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N1-methyladenosine (m1A) is ubiquitous in eukaryotic RNA and regulates

mRNA translation. However, little is known about its regulatory role in

glioma. Here, we identified 4 m1A modification-related patterns based on

m1A regulators in the TCGA (The Cancer Genome Atlas) and CGGA (Chinese

Glioma Genome Atlas) cohorts. The differences in survival prognosis between

different clusters were striking. In addition, stemness, genomic heterogeneity,

tumor microenvironment (TME), and immune cell infiltration were also

significantly different between the poor and best prognostic clusters. To

reveal the underlying mechanism, differentially expressed genes (DEGs)

between the poor and best prognostic clusters were identified, and then

were integrated for weighted correlation network analysis (WGCNA). After

Univariate Cox-LASSO-Multivariate Cox analyses, DEGs PLEK2 and ABCC3

were screened as the risk-hub genes and were selected to construct an

m1A-related signature. Moreover, ABCC3 exacerbated glioma proliferation

and was associated with temozolomide (TMZ) resistance. Overall, our study

provided new insights into the function and potential therapeutic role of m1A

in glioma.
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Introduction

Gliomas are the most common neurological malignancies

(1). Currently, surgery followed by chemoradiation is still the

standard treatment, but the prognosis is poor (2). In addition,

preliminary results from a phase III clinical trial in recurrent

glioma suggested that immune checkpoint inhibitor therapy,

which has shown promise in tumor therapy, did not significantly

improve patient survival (3–6). Extensive intra-tumor and inter-

tumor heterogeneity, tumor microenvironment (TME) are

particularly critical factors in drug resistance and treatment

failure (7, 8).

To date, more than 160 different types of post-transcriptional

modifications have been identified on RNA (9). Breakthroughs in

sequencing technologies have greatly improved our knowledge of

the location, regulation, and function of RNAmodifications in the

transcriptome (10, 11), which lead to the birth of

epitranscriptomics (12). Notably, RNA modifications, especially

N6-methyladenosine (m6A), 5-methylcytidine (m5C) and

pseudouridine (Y) modification, affect glioma prognosis and

have been proposed as a new class of epigenetic markers for the

diagnosis of glioma (13–15). Importantly, a recently identified

modification, N1-methyladenosine (m1A), is ubiquitous in

eukaryotic tRNA and rRNA, and recent studies have shown that

m1A modification can also regulate mRNA translation (16).

However, its specific role in glioma remains unclear.

m1A modification is dynamically regulated in mammalian

RNAs. NML, TRMT6, TRMT10C, TRMT61A, and TRMT61B are

identified as methylases (16, 17), besides, ALKBH1 and ALKBH3

are responsible for demethylation (18, 19), and YTHDC1,

YTHDF1, YTHDF2 and YTHDF3 are m1A binding proteins

(20, 21). Here, we identified 4 modification-related clusters

based on these m1A regulators in the TCGA and CGGA

cohorts. Poor- and best-prognostic clusters differed significantly

in stemness, genomic heterogeneity, tumor microenvironment

(TME) and immune cell infiltration. An m1A-related signature

was constructed using the risk-hub differentially expressed genes

(DEGs) PLEK2 and ABCC3, which were identified between

clusters with best and worse prognosis and were highly

associated with heterogeneity. Furthermore, we found that

ABCC3 was significantly associated with temozolomide (TMZ)

resistance, and silencing ABCC3 effectively inhibited glioma cell

proliferation. Overall, our study focused on the function role of

m1A and provided a potential therapeutic strategy for glioma.
Methods

Datasets and samples

The TCGA dataset (674 patients included) was downloaded

from University of California Santa Cruz (UCSC) Xena browser
Frontiers in Immunology 02
(https://xenabrowser.net/datapages/) (22), the CGGA #325

(309 patients included) and CGGA #693 (657 patients

included) datasets were obtained from the Chinese Glioma

Genome Atlas (CGGA) data portal (http://www.cgga.org.cn/)

