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Abstract: A micromechanical concept of filler-induced stress-softening and hysteresis is established
that describes the complex quasi-static deformation behavior of filler reinforced rubbers upon
repeated stretching with increasing amplitude. It is based on a non-affine tube model of rubber
elasticity and a distinct deformation and fracture mechanics of filler clusters in the stress field of
the rubber matrix. For the description of the clusters we refer to a three-dimensional generalization
of the Kantor–Webman model of flexible chain aggregates with distinct bending–twisting and
tension deformation of bonds. The bending–twisting deformation dominates the elasticity of filler
clusters in elastomers while the tension deformation is assumed to be mainly responsible for fracture.
The cluster mechanics is described in detail in the theoretical section, whereby two different fracture
criteria of filler–filler bonds are considered, denoted “monodisperse” and “hierarchical” bond fracture
mechanism. Both concepts are compared in the experimental section, where stress–strain cycles
of a series of ethylene–propylene–diene rubber (EPDM) composites with various thermo-oxidative
aging histories are evaluated. It is found that the “hierarchical” bond fracture mechanism delivers
better fits and more stable fitting parameters, though the evolution of fitting parameters with aging
time is similar for both models. From the adaptations it is concluded that the crosslinking density
remains almost constant, indicating that the sulfur bridges in EPDM networks are mono-sulfidic,
and hence, quite stable—even at 130 ◦C aging temperature. The hardening of the composites with
increasing aging time is mainly attributed to the relaxation of filler–filler bonds, which results in an
increased stiffness and strength of the bonds. Finally, a frame-independent simplified version of
the stress-softening model is proposed that allows for an easy implementation into numerical codes
for fast FEM simulations

Keywords: filled elastomers; stress softening; filler-induced hysteresis; cluster mechanics; FEM simulation

1. Introduction

Nanoscopic fillers like carbon black or silica play an important role in the mechanical reinforcement
of elastomers [1,2]. They make the elastomer stiffer and tougher, leading to a pronounced reduction of
crack propagation rates and wear, which is accompanied by an increased life time of rubber goods [3].
But the incorporation of fillers results in a nonlinear dynamic-mechanical response, which is reflected
e.g., by the amplitude-dependence of the dynamic moduli. This so called Payne effect was investigated
by several authors like Payne [4] and Medalia [5]. A related phenomenon is the stress softening
effect under quasi-static cyclic deformation, which is also called Mullins effect due to the intensive
studies by Mullins [6]. Accordingly, a drop in stress appears if the loading goes beyond the previous
maximum. Most of the stress drop at a certain strain occurs in the first cycle, and in the following
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cycles the specimen approaches a steady state stress–strain curve. A second characteristic effect caused
by fillers is the pronounced hysteresis which is related to the dissipation of mechanical energy during
every cycle.

Based on the investigations of filler network morphology by different experimental techniques,
a model of rubber reinforcement by flexible filler clusters has been proposed that allows for a quantitative
understanding of the complex mechanical response under quasi-static and dynamic deformations [7–10].
This model of rubber reinforcement refers to the kinetics of cluster–cluster aggregation (CCA) of filler
networking in elastomers, which represents a reasonable theoretical basis for analyzing the linear
viscoelastic properties of reinforced rubbers. According to this approach, filler networks consist of
a space-filling configuration of fractal CCA-clusters with characteristic mass fractal dimension df ≈ 1.8.
The mechanical response of such filler networks at small strain depends purely on the fractal connectivity
of the CCA-clusters. It can be evaluated by referring to the Kantor–Webman model [11] of flexible
chains of filler particles that allows for a micromechanical description of the elastic properties of tender
CCA-clusters in elastomers. The main contribution of the elastically stored energy in the strained filler
clusters results from the bending–twisting deformation of filler–filler bonds, considered by an elastic
constant G. Based on this approach a power law behavior of the small strain modulus vs. filler
concentration can be derived. The predicted exponent 3.5 is in good agreement with experimental
data of Payne [4] for carbon black filled butyl rubber. This power law behavior has been confirmed by
further investigations of carbon black and silica filled rubbers as well as composites with polymeric
model fillers (microgels) [7–10].

