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Background: Small molecule MIRA-1 induced mutant p53-dependent apoptosis in several types of solid tumours. However,
anti-tumour activity of MIRA-1 in haematological malignancies including multiple myeloma (MM) is unknown. In this study, we
evaluated the effect of MIRA-1 in MM.

Methods: We examined the anti-tumour activity of MIRA-1 alone or in combination with current anti-myeloma agents in a panel of
MM cell lines, primary MM samples, and in a mouse xenograft model of MM.

Results: MIRA-1 treatment resulted in the inhibition of viability, colony formation, and migration and increase in apoptosis of MM cells
irrespective of p53 status accompanied by upregulation of Puma and Bax and downregulation of Mcl-1 and c-Myc. Genetic knockdown
of p53 did not abrogate apoptotic response of MIRA-1. MIRA-1 triggered activation of PERK and IRE-a leading to splicing of XBP1
indicating an association of endoplasmic reticulum stress response. Furthermore, combined treatment of MIRA-1 with dexamethasone,
doxorubicin or velcade displayed synergistic response in MM cells. Importantly, MIRA-1 alone or in combination with dexamethasone
retarded tumour growth and prolonged survival without showing any untoward toxicity in the mice bearing MM tumour.

Conclusions: Our data provide the preclinical framework for clinical evaluation of MIRA-1 as a novel therapeutic agent to improve
patient outcome in MM.

Multiple myeloma (MM) is an incurable haematological malig-
nancy that arises from the dysregulated proliferation of plasma
cells. The use of novel anti-myeloma agents (such as thalidomide,
lenalidomide, and velcade/bortezomib), alone or in combination
with conventional chemotherapy (e.g., dexamethasone and doxor-
ubicin) has improved the clinical outcome of patients. However,
the development of drug resistance is universal and associated with
disease progression (Anderson, 2011; Dimopoulos et al, 2011).
Significant advances in both basic and translational research have
enhanced understanding of myeloma pathogenesis and prompted
to test new and more effective molecules as therapeutic targets
(Mitsiades et al, 2009; Anderson, 2011).

Restoring function of p53, a tumour suppressor protein, has
long been considered an attractive anti-cancer therapeutic
approach. The prevalence of TP53 mutations differs considerably
between tumour types and stages of cancer, and B50% of all
tumours present mutations. In MM, mutations of the TP53 gene is
rarely detected at diagnosis, although it becomes more frequent in
advanced disease and human MM cell lines (Mazars et al, 1992;
Chang et al, 2005; Saha et al, 2010a). Contrary to many other types
of cancer, it is not yet known if the TP53 gene has an essential role
in the pathogenesis of this disease. Despite successful identification
and preclinical studies of the small molecules targeting p53 such as,
nutlin, RITA, and PRIMA-1Met, further evaluation for additional
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p53 reactivating molecules especially which can target mutant p53
remains a highly important task (Bykov et al, 2002; Issaeva et al,
2004; Vassilev et al, 2004; Wiman, 2006; Wang and El-Deiry, 2008;
Saha et al, 2013a).

Pharmacological screening of a diverse set of low molecular
weight compounds led to the identification of a novel class of
mutant p53 reactivating molecules, MIRA-1, a maleimide deriva-
tive (Figure 1A) (Bykov et al, 2005). MIRA-1 is structurally distinct
from the previously described mutant p53-targeting compounds
PRIMA-1, identified in the similar screening by the same groups.
Studies using solid tumour cell models showed that MIRA-1
induces apoptosis via restoration of p53-dependent transcriptional
transactivation. Importantly, MIRA-1 induces cell death with a
potency that is even higher than that of PRIMA-1 (Bykov et al,
2005). To date, anti-tumour activity of MIRA-1 in haematological
malignancies including MM is undefined. In the present study, we
examined anti-myeloma activity of MIRA-1 using both in vitro and
in vivo model systems. Our studies show that MIRA-1 is a potent
small molecule which can kill MM cells harbouring wild-type or
mutant p53.