(23), the data for IMvigor210 cohort (348 patients included)

were loaded from R package “IMvigor210CoreBiologies” (24),

and the GSE148740, GSE113510 and GSE68071 datasets were

downloaded from GEO website (https://www.ncbi.nlm.nih.gov/

geo/).
Consensus clustering analysis

Cluster analysis was performed by ConsensusClusterPlus

(25), using agglomerative pam clustering with a 1-pearson

correlation distances and resampling 80% of the samples for

10 repetitions. The optimal number of clusters was

determined using the empirical cumulative distribution

function plot.
Analysis of stemness features

The glioma stemness scores based on RNA expression

(RNAss), Epigenetically regulated RNA expression (EREG-

EXPss), DNA methylation (DNAss), Epigenetically regulated

DNA methylation (EREG-METHs), Differentially methylated

probes (DMPss), Enhancer Elements/DNA methylation

(ENHss) were calculated according to previous study (26).
Analysis of genomic heterogeneity

The dataset of glioma simple nucleotide variations processed

with MuTect2 software (27) was downloaded from GDC

(https://portal.gdc.cancer.gov/). TMB (Tumor mutation

burden) and MATH (Mutant-allele tumor heterogeneity) for

each glioma were calculated using the tmb function and

inferHeterogeneity function of the R package “maftools”,

respectively. MSI (Microsatellite instability), Neoantigen,

purity, ploidy, HRD (Homologous recombination deficiency)

and LOH (Loss of heterozygosity) for each glioma were derived

from previous studies (28, 29).
Immune microenvironment analysis

The stromal, immune, and ESTIMATE scores of each glioma

were calculated based on gene expression using the R package

“estimate” (30). The abundance of tumor-infiltrating immune

cells in glioma were analyzed using the CIBERSOR algorithm on

the TIMER2 platform (http://timer.cistrome.org/) (31).
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DEGs screening and enrichment Analysis

Differentially expressed genes (DEGs) between different

clusters were screened using the R package” limma” (p< 0.05

and |log2FC| ≥ 1) (32). GO analysis of DEGs was performed

using Metascape (33). The GSEA (Gene set enrichment analysis)

software was downloaded from the GSEA website (http://

software.broadinstitute.org/gsea/index.jsp) (34), and the

c2.cp.kegg.v7.4.symbols.gmt subset was downloaded from the

Molecular Signatures Database (http://www.gsea-msigdb.org/

gsea/downloads.jsp) to evaluate related pathways and

molecular mechanisms (35).
Construction of risk signature

Weighted correlation network analysis (WGCNA) was

performed to construct the scale-free co-expression network

using the R software package “WGCNA”, Six co-expression

modules were finally obtained after merging modules with

distances less than 0.25. Genes with high connectivity in the

significant clinical module were identified as hub genes.

Univariate, LASSO, and multivariate regression analysis were

then sequentially performed to screen for positive hub genes

significantly associated with overall survival (OS). The risk score

was calculated as follows:

Risk score =o
n

i=1
Coefi*Expið Þ
Cell viability analysis

ABCC3 was knocked down using siRNAs (Supplementary

Table 1, Shanghai GenePharma Co., Ltd) in LN229 and U87

cells. Control and ABCC3-deficient cells were seed into the 96-

well plates or glass bottom cell culture dishes. Cell viability was

detected using the CCK-8 kit (Dojindo Molecular Technologies)

and EdU kit (Beyotime Biotecnology) according to the

manufacturer’s instructions.
Statistical analysis

One-way ANOVA, t test and wilcoxon test were used to

analyze the significance of differences in heterogeneity and gene

expression. Kaplan-Meier analysis was performed using the

“survfit” function of the R package “survival”, and the logrank

test method was used to evaluate the significance of the

prognostic differences between samples from different groups.