Based on this approach, a micromechanical material model of filler reinforced elastomers has
been put forward, denoted dynamic flocculation model (DFM) [7,12–16]. Similar models have been
proposed by other authors [17–19]. The DFM describes the complex quasi-static stress–strain response
of filler reinforced elastomers up to large strains in fair agreement with experimental data. It is based
on a non-affine tube model of rubber elasticity and considers hydrodynamic amplification of the rubber
matrix by a fraction of hard rigid filler clusters with filler–filler bonds in the unbroken, virgin state.
The filler-induced hysteresis is described by the cyclic breakdown and re-aggregation of the residual
fraction of more soft filler clusters with already broken, but reformed filler–filler bonds. The difference
between hard and soft filler–filler bonds arises due to the softening of glassy-like polymer bridges
between adjacent filler particles [7,20–22]. If they break under stress the recovery to a virgin bond
will take time and/or high temperatures, as applied during vulcanization [23]. A finite element
implementation of the DFM was established [24] by referring to the concept of representative directions
introduced by Ihlemann [25]. Thereby also temperature and time dependent effects have been
considered [26].

It is the aim of this study to consider the underlying fracture mechanics of filler clusters entering
the DFM more closely, whereby we will investigate two different fracture criteria for filler–filler
bonds. The differences between both approaches will be evaluated by comparing fitting results
obtained for stress–strain cycles of ethylene–propylene–diene monomer rubber (EPDM) composites
with various thermo-oxidative aging histories, which will be analyzed by the variation of fitting
parameters. This is in close relation to recent investigations of the structure–property relationships
of silica/silane formulations in different rubber composites [27] delivering microscopic information
about the material properties of the systems. Finally, we will introduce a frame-invariant version of
the stress-softening part of the DFM that allows for an easy implementation into a finite element code
for fast finite element (FEM) applications of the isotropic discontinuous damage effects in engineering
rubber science.
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2. Modeling Approach

2.1. Basic Assumptions of the Dynamic Flocculation Model

The (microscopic) free energy density of the dynamic flocculation model (DFM) consists of two
contributions, which are weighted by the effective filler volume fraction Φeff:

W
(
εµ

)
= (1−Φeff)WR

(
εµ

)
+ Φeff WA

(
εµ

)
(1)

The first addend is the equilibrium energy density stored in the extensively strained rubber matrix,
which includes hydrodynamic amplification by a fraction of rigid filler clusters. The second addend
considers the energy stored in the strained soft filler clusters and is responsible for the filler-induced
hysteresis. The symbol εµ is defined in this work as the macroscopic strain in direction µ. The rubber
elastic part is modeled by the free energy density of the extended non-affine tube model [12,28]:
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with ne being the number of statistical chain segments between neighboring entanglements and Te

is the trapping factor (0 < Te < 1) characterizing the fraction of elastically active entanglements.
We define λµ to be the microscopic strain ratio (or stretch) on the nanoscale in direction µ. Thus, for
unfilled rubbers the usual relation λµ = 1 + εµ holds. The first addend in Equation (2) considers
the constraints due to interchain junctions, with an elastic modulus Gc proportional to the density of
network junctions. The second addend considers topological constraints in densely packed polymer
networks, whereby Ge is proportional to the entanglement density of the rubber. The parenthetical
expression in the first addend considers the finite chain extensibility of polymer networks by referring
to an approach of Edwards and Vilgis [29]. For the limiting case ne/Te =

∑
λ2
µ − 3 a singularity is

obtained for the free energy density WR, indicating the maximum extensibility of the network. This is
reached when the chains between successive trapped entanglements are fully stretched out. In the limit
ne →∞ the original Gaussian formulation of the non-affine tube model, derived by Heinrich et al. [30]
for infinite long chains, is recovered.