MATERIALS AND METHODS

Cell culture. MM.1S, NCI-H929 (H929), RPMI-8226 (8226), LP1,
and U266 human MM cell lines were obtained from American
Type Culture Collection. All MM cell lines were cultured and
maintained as described previously (Saha et al, 2010b, c, d).
Primary MM samples were obtained from bone marrow aspirates
of newly diagnosed patients. Bone marrow mononuclear cells
(BMMNCs) were separated using Ficoll-Hipaque density sedimen-
tation. Primary CD138þ plasma cells were purified using negative

selection, as in previous studies (Saha et al, 2010b). Blood samples
collected from healthy volunteers were processed by Ficoll-
Hipaque gradient to obtain peripheral blood mononuclear cells
(PBMCs). All procedures were performed with Institutional
Review Board-approved (University Health Network, Toronto)
protocols and informed consent, and in accordance with the
declaration of Helsinki.

Reagents. MIRA-1 was obtained from Tocris Bioscience (Bristol,
UK). For in vitro experiments, MIRA-1 was dissolved in dimethyl
sulfoxide (DMSO) to create a 100 mmol l� 1 stock solution and
stored at � 20 1C. Dexamethasone and doxorubicin were obtained
from Biovision (Milpitas, CA, USA) and bortezomib was obtained
from Selleck Chemicals (Houston, TX, USA).

Cell viability assay. The growth inhibitory effects of MIRA-1 in
MM cell lines, primary MM samples, BMMNCs, and PBMCs were
assessed by measuring 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrasodium bromide (MTT; Sigma-Aldrich, St Louis, MO, USA)
dye absorbance, as described previously (Saha et al, 2010b, c, d;
Saha et al, 2012).

Detection of apoptosis. Apoptosis detection was performed with
the Annexin V-propidium iodide (PI) detection kit (Abcam,
Cambridge, MA, USA). Multiple myeloma cells were exposed with
various concentrations of MIRA-1 for 48 h and apoptotic cells were
analysed on a BD FACS Canto II (BD Biosciences, San Jose, CA,
USA) using FACSDiva (BD Biosciences) as described by us
previously (Saha et al, 2013b).

Colony forming and migration assay. Colony formation and
migration assay was performed as described previously (Saha et al,
2013b). For colony-forming assays, after treatment with MIRA-1,
MM cells (5� 104 cells ml� 1) were plated into methylcellulose
medium in triplicate for 14 days. Multiple myeloma cell colonies
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Chemical name: 1-[1-Oxopropoxy)methyl]-
1H-pyrrole-2,5-dione

Figure 1. MIRA-1 demonstrated potent anti-myeloma activity in vitro. (A) Chemical structures of MIRA-1; Chemical name: 1-[(1-
Oxopropoxy)methyl]-1H-pyrrole-2,5-dione. Molecular formula: C8H9NO4 (B–E). (B) MM cell lines expressing wild-type p53 (MM.1S, H929) or
mutant p53 (LP1, U266, and 8226) were incubated with MIRA-1 (0–20mmol l� 1), and viability was determined at 48 h using MTT assay.
(C) MIRA-1-induced cytotoxicity in primary MM samples from newly diagnosed MM patients. Myeloma cells isolated from the bone marrow via
CD138þ selection were cultured with MIRA-1 (0–20mmol l�1), and viability was assessed by MTT at 48 h. (D) PBMCs and (E) BMMNCs were
treated similarly with MIRA-1 and cyototoxicity was assessed by MTT assay. Viability of the cells was expressed as percentage of the
DMSO-treated control. Data represents means (±s.d.) of triplicate cultures.
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that consist of 440 cells were counted under an inverted
microscope. For studying migration, MM cells treated with
MIRA-1 or DMSO were placed in 24-well Transwell insert
chambers (8mM insert, Costar, Corning Inc., NY, USA) according
to the manufacturer’s instruction (Saha et al, 2013b). Migration
was quantified by counting the number of cells on the lower
surface of the filters. Results are expressed as mean number of
migrating cells done in triplicates.