ROC analyses for 1-, 3-, 5-year time points were performed

using the “roc” function of the R package “pROC”, and the AUC
Frontiers in Immunology 03
and confidence intervals were evaluated using the “ci” function

to obtain the final AUC results. GraphPad Prism and R software

were used for all statistical analyses, and p values less than 0.05

were considered statistically significant.
Results

Analysis of m1A regulators in glioma

N1-methyladenosine is a unique methylation modification

which is ubiquitous and functional in mammalian RNAs.

Following the analysis procedure of this study (Figure 1), we

first analyzed the expression of m1A regulators between LGG

(Low grade glioma) and GBM (Glioblastoma). The results

showed that all regulators were differentially expressed

between LGG and GBM in the TCGA cohort (Figures 2A, B).

Furthermore, except for TRMT61A and ALKBH1, all

regulators were also differentially expressed between IDH

mutant and IDH wild-type groups (Supplementary Figure 1).

The mutational landscape of m1A regulators in glioma was

analyzed and displayed as a waterfall plot, with NML

mutations present in 2.9% of the samples (Figure 2C). We

then studied the interrelationships between m1A regulators

and their prognostic roles in the TCGA cohort. Results showed

that the expression levels of the regulators were significantly

related. (Figure 2D). In addition to TRMT61A, the expression

of other m1A regulators was associated with overall survival

(OS) in glioma (Figure 2D).
Consensus clustering analysis of m1A
regulators in glioma

Based on m1A regulator expression profiles, an unsupervised

consensus clustering analysis was performed to identify distinct

subtypes in the TCGA dataset. Four clusters were finally

determined using the empirical cumulative distribution

function plot (Figure 3A and Supplementary Figure 2). We

next analyzed the prognosis of the four clusters and found that

there were significant differences in overall survival between

these clusters. Patients in cluster 4 survived longer, while

patients in cluster 3 survived obviously shorter (Figure 3B). It

was consistent with the results obtained in unsupervised

consensus analysis of the CGGA dataset (Supplementary

Figures 3, 4). There were also differences in clinical

phenotypes between four clusters, especially the number of

GBM, IDH wild-type, older, and MGMT un-methylated

phenotypes in cluster 3 (Figure 3C). Furthermore, we studied

the expression of m1A regulators in different clusters. Results

displayed that comparing with cluster 4, NML, TRMT61B,

TRMT6, TRMT10C, ALKBH1, ALKBH3, YTHDF2, and
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YTHDF3 were up-regulated, while YTHDC1 was significantly

down-regulated in cluster 3 (Figure 3D).
Stemness, genomic heterogeneity and
immune microenvironment analysis in
different clusters

Tumor progression involves a progressive loss of a

differentiated phenotype and the acquisition of progenitor-like,

stem-like characteristics. In this study, glioma stemness scores

were calculated based on RNA expression and DNA methylation,

respectively. The worst-prognostic cluster 3 had lower RNAss but

higher EREG-EXPss compared to best-prognostic cluster 4

(Figure 4A, B). Whereas, all stemness scores according to DNA

methylation, such as DNAs, EREG-METHs, DMPss, and ENHss,

increased in cluster 3 (Figure 4C–F). Correlation analysis showed

that m1A regulators were highly associated with stemness

scores in the TCGA cohort, especially m1A writers NML,

TRMT61B, TRMT6 and readers YTHDC1, YTHDF1, and

YTHDF2 (Figure 4G).
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Extensive intratumoral and interpatient heterogeneity is

an underlying cause of treatment failure, especially for the

most aggressive and treatment-resistant GBM (8). Here, we

analyzed TMB, MATH, MSI, Neoantigen, purity, ploidy,

HRD, and LOH of each glioma in different clusters

(Figure 5). Cluster 3 with the worst prognosis had higher

TMB and LOH than other clusters, while MATH and MSI

were lowest (Figures 5A–H). Furthermore, cluster 3 had lower

Purity and higher HRD compared to cluster 4 (Figures 5E, G).