The presence of tightly bonded (virgin bonds) rigid filler clusters gives rise to hydrodynamic
reinforcement of the rubber matrix. This is specified by the strain amplification factor X as proposed by
Mullins and Tobin [6], which relates the external, macroscopic strain εµ of the sample to the internal,
microscopic strain ratio λµ of the rubber matrix, λµ = 1 + X

(
εµ,max

)
εµ. For strain amplified rubbers

this strain has to be used in the free energy density Equation (2). The microscopic stress of the rubber
matrix is then obtained by differentiation with respect to the internal strain λµ:
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This is the microscopic stress between the filler clusters that can be identified with
the macroscopically measured engineering stress (1. PK stress) in equilibrium. For uniaxial
deformations (λ2 = λ3 = λ−1/2

1 and ∂λ2 = ∂λ3 = −1/2 λ−3/2
1 ∂λ1) we obtain for the engineering stress

in stretching direction:
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In the case of a preconditioned sample and for strains smaller than the previous straining
(εµ < εµ,max), the materials microscopic structure is already adjusted to the maximum load and
the strain amplification factor X is independent of strain. In that case it is determined by εµ,max

(X = X(εµ,max)). We relate this to the irreversible fracture of filler clusters (see below). A relation
for the strain amplification factor of overlapping fractal clusters of size ξ was derived by Huber and
Vilgis [31]. By using path integral methods they found X = 1 + cΦ2/(3−df)ξdw−df where Φ is the filler
volume fraction and c is a constant of order one. With this, X(εµ,max) can be evaluated by averaging
over the size distribution of hard clusters in all space directions. In the case of preconditioned samples
this yields:

X
(
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)
= 1 + cΦ

2
3−df
eff
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∫
∞

ξµ,min

ϕ
(
ξ′µ
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 (5)

Here, d is the particle size, ξµ is the cluster size in spatial direction µ and ξµ,min is the minimum
cluster size which will be calculated later on. The fractal exponents are determined as df ≈ 1.8 for
the mass fractal dimension and dw = 3.1 for the anomalous diffusion exponent of CCA-clusters [2].
Note that the effective filler volume fraction Φeff > Φ is used in Equations (1) and (5), which considers
the effective volume of the rigid phase of structured filler particles, e.g., carbon black or silica, according
to the “occluded rubber concept” of Medalia [32]. Occluded rubber is defined as the rubber part
of the rubber matrix that penetrates into the voids of the particles, which partially shields it from
deformation. The second addend of Equation (5) takes into account that also fully broken clusters
contribute to the strain amplification factor by the remaining particles. ϕ(ξµ) is the normalized cluster
size distribution:

ϕ(ξµ) = 4d
ξµ

〈ξµ〉2
exp

(
−2

ξµ

〈ξµ〉

)
(6)

This is a peaked cluster size distribution with 〈ξµ〉 being the ensemble average in spatial direction
µ. It is motivated by analytical results referring to Smoluchowski’s equation for the kinetics of
cluster–cluster aggregation of colloids [33–35] (comp. also [7]). In the undeformed state it is assumed
to be isotropic, i.e., ϕ(ξ1) = ϕ(ξ2) = ϕ(ξ3) ≡ ϕ(ξ).

The model of stress softening and hysteresis assumes that the breakdown of filler clusters during
the first deformation of the virgin samples is reversible, though the initial virgin state of filler–filler
bonds is not recovered. This implies that, on the one side, the fraction of hard (virgin) filler clusters
decreases with increasing pre-strain, leading to pronounced stress softening after the first deformation
cycle. On the other side, the fraction of soft (reaggregated) filler clusters increases with rising pre-strain,
which affects the filler-induced hysteresis. A schematic view of the decomposition of filler clusters
in hard and soft units for preconditioned samples is shown in Figure 1.
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Figure 1. (a) Schematic view of the decomposition of filler clusters in hard and soft units for
preconditioned samples and (b) cluster size distribution with the pre-strain dependent boundary size
xmin between hard and soft clusters.