Transfection. Small interfering RNA (siRNA) of p53 and
scrambled siRNA were purchased from Invitrogen (Carlsbad,
CA, USA). siRNA was transfected into MM.1S or 8226 cells by
electroporation using a Nucleofector Kit (Amaxa Biosystems,
Koeln, Germany). Following transfection, cells were treated with
MIRA-1 and the effect of apoptosis induction by MIRA-1
following knockdown of p53 was analysed by flow cytometry
assay (Saha et al, 2012; Saha et al, 2013b).

Western blotting. MIRA-1-treated MM cells were harvested to
isolate proteins. Whole cell lysates were subjected to sodium
dodecyl sulfate–polyacrylamide gel electrophoresis and transferred
to PVDF membrane (Millipore, Billerica, MA, USA), as described
previously (Saha et al, 2010b, c, d; Saha et al, 2012; Saha et al,
2013b). Immunoblotting was performed using specific antibodies:
anti-p53 (DO-7) (Sigma-Aldrich); Mcl-1, caspase-3, and PARP
(Cell Signaling Technologies, Beverly, MA, USA); Puma, Bax,
and c-Myc (Signalway Antibody, College Park, MD, USA); XBP1
and p-PERK (Thr 981) (Santa Cruz Biotechnology, Santa Cruz,
CA, USA). Goat anti-mouse and anti-rabbit secondary antibodies
conjugated to horseradish peroxidase were purchased from Cell
Signaling and Santa Cruz Biotechnology, respectively. Blots were
reprobed with anti-b actin antibody (Signalway Antibody) for
equal protein controls.

MM xenograft murine model. Severe combined immunodeffi-
cient (SCID) mice (OCI, Toronto, Canada) were monitored in the
Animal Research Facility at University Health Network and
subjected to studies according to the protocols approved by
Animal Ethics Committee. 3� 107 8226 cells mixed with matrigel
(BD Biosciences) were inoculated subcutaneously into the right
flank of 6-week-old SCID mice. When tumours were measurable,
mice were treated with intraperitoneal (i.p.) injection of vehicle
control (0.9% NaCl) or MIRA-1 (10 mg kg� 1) every alternate day
for 2 weeks (n¼ 5 per group). In another set of experiments, four
groups of mice (n¼ 5 per group) injected with 8226 cells were
similarly treated with either MIRA-1 alone (5 mg kg� 1), or
dexamethasone alone (1 mg kg� 1), or MIRA-1 in combination
with dexamethasone, or vehicle. Mice were monitored for body
weight, tumour size was measured every alternate days and tumour
volume was calculated with the formula: V¼ 0.5 (a � b2), where
‘a’ is the long diameter of the tumour and ‘b’ is the short diameter
of the tumour. Mice were killed when the tumour reached
41.5 cm or if mice appeared moribund to prevent unnecessary
morbidity. Survival was evaluated from the first day of the
treatment until death or an event occurs.

Statistical analysis. The combined effect of the drugs was
analysed by CalcuSyn (Biosoft, Cambridge, UK), a software
program based on the Chou–Talalay method, as described by us
previously (Saha et al, 2010b, c, d; Saha et al, 2012; Saha et al,
2013b). The equation for calculating combination index (CI)
was: CI¼ (D)1/(Dx)1þ (D)2/(Dx)2þ (D)1(D)2/(Dx)1(Dx)2, where
(D)1 and (D)2 are the doses of drug 1 and drug 2 that have x effect
when used in combination and (Dx)1 and (Dx)2 are the doses of
drug 1 and drug 2 that have the same x effect when used alone
(Saha et al, 2013b). A CI o1.0 is indicative of a synergistic effect.
In the murine xenograft studies, survival of mice between the two
treatment groups was determined by the Kaplan–Meier test using
the log-rank analyses to compare the mean overall mouse survival

with 95% confidence intervals. Statistical significance levels in
different experiments were determined by two-tailed t-test analysis.
The minimal level of significance was Po0.05.

RESULTS

MIRA-1 inhibited myeloma cell growth and induced apoptosis
in vitro. MIRA-1 was previously reported to kill cancer cells of
various solid tumours with mutant p53 (Bykov et al, 2005). To
evaluate its activity against MM models, we studied a panel of MM
cell lines with varying p53 status to determine sensitivity to
MIRA-1. Wild-type p53 MM cells (MM.1S, H929) exhibited IC50

values in the 7.5–10 mmol l� 1 range, whereas mutant p53
cells (LP1, U266, 8226, OPM2) had IC50 values from 10 to
12.5 mmol l� 1 (Figure 1B). These data suggested that cytotoxic
response of MIRA-1 in MM cells is irrespective of p53 status.