Correlation analysis showed that m1A regulators were

remarkably associated with these heterogenetic scores in the

TCGA cohort (Figure 5I). For instance, the m1A writers

TRMT6 and NML were most highly related to TMB and

MSI, respectively (Figures 5J, K).

TME is involved in tumor survival, malignant progression,

metastasis and therapy resistance. Therefore, we compared the

immune microenvironment of gliomas in different clusters.

There were obviously differences in StromalScore,

ImmuneScore, and ESTIMATEScore between clusters, with

cluster 3 being the highest and cluster 4 being the lowest

(Figures 6A–C). Furthermore, m1A regulators were tightly
FIGURE 1

Flowchart of this study.
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assoc ia ted wi th StromalScore , ImmuneScore , and

ESTIMATEScore, especially the writers NML and TRMT10C,

the eraser ALKBH3, and the readers YTHDC1 and YTHDF1

(Figure 6D). Analysis of tumor-infiltrating immune cells showed

that the abundance of B cell naïve, B cell plasma, Monocyte, and

Mast cell resting was dramatically reduced in cluster 3, while

Macrophage M0 and Macrophage M2 were dramatically

increased (Figure 6E).

We re-analyzed stemness, genomic heterogeneity, and

immune microenvironment in the LGG subgroup separately.

As shown in the Supplementary Figure 5A, there was a clear

difference in the OS between cluster 3 and cluster 4. Moreover,

the stemness score RNAss decreased in the worst-prognostic

cluster 3 compared to the best prognostic cluster 4

(Supplementary Figure 5B), whereas DNAs, EREG-METHs,
Frontiers in Immunology 05
DMPss, and ENHss, increased in worst-prognostic cluster 3

(Supplementary Figures 5C–G), which were consistent with the

entire cohort. Likewise, the genomic heterogeneity analysis

( S u p p l em e n t a r y F i g u r e s 5H – L ) a n d immun e

microenvironment analysis (Supplementary Figures 5M–O)

yielded similar results to the entire cohort. In addition to the

differentially infiltrating immune cells identified between

clusters 3 and 4 across the entire cohort, we also found T cell

CD4+ naïve, T cell CD4+ memory resting, T cell follicular

helper, T cell regulatory (Tregs), Myeloid dendritic cell

activated, and Neutrophil were differentially infiltrated

between cluster 3 and 4 in the LGG subgroup (Supplementary

Figure 5P). However, Macrophage M0 andMast cell resting were

not significantly different between clusters 3 and 4

(Supplementary Figure 5P).
B

C

D

A

FIGURE 2

Analysis of m1A regulators in glioma. (A) Heatmap depicting the expression of m1A regulators in the TCGA cohort. (B) Spilt violin showing the
expression of m1A regulators between LGG and GBM. (C) Mutation waterfall chart displaying the mutation on m1A regulators in glioma. (D) The
network displaying the relationship and prognosis information of m1A regulators. *, P< 0.05; ****, P< 0.0001.
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Construction of the risk score signature

To reveal the mechanism leading to differences in prognosis

and heterogeneity, DEGs between cluster 3 and cluster 4 were

screened using R package “limma”. 997 up-regulated and 418

down-regulated genes were identified (Figure 7A). GO

enrichment analysis showed that the DEGs were enriched in

the Cy tok in e - cy tok ine r e c ep to r in t e r a c t i on and

Immunoregulatory interactions (Figure 7B). GSEA analysis

showed the DEGs were enriched in CELL ADHESION

MOLECULES CAMS, JAK STAT signaling pathway, P53

signaling pathway, and immune-related pathways (Figure 7C).

DEGs and traits such as stemness, genomic heterogeneity,

TME were integrated for WGCNA analysis. Six co-expression
Frontiers in Immunology 06
modules were identified, of which the blue module was most

associated with the traits (Figure 8). Seven genes with a module

membership greater than 0.85 were identified as hub genes in the

blue module. We then sequentially performed Univariate,

LASSO, and Multivariate Cox regression analysis to filter

variables and reduce model complexity (Figures 9A–C).