Polymers 2020, 12, 1350 5 of 19

The second addend of Equation (1) describes the filler-induced hysteresis. It considers the energy
stored in the substantially strained soft filler clusters, which break under stress and reaggregate
on retraction

WA

(
εµ

)
=

∂ε/∂t>0∑
µ

1
2d

∫ ξµ(εµ)

ξµ,min
GA

(
ξ′µ

)
ε2

A,µ

(
ξ′µ, εµ

)
ϕ
(
ξ′µ

)
dξ′µ (7)

GA is the elastic modulus and εA,µ is the strain of the fragile filler clusters in spatial direction
µ. These quantities and their dependence on cluster size xµ and external strain εµ will be specified
in the next sections. In addition. The integral boundaries of Equations (5) and (7) have to be
described more closely, which requires the consideration of elasticity and fracture of filler clusters
in stretched elastomers.

2.2. Elasticity and Fracture of Filler Clusters in Stretched Elastomers

For consideration of filler network breakdown in stretched rubbers, the elasticity and failure
properties of tender filler clusters have to be evaluated in dependence of cluster size. This will be
obtained by referring to the two-dimensional Kantor–Webman model of flexible chains of arbitrary
connected filler particles [11] as represented in Figure 2a. We apply here a simplified generalization of
this model to three dimensions, where on-plane bending, and off-plain twisting deformations of bonds
are considered by a single bending–twisting term [20]. By identifying the three-dimensional flexible
chain with the backbone of a CCA-cluster, the model can be applied for modeling the small-strain
modulus of fractal filler networks, consisting of a space-filling configuration of CCA-clusters [7–10].
Here, we use it for a micromechanical description of CCA-clusters that are deformed in the stress
field of a strained rubber matrix. Note that this is possible because the CCA-cluster backbone is not
branched on large length scales, which is a typical result of cluster–cluster aggregation.
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Figure 2. Schematic view of the Kantor–Webman model of flexible chains of arbitrary connected filler
particles (a) and mechanical equivalence between a filler cluster and a series of soft and stiff molecular
springs (b). The two springs with force constants ks and kh are related to bending–twisting- and tension
deformations of filler–filler bonds referring to elastic constants G and Q, respectively.

In our model two kinds of deformations of filler–filler bonds are considered, bending–twisting- and
tension deformations. This corresponds to a mechanical equivalence between a filler cluster and a series
of two molecular springs depicted schematically in Figure 2b. We will see that the bending–twisting
deformation governs the elasticity while the tension deformation is sensitive for fracture. The total
force constant of a cluster of size ξ0 with NB particles in the backbone reads:

kξ =
(

1
kh

+
1
ks

)−1

(8)
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with the tension part given by:
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The bending–twisting part reads:
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Here, d is the bond length (particle size),
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the average squared radius of gyration in direction perpendicular to the force and includes a unit vector
→
z pointing perpendicular to the connecting vector

(
→
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)
. It scales with the squared cluster size,

S2
⊥
= g′ξ2

0, with a scaling factor 0 < g′ < 1. G and Q are elastic constants due to bending–twisting—and

tension deformations, respectively. For the particle number the scaling relation NB = (ξ0/d)df,B was
used with df,B = 1.3 being the backbone fractal dimension of CCA-clusters.

By comparing the exponents of Equations (9) and (10) one finds that the force constant ks decreases
much more rapidly with cluster size ξ0 than the force constants kh. Accordingly, Equation (8) implies
kξ ≈ ks for sufficient large clusters, i.e., the stiffness of the cluster is determined by the bending–twisting
deformations of bonds. This determines the following scaling law for the elastic modulus entering
Equation (7):

GA(ξ0) ≈ ξ
−1
0 ks =

G
d3g′

(
d
ξ0

)3+df,B

'
G
d3

(
d
ξ0

)3+df,B

(11)

This approximation without the tension term can be applied for sufficient large clusters with
(ξ0/d)2+df,B � (ξ0/d)df,B . For the evaluation of the scaling factor g′ in Equation (11) we have to
consider the ensemble average of clusters. However, this will not be considered here, because we are
mainly interested in the scaling exponents.