To further assess the potential of MIRA-1 as a novel
anti-myeloma agent, primary cells derived from seven newly
diagnosed MM patients bone marrows were treated with vehicle
control or escalating doses of MIRA-1 for 48 h. Cells were then
examined for viability by MTT assay. A significant decrease in the
viability of MM cells was shown in all the samples with almost
similar IC50 range as observed for MM cell lines (Figure 1C).
Although there was some toxicity detected in the normal
haematopoietic cells (PBMCs or BMMNCs) (Figure 1D and E),
this was proportionately much less than the effect observed in cell
lines or in primary MM samples.

To determine whether the reduction of cell viability was
accompanied by apoptosis induction by MIRA-1, we performed
Annexin V staining in combination with PI. MIRA-1
(10 mmol l� 1) induced more than 50%–80% cell death in MM.1S
and H929 cells harbouring wild-type p53. Although the mutant
p53 cell models showed 32–45% cell death at similar concentration,
480% cells were killed at 20 mmol l� 1 MIRA-1 (Figure 2A). In
consistence with the viability data, these results also suggest that
MIRA-1 induces apoptosis in MM cells irrespective of p53
functional status.

MIRA-1 inhibits colony formation and migration of MM
cells. Having shown the effect of MIRA-1 on viability and
apoptosis, we next examine the effect of MIRA-1 on the colony-
forming capability of MM cells. Treatment of MM cells with
MIRA-1 significantly inhibits colony formation abilities (Figure 2B,
Po0.05) in MM.1S and LP1 cells. Because we found a significant
inhibition of colony formation by MIRA-1, we proceeded to
determine if MIRA-1 could inhibit the migration of MM cells.
Migration of MM.1S and LP1 cells treated with MIRA-1 at 5 and
10 mmol l� 1, respectively, was significantly lower as compared with
the DMSO-treated control (Figure 2C, Po0.05). This difference
was not due to cytotoxicity as cells treated in parallel and analysed
via MTT showed B60% viability at this dose. These findings
suggest that MIRA-1 suppressed the clonogenic and migratory
potential of MM cells to form colonies and migrate into cells.

MIRA-1 modulated the expression of the members of Bcl2
family proteins in a time and dose-dependent manner. Knowing
that MIRA-1 acts through p53 signalling pathway, we examined
protein expression of p53 and its downstream targets by western
blots. Results showed activation of caspase-3 and PARP in MM.1S
or LP1 cells. However, expression of p53 was not affected by
MIRA-1 treatment in these cells (Figure 3A and B) suggesting that
activation of p53 may not require for MIRA-1-induced apoptosis
of MM cells. To further confirm an involvement of p53 in MIRA-
1-induced apoptosis of MM cells, we next suppressed p53
expression by siRNA. In p53-silenced MM cells (Figure 3C),
MIRA-1 was still able to induce apoptosis as judged by increase of
Annexin V-positive cells (Figure 3D). These results suggest that
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p53 may not have a direct role in MIRA-1-induced apoptosis of
MM cells.

To understand the molecular mechanisms underlying the
observed MIRA-1-induced inhibition of cell growth, the expression
of several intracellular regulators of the apoptosis was assessed by
western blot analysis. MIRA-1 exposure resulted in an increase of
expression for proapoptotic BH3 only proteins, Puma and Bax and
a decrease of anti-apoptotic proteins, Mcl-1 and c-Myc (Figure 3A
and B). In addition, MM.1S or LP1 cells treated with MIRA-1
exhibited time-dependent activation of PERK, calnexin, protein
disulfide isomerase (PDI) (an oxidoreductase), and BIP (GRP78, a
molecular chaperone) which represents stress-associated gene
expression alterations. Examination of activation state of PERK
and eIF2-a showed a sustained increase in the activating
phosphorylation of both kinases that appeared as early as 4 h
and persisted for 8–12 h (Figure 4A). Furthermore, splicing of
XBP1 was observed by western blots (Figure 4A) and PCR analysis
which was validated with a well-characterised endoplasmic
reticulum (ER) stress-inducing agent, thapsigargin (Figure 4B).
Our results suggest that MIRA-1-induced apoptosis in MM cells is
associated with ER stress response signalling. On the basis of our
observation, we depicted a diagram for the mechanism of action of
MIRA-1 in MM cells (Figure 4C).