PLEK2 and ABCC3 were ultimately selected as risk-hub genes

(Figure 9C) and used to construct a risk model (Figure 9D).

Kaplan Meier curves displayed that higher risk scores were

associated with poorer prognosis (Figure 9E). Moreover, the

sensitivity and specificity of risk score was greatly high in

predicting the survival of glioma patients at 1-, 3- and 5-years

(Figure 9F). The results of the risk model were also validated in

the CGGA #325 and CGGA #693 datasets (Supplementary
B

C

D

A

FIGURE 3

Consensus clustering analysis of m1A regulators in glioma. (A) Consensus clustering matrix for the most suitable k = 4. (B) Kaplan-Meier curves
displaying prognostic differences between different clusters. (C) Differences in clinical phenotypes between different clusters. (D) Differences in
expression of m1A regulators between cluster 3 and cluster 4. ns, no significance; *, P< 0.05; **, P< 0.01; ***, P< 0.001; ****, P< 0.0001.
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Figure 6), as well as the LGG subgroup (Supplementary

Figure 7).
ABCC3 is associated with tumor
stemness, genomic heterogeneity,
immune microenvironment and
TMZ-resistance

We then analyzed the relationship between the traits and the

risk score, the prognostic hub genes PLEK2 and ABCC3

(Figure 10A). High associations with stemness, genomic

heterogeneity and TME suggested that risk scores might be

associated with immunotherapy outcome. Therefore, we selected

the most widely used IMVigor210 ICBs cohort, which contains

detailed clinicopathological profiles and gene expression data of

a large number of patients (n=348) receiving immune

checkpoint blockade therapy, to validate the m1A signature.

Results showed that the low-risk group had more responders

than the high-risk group, and the risk scores of the CR/PR group
Frontiers in Immunology 07
were lower than that of the SD/PD group (Supplementary

Figure 8). Moreover, low-risk patients had better overall

survival (Supplementary Figure 8).

In addition to being associated with stemness, genomic

heterogeneity, and TME (Figure 10A), ABCC3 was also

significantly correlated with the expression of m1A writers

such as NML, TRMT61B, TRMT6 and TRMT10C

(Figure 10B). Additionally, ABCC3 was up-regulated in the

poor-prognostic cluster 3 relative to cluster 4 (Figures 7A and

10G), and it was also up-regulated in GBM relative to LGG in the

TCGA, CGGA #325 and CGGA #693 cohorts (Figures 10C–E).

ABCC3 is a member of the MRP subfamily which is involved

in multi-drug resistance. We found ABCC3 was up-regulated in

the TMZ-resistant PDX model (Figure 10H), TMZ-resistant

LN229 cells (Figure 10I), and TMZ-resistant glioma stem cells

(GSCs) (Figure 10J) compared to corresponding controls.

Furthermore, ABCC3 significantly affected the prognosis of

gliomas in the TCGA, CGGA #325, and CGGA #693 cohorts

(Figure 10K). Therefore, ABCC3 may be involved in the

resistance of TMZ.
B C

D E F

G

A

FIGURE 4

Analysis of stemness features in glioma. (A–F) Difference in stemness scores based on RNA expression and DNA methylation between clusters.
(G) Correlation between m1A regulators and stemness scores. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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ABCC3 affects the proliferation of
glioma cells

To investigate the effect of ABCC3 on glioma cells, we

knocked down it in LN299 and U87 cells, respectively

(Figures 11A, F). Then we measured the growth curves of the

ABCC3-defficient and control cells using the CCK-8 kit

(Figures 11B, G), and detected the proportion of proliferating

cells using the EdU kit (Figures 11C, D, H, I). All the results

indicated that ABCC3 significantly affected the proliferation of

glioma cells. Furthermore, IC50 analysis showed that

knockdown of ABCC3 considerably reduced the resistance of

glioma cells to TMZ (Figures 11E, J).
Discussion

Epigenetic modifications, such as DNA methylation,

histone modifications, can result in heritable phenotypic
Frontiers in Immunology 08
changes but without any changes in nucleic acid sequence.

