al.
(2011)

Grape seed extracts 1 g/kg Dry cured
sausage
“chorizo”

↓ oxidation determined using TBARS method and the total
volatile compounds of lipid oxidation

Lorenzo et al.
(2013)

↑ sensory acceptance compared to those formulated with
BHT, chestnut extract and control

Hull, bur, and leaf chestnut extracts 250–1,000 mg/kg Beef patties ↓ lipid oxidation in hamburgers Zamuz et al.
(2018)↑ reduction of metmyoglobin at higher doses

It did not affect sensory acceptance

Grape seed extract 0.5 g/100 g Petit Suisse
cheese

↑ total phenolics and antioxidant activity (up to 28 days) Deolindo et al.
(2019)73% sensory acceptance

77% inhibition of angiotensin-converting enzyme (ACE) activity

Camu-camu (Myrciaria dubia) seed
extract

1.0 g/100 g Yogurt ↑ antioxidant and chemical reducing capacity (FRAP, DPPH,
and FCRC methods)

Fidelis et al.
(2020)

The camu-camu yogurt containing 0.25 g/100 g of lyophilized
camu-camu (Myrciaria dubia) seed extract had an acceptance
rate of 84%
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structural diversity that influences the mechanism of action
associated with this bioactivity (Vuolo et al., 2019).

Phenolic compounds such as aliphatic alcohols, terpenes,
acids, aldehydes, ketones, anthocyanins, and isoflavonoids are
the main bioactive compounds in by-products with antimicrobial
properties (Arshad and Batool, 2017) and, therefore, with
potential for incorporation into food matrices. In addition to
these compounds, water-soluble extracts rich in antimicrobial
peptides can be obtained from agro-industrial by-products such
as amaranth seed extract to inhibit fungal species isolated from

bakery products, in which when applied to the bread matrix
(gluten free and with bread flour wheat), the inhibitory activity is
verified during the entire shelf life of the products (Rizzello et al.,
2009).

In addition to the antioxidant and antimicrobial potentials,
bioactive compounds may have other biological properties such
as antiproliferative, antidiabetic, and antihypertensive activities
(Ben-Othman et al., 2020). For example, Fidelis et al. (2020)
observed that camu-camu seed extract has a high content of total
phenolics (46.3% w/w), contain mainly vescalagin, castalagin,

FIGURE 4 | (A) production of films by casting. (B) application as smart packaging, and (C) application as active food packaging.
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gallic acid, procyanidin A2, and (−)-epicatechin. This extract
demonstrated high antioxidant and antiproliferative activities
against HepG2 cells and Caco-2 cells, inhibiting α-amylase
(40.7%), α-glucosidase (16.6%), and angiotensin-converting
enzymes (34.4%). The application of the extract in yogurts
increased the antioxidant capacity without affecting sensory
acceptance (84%), an important factor for the application of
any new ingredient in formulations.

Other components, such as betalain anthocyanins, curcumins,
tannins, and carotenoids, commonly applied in foods as natural
colorings (Luzardo-Ocampo et al., 2021), have also been used for
the development of active and smart biodegradable food
packaging (Figure 4) (Alizadeh-Sani et al., 2020).
Anthocyanins extracted from the residue of processing
blueberry juice, for example, have already been used in the
production of smart films using cassava starch capable of
monitoring the quality of orange juice, corn oil, and chicken
pieces. Anthocyanin acts as an indicator of pH change during
storage, as its color is altered due to structural changes when there
is pH variation (Luchese et al., 2018).

Anthocyanin extracted from black plum bark is also efficiently
applied in films based on chitosan and TiO2, where incorporation
results in high barrier properties against water vapor and UV-vis
light and better mechanical strength (Zhang et al., 2019). In
addition, it results in a higher free radical scavenging capacity and
antimicrobial activity (Escherichia coli, Staphylococcus aureus,
Salmonella, and Listeria monocytogenes), besides promoting
the production of films capable of eliminating ethylene with
potential application in pH-sensitive foods by detecting their
changes and causing a color change.

Betacyanins extracted from the shell of dragon fruits can also
be used to monitor the quality of fish freshness through their
incorporation into intelligent packaging based on
glucomannan–polyvinyl alcohol (Ardiyansyah et al., 2018).
The presence of betacyanins also promotes a noticeable
change from purple to yellow coloration due to the
deterioration process of the product, which is, consequently,
accompanied by increased levels of total volatile basic nitrogen
(TVBN).

Protein hydrolysates, obtained through the enzymatic
hydrolysis of proteins from agro-industrial by-products, have
also been used as active agents in food films. Active food films
based on alginate and protein hydrolysates obtained from the by-
product of cottonseed oil extraction promote the formation of
films with excellent visible light barrier properties, antioxidant
activity, and antimicrobial potential against S. aureus,
Colletotrichum gloeosporioides, and Rhizopus oligosporus
(Oliveira-Filho et al., 2019).

Another prominent use of by-products is in the production of
nutraceuticals, which are bioactive compounds used to meet the
body’s needs and usually consumed in pharmaceutical
preparations, such as pills, tablets, capsules, powders, and
bottles (Kumar et al., 2017). Among the most commonly

marketed and used nutraceuticals are amino acids, carotenoids
(β-carotene, lutein, zeaxanthin, and lycopene), fatty acids
(omega-3 and omega-6), minerals (copper, selenium, and
zinc), polyphenols, vitamins (C and E), and several others
(Souyoul et al., 2018), which can be extracted from agro-
industrial by-products.

The possibility of applying bioactive components in food
products and in new technologies to promote food quality and
safety is huge. Due to the diversity of compounds and their
possible interactions and diverse activities, each component must
be properly evaluated to produce food, beverages, and active and
smart packaging applied to food to guarantee maximum potential
in the applications.

7 CONCLUSION AND FUTURE
DIRECTIONS

Large amounts of agro-industrial residues are generated during
the processing of animal and vegetable materials, making it
extremely necessary to adopt strategies for the integral use of
residues or, even, for conversion into higher-value-added
products. Biological approaches have several advantages
compared to nonbiological processes, including the provision
of extracts with high quality and high bioactivity, as well as with
low toxicity.

Bioactive compounds obtained from by-products using the
biological approach can be applied to develop foods and active or
smart agents for biodegradable materials and packaging while
contributing to consumer health, food safety, and sustainable use
of natural resources.

That is why the biological approach is an important tool that
must be continually improved and encouraged, especially due to
the diversity of components that can be produced and the
possible interactions and varied activities; each component
must be properly evaluated to guarantee maximum potential
in the applications.
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