MIRA-1 enhances cytotoxicity of conventional and novel
therapies. As novel anti-cancer agents are generally applied in
combination with existing therapeutics, we examined whether
MIRA-1 could potentiate the action of drugs currently used to treat
MM. To this aim, MM cell lines or a primary MM sample were
treated with combinations of MIRA-1 with either conventional
drugs (dexamethasone or doxorubicin) or with novel antimyeloma
agents (velcade). The cytotoxicity of the cells was analysed by MTT
assays. As shown in Figure 5, simultaneous treatment of 8226 MM
cell line or a patient sample with MIRA-1 and dexamethasone or
doxorubicin resulted in a significant decrease in cell survival when
compared with the single agents (Po0.05). When combined with
low concentrations of these drugs, synergistic effects were observed
(CIo1.0) (Figure 5A and B). We next assessed the ability of
MIRA-1 to synergise with velcade. In both MM.1S and U266 cells,
a significant decrease in the viability was observed in combination
treatment compared with single treatment after 48 h of exposure of
low doses of these drugs. The synergy was observed for these
combinations with CI of lower than 1.0 (Figure 5C). These data
demonstrated that combined treatment with equipotent doses of

MIRA-1 and dexamethasone, doxorubicin, or velcade resulted in
synergistic effects in MM cells.

MIRA-1 effectively reduces tumour burden in a MM xenograft
model. Next, we sought to examine whether in vitro MIRA-1-
induced MM cytotoxicity can be translated into effective in vivo
anti-MM activity in SCID mice xenografted 8226 cells. Treatment
with MIRA-1 significantly retarded tumour growth, with max-
imum tumour growth inhibition noted at day 15 (Figure 6A)
(Po0.05). MIRA-1 treatment was also associated with improved
survival, evidenced by first death at day 20 in control versus day 45
in treated group (Figure 6B) (P¼ 0.007). There were no obvious
toxic effects of the treatments as evaluated by mouse body weight
data (Figure 6C).

Finally, to test if enhanced myeloma cell apoptotic response is
observed in vivo, we examined the efficacy of combination of
MIRA-1 and dexamethasone in similar mouse xenograft model as
described above. For combination studies, lower doses of MIRA-1
(5 mg kg� 1) and dexamethasone (1 mg kg� 1) were used. These
lower concentrations of the drugs were chosen to reduce any
potential for overlapping toxicities and side effects of these agents.
Combination treatment with MIRA-1 and dexamethasone proved
very efficacious as shown by significant inhibition of tumour
growth compared with low dose of MIRA-1 or dexamethasone
alone or vehicle (on day 15, *Po0.05) (Figure 6D). Importantly, as
shown in Figure 6E, combination of MIRA-1 and dexamethasone
resulted in a significant prolonged survival when compared with
the vehicle group (P¼ 0.003), the dexamethasone-alone-treated
group (P¼ 0.045) and MIRA-1-alone-treated group (P¼ 0.005).
In addition, treatment with MIRA-1 and/or dexamethasone did
not affect body weight (Figure 6F) indicating the doses used for the
treatment were tolerable to the mice. These data clearly shows that
the combination of MIRA-1 and dexamethasone results in
improvements of tumour burden and increased overall survival
of the mice.