RNA modifications play a critical role in regulating multiple

metabolic processes of RNA, such as localization, transport,

splicing, stabilization, and translation, which also influence

phenotype, and thus have been proposed as a new class of

epigenetic regulators recently (36, 37). Among all mRNA

modifications, N6-methyladenosine (m6A), 5-methylcytidine

(m5C) and pseudouridine (Y) modification, have been found

to be epigenetic markers for the diagnosis of glioma due to

their impact on prognosis (13–15). Surprisingly, m1A also has

such potential, as regulators of m1A modification markedly

affected glioma prognosis, with NML, TRMT6, TRMT10C,

TRMT61B, ALKBH1, ALKBH3, YTHDF1, YTHDF2, and

YTHDF3 as risk factors but YTHDC1 as a protective

factor (Figure 2).

According to consensus clustering analysis of all m1A

regulators, gliomas could be divided into four clusters with

distinct modification patterns (Figure 3 and Supplementary

Figure 3). The overall survival of the four clusters was
B C D

E F G H

I J K

A

FIGURE 5

Analysis of genomic heterogeneity in glioma. (A–H) Differences in TMB, MATH, MSI, NEO, Purity, Ploidy, HRD and LOH between clusters.
(I) Correlation between m1A regulators and genomic heterogeneity. (J) Representative scatter plot showing the correlation between TRMT6 and
TMB. (K) Representative scatter plot showing the correlation between NML and MSI. *, P < 0.05; ****, P < 0.0001.
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significantly different (Figure 3B), suggesting that m1A

modification patterns might be used to predict prognosis.

Molecular characteristics such as IDH mutation status and

MGMT methylation status have been used for pathological

diagnosis of glioma. In this study, we found these

characteristics differed among the four clusters, with the
Frontiers in Immunology 09
majority of the worst-prognostic group being IDH wildtype

and MGMT un-methylated patients (Figure 3C). Interestingly,

tumor cell stemness, heterogeneity, and microenvironment

which are associated with malignant progression and therapy

resistance (8) also differed significantly between the best and

worst prognostic clusters (Figures 4-6). These results raised
B C

D

E

A

FIGURE 6

Immune microenvironment analysis in glioma. (A–C) Differences in Stromal, Immune, and ESTIMATE scores between clusters. (D) Correlation
between m1A regulators and microenvironment scores. (E) Heatmap and boxplot showing the infiltration of 22 immune cells between different
clusters. *, P< 0.05; **, P< 0.01; ***, P< 0.001; ****, P< 0.0001.
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B

CA

FIGURE 7

DEGs screening and enrichment Analysis. (A) Differentially expressed genes between cluster 3 and cluster 4. (B) GO analysis of the differentially
expressed genes. (C) GSEA analysis of the differentially expressed genes.
B

C D

A

FIGURE 8

Weighted Correlation Network Analysis. (A) Clustering of module genes in the TCGA cohort. (B) Cluster dendrogram of modules. (C) Module-
trait relationships. (D) Scatter plot of correlation between GS and MM. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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some points worth investigating, what’s the relationship between

m1A modification and prognostic and heterogeneous features;

can m1A shape tumor heterogeneity? Correlation analyses

between regulators and features confirmed the possibility of

such a relationship (Figures 4G, 5I and 6D), but further

elaboration is needed.

Herein, PLEK2 and ABCC3 were screened as risk-hub genes

for their high connectivity in the significant clinical module as
Frontiers in Immunology 11
well as their incomparably prognostic roles (Figures 7–9).