The stretching of the clusters can be evaluated in the same approximation [7]:

∆lξ = ∆ls + ∆lh = ∆lb

(
kb

ks(ξ0)
+ gNB

)
≈ ∆lb

g′Q

G

(
ξ0

d

)2+df,B

(12)

Here, we have introduced the stretching ∆lb and force constant kb ≡ Q/d2 related to stretching of
the single bonds. In addition. we used the equilibrium conditions for the force ∆ls/∆lb = kb/ks(ξ0)

and ∆lh/∆lb = kb/kh(ξ0) = gNB. In the next section we will use Equation (12) for describing
the fracture of filler clusters by relating it to the fracture of bonds under tension.

Examples:
The cluster mechanics described by Equations (8)–(10) shall be illustrated by two simple examples

which are depicted in Figure 3. In Figure 3a a linear chain is considered with the force
→

F pointing

perpendicular or alternatively in direction of the chain. In the first case we have g = 0 and
→

F ×
→
z

points into the direction of the chain. This implies for the force constant and the deformation:

kξ = ks = 12
G

NB(NBd)2 → ∆
→

l s =

→

F
ks

=

→

F

12dG
(NBd)3 (13)
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With g′ = 1/12 being the ratio between the squared radius of gyration and the squared length
L2 = (NBd)2 of a linear chain. Accordingly, the force constants ks drops with the 3rd power of
the length.

In the second case, where
→

F points parallel to the chain, we have g = 1 and
→

F ×
→
z points

perpendicular to the chain. This implies S⊥ = 0 yielding:

kξ = kh =
Q

NBd2 → ∆
→

l h =

→

F
kh

= NB
d2
→

F
Q

(14)

As expected, the deformation increases linear with the number of bonds.
In Figure 3b we consider the case where a random walk structure of the chain is realized,

corresponding to three 1-dimensional random walks with NB/3 particles. The average projection g is

then given by g =
∮ (
→

F
F ·

→

b
d

)2

dS = 1/3. The ratio between the ensemble average of the squared radius

of gyration 〈R2
g〉 and the squared end-to-end distance R2 = NBd2 is evaluated as g′ = 1/6 (see e.g.,

Chapter 2 in [36]). This implies for the force constant:

kξ =

N2
Bd2

6G
+

NBd2

3Q

−1

(15)

For the deformation under tension of the 1-dimensional random walk shown in Figure 3b
one obtains:

∆
→

l h =

→

F
kh

=
NB

3
d2
→

F
Q

(16)

For the more general case that the force points in arbitrary direction also the bending–twisting
deformations of bonds must be taken into account by referring to the full force constant kξ of
Equation (15).

2.3. Evaluation of Boundary Cluster Size and Cluster Stress

In view of introducing a fracture criterion for strained clusters, we assume that the tension of
bonds is a much more critical deformation compared to bending and twisting, since it separates
the filler particles from each other. Equation (12) relates the total stretching of a cluster to the stretching
of the bonds and can therefore be used for evaluation of the failure strain of the cluster by defining
a fracture criterion for the bonds. We will introduce here two different fracture criteria, which will be
denoted “monodisperse” and “hierarchical”.

In the first approach all bonds are considered to be equal (monodisperse) having the same strength.
Then, the failure strain εf,bof the bonds is given by the critical stretch of the bonds ∆lf,b in relation to
the bond length: εm

f,b ≡ ∆lf,b/d. This implies for the failure strain of the cluster:

εf,ξ ≡
∆lf,ξ
ξ0
≈ εm

f,b
g′Q

G

(
ξ0

d

)1+df,B

(17a)
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In contrast, the hierarchical model takes into account that a hierarchy of bond strengths develops
during cluster–cluster aggregation, because the mobility of the clusters decreases with cluster size.
Accordingly, the first bond formed between two particles is the strongest while successive bonds formed
between the growing sub-clusters become weaker and weaker. The last bond formed in the cluster is
the weakest and will break first under tension. This effect is taken into account by the hierarchical
fracture criterion, where the failure strain εf,b of the bonds is defined in relation to the cluster size,
which is the only relevant length scale in our model: εh

f,b ≡ ∆lf,b/ξ0. This implies that the failure strain
of the cluster increases more rapidly with cluster size compared to the monodisperse case:

εf,ξ ≡
∆lf,ξ
ξ0
≈ εh

f,b
g′Q

G

(
ξ0

d

)2+df,B

(17b)

For the evaluation of the boundary cluster size between broken and unbroken clusters in stretched
rubbers, we assume that a stress equilibrium is realized between the strain amplified rubber matrix
and the clusters σR,µ

(
εµ

)
= GAεA,µ(εµ). With the scaling relation Equation (11) for the elastic modulus

of the clusters this delivers for the cluster strain:

εA,µ(εµ) = G−1
A σ̂R,µ

(
εµ

)
≈

g′d3

G

(
ξ0

d

)3+df,B

σ̂R,µ

(
εµ

)
(18)

Here we have replaced the rubber stress by a relative stress with respect to the minimum strain:

σ̂R,µ

(
εµ

)
≡

(
σR,µ

(
εµ

)
− σR,µ

(
εµ,min

))
(19)

This ensures that the stretching of clusters in spatial direction µ starts at the minimum strain εµ,min

for each cycle. Here, we assume that clusters reaggregate into a stress-free state at minimum strain.
A comparison of the exponents in Equations (18) and (17) makes clear that the strain of the clusters

under external strain increases faster with cluster size than the failure strain, in both cases. This implies
that large clusters break first followed by smaller ones, i.e., the boundary cluster size between broken
and unbroken clusters ξµ

(
εµ

)
moves from larger to smaller values with increasing strain. It is obtained

by equating the cluster strain to the failure strain. This yields for the two fracture criteria:ξµ
(
εµ

)
d


2

=
Qεm

f,b

d3σ̂R, µ

(
εµ

) ≡ sd

σ̂R, µ
(
εµ

) (20a)

And
ξµ

(
εµ

)
d

=
Qεh

f,b

d3σ̂R, µ

(
εµ

) ≡ sd

σ̂R, µ

(
εµ

) (20b)

Here, sd is defines as the fracture stress under tension of bonds, i.e., the tensile strength of damaged
filler–filler bonds. The boundary cluster size ξµ

(
εµ

)
applies for the integral boundaries of Equation (7),

describing the filler-induced hysteresis due to the successive breakdown of soft filler clusters with
damaged filler–filler bonds.

Similar expressions are found for the upper boundary of Equation (5), but now the tensile strength
sv of virgin filler–filler bonds is entering:(

ξµ,min

d

)2

=
Q̃ε̃m

f,b

d3σ̂R, µ

(
εµ,max

) ≡ sv

σ̂R, µ

(
εµ,max

) (21a)

And
ξµ,min

d
=

Q̃ε̃h
f,b

d3σ̂R, µ
(
εµ,max

) ≡ sv

σ̂R, µ
(
εµ,max

) (21b)
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The elastic constant and failure strains are denoted by Q̃ and ε̃f,b, respectively. Note that the tensile
strength of virgin filler–filler bonds must be larger than the tensile strength of damaged bonds, i.e.,
sv > sd. Equation (21a) or (21b) together with Equation (5) define the amplification of the rubber matrix,
and thus stress—softening effects of the model. Solving this set of equations for σ requires iterative
methods, e.g., Newton iteration.