DISCUSSION

Small molecules for use in cancer treatment have been in the
forefront of developmental therapeutics in recent years. Most
clinically evaluated small molecules targeting p53 exert their anti-
tumour activities in tumour cells harbouring either wild-type or
mutant p53 (Bykov et al, 2002; Issaeva et al, 2004; Bykov et al, 2005;
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Wang and El-Deiry 2008; Saha et al, 2010a, b, c, d). However,
recent reports indicate that some of these small molecules, initially
specified for working on wild-type or mutant p53, can also kill
cancer cells independent of p53 status or even in the absence of p53
(Cory et al, 2006; Supiot et al, 2008; Zhao et al, 2010; Bao et al,
2011; Wang et al, 2011; Burmakin et al, 2013; Saha et al, 2013a, b)

MIRA-1 was initially identified as a mutant p53 reactivating
compound capable of restoring wild-type conformation of mutant
p53. We evaluated anti-tumour activities of MIRA-1 in MM cells
with varying p53 status. Unlike the previous study, MIRA-1
exposure in MM cells resulted in significant cytotoxicity in both
wild-type and dysfunctional p53. Previous studies described that
MIRA-1 induced transcriptional transactivation of p53 through a
sequence-specific binding. Our results confirm the previous
observations that MIRA-1 restores wild-type conformation of
mutant p53 (data not shown). However, in contrast to the previous
report, our studies on wild-type, mutant or silenced p53 MM cells
showed that p53 status was not a determinant of the effect of
MIRA-1 on apoptosis in MM cells.

These contradictory but interesting findings prompted us to
investigate the potential mechanisms of MIRA-1-induced
cytotoxicity in MM cells. In this study, we demonstrated that
MIRA-1-induced apoptosis in MM cells was, at least in part,
p53-independent as genetic knockdown of p53 did not have

significant impact on apoptosis induction by MIRA-1. However,
the role of p53 in MIRA-1-induced apoptosis of MM cells cannot
be fully excluded. This is due to the fact that transcripts of p53 and
its downstream targets Puma and Bax were induced by MIRA-1.
This is in agreement with previous studies on osteosarcoma cells
(Bykov et al, 2005). Interestingly, p53-independent upregulation of
Puma and Bax has been shown previously in other cancer types
(Jeffers et al, 2003; Gogada et al, 2011). Along with increased
pro-apoptotic Puma and Bax, MIRA-1 decreased anti-apoptotic
proteins Mcl-1 and c-Myc in MM cells. Similar to our studies, prior
studies in MM have also linked the downregulation of Mcl-1 and
Myc to apoptotic pathway (Gojo et al, 2002; Gauduchon et al,
2005; Gomez-Bougie et al, 2007). Importantly, both Mcl-1 and
c-Myc are considered key regulators of cell growth and protein
synthesis. Moreover, overexpression of Mcl-1 and/or c-Myc has
been proposed to be associated with progression of MM (Zhang
et al, 2002; Holien et al, 2012). Although, several mechanisms have
been proposed to p53-dependent apoptosis, very little is known
about the p53-independent pathways. Therefore, the study of
alternative pathways activated by MIRA-1 may be relevant to
rescue an apoptotic response in cells lacking p53 function.

In this study, using qPCR array we identified a set of key genes
in p38MAPK signalling pathway that are differentially expressed in
two types of MM cell lines treated with MIRA-1 (data not shown).

80
*

*
*

*

*

*

*

*

*

*

*

*

60

V
ia

bi
lit

y 
(%

)

40

20

0

8226

MM.1S U266

Primary MM
sample

8226 Primary MM
sample

M
IR

A-1

M
IR

A-1

Dex
am

th
as

on
e

Dox
or

ub
ici

n

M
IR

A-1
+d

ox
or

ub
ici

n

M
IR

A-1

Dox
or

ub
ici

n

M
IR

A-1
+d

ox
or

ub
ici

n

M
IR

A-1
+d

ex
am

et
ha

so
ne

M
IR

A-1

Ve
lca

de

M
IR

A-1
+v

elc
ad

e

M
IR

A-1

Ve
lca

de

M
IR

A-1
+v

elc
ad

e

M
IR

A-1

Dex
am

th
as

on
e

M
IR

A-1
+d

ex
am

et
ha

so
ne

80

60

V
ia

bi
lit

y 
(%

)

40

20

0

80

100

60

V
ia

bi
lit

y 
(%

)