Compared with other epigenetic modification risk models,

such as m6A and m5C (15, 38), the risk model constructed in

study was very simple but showed high efficiency in TCGA,

CGGA #325, and CGGA #693 cohorts (Figure 9 and

Supplementary Figure 6). Furthermore, risk model could

predict susceptibility to TMZ and outcome of ICBs treatment

(Figures 10, 11 and Supplementary Figure 8).
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FIGURE 9

Construction of risk score signature. (A) Univariate Cox regression analysis of hub genes in the TCGA cohort. (B) LASSO Cox regression analysis
of hub genes in the TCGA cohort. (C) Multivariate Cox regression analysis of hub genes in the TCGA cohort. (D) Distribution of the risk score,
survival status, and expression profile of the prognostic genes in the TCGA cohort. (E) Kaplan-Meier curves displaying prognostic differences
between high- and low-risk groups in the TCGA cohort. (F) The ROC curves describing the sensitivity and specificity of risk score in predicting
OS at 1-, 3- and 5-year time points in the TCGA cohort.
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ABCC3 protein is a member of the ATP-binding cassette

transporter that binds and hydrolyzes ATP to enable active

transport of various substrates including many toxicants and

endogenous compound across extra- and intra-cellular

membranes (39–41). ABCC3 protein belongs to the

Multidrug Resistance-Associated Protein (MRP) subfamily

and confers resistance to various anticancer drugs,

methotrexate, tenoposide and etoposide by decreasing

accumulation of these drugs in cells (39, 41). ABCC3 was

remarkably upregulated in the TMZ-resistant glioma cells

(Figures 10H–J) and promoted glioma proliferation
Frontiers in Immunology 12
(Figure 11), indicating it might be associated with the poor

outcome of GBM receiving standard-of-care for concurrent

radiotherapy and TMZ-chemotherapy after surgical resection

(2, 42). Tumor heterogeneity, especially immunosuppressive

TME, was involved in resistance to immune checkpoint

blockers therapy (7). Notably, ABCC3 was closely linked to

glioma heterogeneity (Figure 10A), low-risk group had more

responders than the high-risk group, and low-risk patients had

better overall survival (Supplementary Figure 8). Therefore, the

relationship between ABCC3 expression and the failure of ICBs

therapy needs to be studied.
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FIGURE 10

ABCC3 is associated with tumor stemness, genomic heterogeneity, immune microenvironment and TMZ-resistance. (A) Correlations between
ABCC3 and tumor stemness, genomic heterogeneity, and immune microenvironment. (B) Correlation between ABCC3 and m1A regulators.
(C–E) Differences in ABCC3 expression between LGG and GBM in TCGA, CGGA #325 and CGGA #693 cohort, respectively. (F) Differences in
ABCC3 expression between primary and recurrent gliomas. (G) Differences in ABCC3 expression between cluster 3 and cluster 4 in the TCGA
cohort. (H) Differences in ABCC3 expression between TMZ-sensitive and TMZ-resistant PDX models, (I) LN229 cells, and (J) GSC cells.
(K) Kaplan-Meier curves displaying prognostic differences between ABCC3 high and low expression groups in the TCGA, CGGA #325, and
CGGA #693 cohort, respectively. *, P < 0.05; **, P < 0.01; ****, P < 0.0001.
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Conclusions

In conclusion, we comprehensively analyzed the effect of

m1A on glioma, and provided potential targets for improving

standard therapy and immunotherapy in glioma.
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FIGURE 11

ABCC3 affects the proliferation of glioma cells. (A) TIMP1 knockdown efficiency in U87 cells. (B) Growth curves of ABCC3-defficient and control
U87 cells. (C, D) Proportion of EdU positive cells in ABCC3-defficient and control U87 cells. (E) IC50 analysis of resistance to TMZ in ABCC3-
defficient and control U87 cells. (F) TIMP1 knockdown efficiency in LN229 cells. (G) Growth curves of ABCC3-defficient and control LN229 cells.
(H–I) Proportion of EdU positive cells in ABCC3-defficient and control LN229 cells. (J) IC50 analysis of resistance to TMZ in ABCC3-defficient
and control LN229 cells. **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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SUPPLEMENTARY FIGURE 1

Expression of m1A regulators in glioma. (A) Violin plot showing the

expression of m1A regulators between IDH mutant and IDH wildtype
groups in the TCGA dataset. (B) Violin plot showing the expression of m1A

regulators between LGG and GBM in the CGGA #325 cohort. *, P< 0.05;
**, P < 0.01; ***, P < 0.001; ****, P < 0.0001.

SUPPLEMENTARY FIGURE 2

Consensus clustering analysis of m1A regulators in the TCGA dataset.

(A) Consensus clustering cumulative distribution function for k = 2 to 10.
(B) Area under the distribution curve for k = 2 to 10. (C) Consistency of

sample clustering for k = 2 to 10.

SUPPLEMENTARY FIGURE 3

Consensus clustering analysis of m1A regulators in the CGGA #325

dataset. (A) Consensus clustering cumulative distribution function for

k = 2 to 10. (B) Area under the distribution curve for k = 2 to 10.
(C) Consistency of sample clustering for k = 2 to 10. (D) Consensus

clustering matrix for the most suitable k = 4.
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SUPPLEMENTARY FIGURE 4

Kaplan-Meier curves displaying prognostic differences between different
clusters in the CGGA #325 cohort.

SUPPLEMENTARY FIGURE 5

Analysis of stemness, genomic heterogeneity and Immune
microenvironment features in LGG subgroup. (A) Kaplan-Meier curves

displaying prognostic differences between cluster 3 and cluster 4 in the
LGG subgroup. (B–G) Differences in stemness score between cluster 3

and cluster 4 in the LGG subgroup. (H–L) Differences in genomic

heterogeneity between cluster 3 and cluster 4 in the LGG subgroup.
(M–O) Differences in immune microenvironment between cluster 3 and

cluster 4 in the LGG subgroup. (P) Differences in infiltration of 22 immune
cells between cluster 3 and cluster 4 in the LGG subgroup. *, P < 0.05; **,

P < 0.01; ***, P 0.001; ****, P < 0.0001.

SUPPLEMENTARY FIGURE 6

Validation of the risk signature in the CGGA #325 and CGGA #693
cohorts. (A) Distribution of the risk score, survival status, and expression

profile of the prognostic genes in the CGGA #325 cohort. (B) Kaplan-
Meier curves displaying prognostic differences between high- and low-

risk groups in the CGGA #325 cohort. (C) The ROC curves describing the
sensitivity and specificity of risk score in predicting OS at 1-, 3- and 5-year

time points in the CGGA #325 cohort. (D) Distribution of the risk score,

survival status, and expression profile of the prognostic genes in the
CGGA #693 cohort. (E) Kaplan-Meier curves displaying prognostic

differences between high- and low-risk groups in the CGGA #693
cohort. (F) The ROC curves describing the sensitivity and specificity of

risk score in predicting OS at 1-, 3- and 5-year time points in the CGGA
#693 cohort.

SUPPLEMENTARY FIGURE 7

Validation of the risk score in LGG subgroup. (A) Kaplan-Meier curves

displaying prognostic differences between high- and low-risk groups in
the LGG subgroup. (B) The ROC curves describing the sensitivity and

specificity of risk score in predicting OS at 1-, 3- and 5-year time points in
the LGG subgroup.

SUPPLEMENTARY FIGURE 8

Validation of the risk score in the IMvigor210 cohort. (A) Boxplot depicting
the risk scores between SD/PD and CR/PR groups in the IMvigor210
cohort. (B)Differences in the number responders between high- and low-

risk groups in the IMvigor210 cohort. (C) Kaplan-Meier curves displaying
prognostic differences between high- and low-risk groups in the

IMvigor210 cohort. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****,

P < 0.0001.

SUPPLEMENTARY TABLE 1

Primers and siRNAs used in this study.
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