40

20

0

Figure 5. MIRA-1 in combination with current anti-myeloma agents displayed synergistic cytotoxic response in MM cells. Cells obtained
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Many of these genes have been involved in apoptosis/cell
proliferation, DNA binding, signal transduction, and transcription
regulation indicating that MIRA-1 activates multiple signalling
pathways. For selected genes, we have further confirmed the
observed changes in qPCR array at protein levels. Both gene
expression and protein data showed the activation of p38 MAPK
signalling which is a common consequence of ER stress response.
Moreover, MIRA-1 induced activation of at least one of the ER
stress sensors PERK which leads to its phosphorylation as well as
phosphorylation of eIF2-a and activation of a pool of molecular
chaperone proteins including calnexin, PDI, and Bip. These results
together with XBP1 splicing indicate that MIRA-1 treatment is
associated with induction of ER stress signalling. Association of ER
stress response in p53-independent apoptosis of cancer cells have
previously been reported (Gomez-Lazaro et al, 2008; Jiang et al,
2008). Notably, ER stress signalling has been shown to be linked
with the activation of Puma/Bax/Noxa or repression of Mcl-1
signalling axis (Li et al, 2006; Chauhan et al, 2011). Our data
correlates with the activation of Puma/Bax, Mcl-1/Myc, and ER
stress signalling pathways and suggest a potential cross-talk
between these pathways during MIRA-1-induced apoptosis of
MM cells (Figure 4C). Although the mechanism of MIRA-1-
induced apoptosis in not full defined, these effects are likely
dependent on the ER stress response. Further studies will be
required to understand how MIRA-1 modulates intracellular

signalling molecules leading to apoptosis and the role of the specific
signalling molecules associated with MIRA-1-induced apoptosis.

CONCLUSIONS

MIRA-1 treatment resulted in a potent anti-myeloma activity, both
in vitro and in vivo, and leads to induction of multiple interrelated
pathways implicated in apoptosis of MM cells. MIRA-1 induces
p53-independent apoptosis in MM cells and the apoptotic response
is closely related to the changes in the balance between
proapoptotic and antiapoptotic Bcl2 family proteins favouring
induction of apoptosis. Added potential includes its synergy with
current myeloma therapeutics. Our results suggest that the use of
MIRA-1 either alone or in combination with other therapeutic
agents is worth considering for further clinical evaluation in MM.

ACKNOWLEDGEMENTS

This study was supported by grants in part from Leukemia &
Lymphoma Society, Canada, Cancer Research Society, Interna-
tional Collaboration Fund from Chinese Ministry of Science
and Technology (No. 2011DFA32820), and Gan-Po 555 project,
Jiangxi, China awarded to H Chang.

2000
Control

Control

MIRA

M

M+DD

C

Control
MIRA-1

MIRA-1 +
dexamethasone

Dexamethasone

C M

*

1.0

0.8

0.6

0.4

0.2

0.0

0 10 20

C

C M

D

M+D

M

30 40 50

0 10 20 30 40 50

P= 0.007

1.0

0.8

0.6

0.4

0.2

0.0

0

10

20

30

40

*

MIRA (10 mg kg–1)
Tu

m
ou

r 
vo

lu
m

e 
(m

m
3 )

C
um

 s
ur

vi
va

l
S

ur
vi

va
l (

%
)

B
od

y 
w

ei
gh

t (
g)

0

10

20

30

40

B
od

y 
w

ei
gh

t (
g)

Tu
m

ou
r 

vo
lu

m
e 

(m
m

3 )
1800
1600
1400
1200
1000
800
600
400
200

0

1400

1200

1000

800

600

400

200

0

Day
 1

Day
 1

Day
 3

Day
 5

Day
 7

Day
 9

Day
 1

1

Day
 1

3

Day
 1

5

Day
 3

Day
 5

Day
 7

Day
 9

Day
 1

1

Day
 1

3

Day
 1

5

Day after injection Survival time (days)

Survival time (days)Day after injection

Day
 1

Day
 3

Day
 5

Day
 7

Day
 9

Day
 1

1

Day
 1

3

Day
 1

5

Day after injection

Day
 1

Day
 3

Day
 5

Day
 7

Day
 9

Day
 1

1

Day
 1

3

Day
 1

5

A

D E F

B C
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