By referring to the stress equilibrium between the strain amplified rubber matrix and the clusters,
σ̂R,µ

(
εµ

)
= GAεA,µ

(
εµ

)
, the cluster stress σA,µ responsible for filler-induced hysteresis is obtained by

differentiation of Equation (7) with respect to cluster strain:

σA,ν ≡
∂WA
∂εA,ν

=

∂ε
∂t >0∑
µ

1
d

∫ d(
sd

σ̂R,µ(εµ)
)
α

d(
sd

σ̂R,µ(εµ,max)
)
α GA

(
ξµ

)
εA,µ

(
ξµ, εµ

)∂εA,µ(ξµ)
∂εA,ν(ξµ)

ϕ
(
ξµ

)
dξµ =

∂ε
∂t >0∑
µ
σ̂R,µ

(
εµ

)
〈
∂εA,µ
∂εA,ν
〉

1
d

∫ d(
sd

σ̂R,µ(εµ)
)
α

d(
sd

σ̂R,µ(εµ,max)
)
α ϕ

(
ξµ

)
dξµ

(22)

The exponent α takes the two fracture criteria into account, i.e., α = 1/2 for the “monodisperse”
model and α = 1 for the “hierarchical” model. In addition. we assume that the clusters, on average,
deform like the sample:

〈
∂εA,µ

∂εA,ν
〉 =

∂εµ

∂εν
(23)

The sum in Equation (22) runs over stretching directions, only, implying that the up- and down
cycles are different. The cluster stress of the upcycle is positive while the downcycle gives a negative
contribution, producing the filler-induced hysteresis.

For uniaxial deformations, realized on microscales λ2 = λ3 = λ−1/2
1 ; ∂λ2 = ∂λ3 = −1/2 λ−3/2

1 ∂λ1)

and macroscales 1 + ε2 = 1 + ε3 = (1 + ε1)
−1/2; ∂ε2 = ∂ε3 = −1/2 (1 + ε1)

−3/2∂ε1, the cluster stress
in stretching direction for the upcycle (∂ε1/∂t > 0) is obtained as:

σ
up
A,1 = σ̂R,1(ε1)

1
d

∫ d(
sd

σ̂R,1(ε1)
)
α

d(
sd

σ̂R,1(ε1,max)
)
α
ϕ(ξ1) dξ1 (24)

For the down cycle, the lateral directions contribute to the cluster stress (∂ε2/∂t > 0; ∂ε3/∂t > 0):

σdown
A,1 = 2σ̂R,2(ε1)

(
−

1
2
(1 + ε1)

−
3
2

)1
d

∫ d(
sd

σ̂R,2(ε1)
)
α

d(
sd

σ̂R,2(ε1,max)
)
α
ϕ(ξ2) dξ2 (25)

With ϕ(ξ1) = ϕ(ξ2) = ϕ(ξ3) ≡ ϕ(ξ). This gives a negative stress contribution, which must be
subtracted from the rubber stress. It can also be expressed by the rubber stress σR,1 in stretching
direction. By assuming that the same energy is needed for stretching in 1-direction and compressing
in 2- and 3-direction to obtain a final deformed state, the following relation is derived:

σ̂R,2(ε2) ≡ σR,2(ε2) − σR,2(ε2,min) = −λ
3/2
1 σR,1(ε1) − λ

3/2
1,maxσR,1(ε1,max) (26)

Finally, for the evaluation of the (measured) total stress we have to consider an additional set stress
σset that appears as a remaining stress in the undeformed state after stretching and retraction. Note
that this is also found for unfilled rubbers and depends on temperature and stretching rate. It probably
results from long time relaxation effects of the polymer network. We introduce it in a purely empirical
manner for the case of uniaxial deformations:

σset,1 = sset,0
(√
ε1,max −

√
ε1,min

)
(27)
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Then for uniaxial deformations the total stress reads:

σtot,1(ε1) = σR,1(ε1) + σ
up/down
A,1 (ε1) + σset,1(ε1,max, ε1,min) (28)

The stress of the rubber matrix σR,1 is given by Equation (4) with λµ = 1 + X
(
εµ,max

)
εµ and strain

amplification factor X
(
εµ,max

)
specified by Equation (5). The cluster stress σA,1 depends on the direction

of straining and is determined by Equations (24) and (25) for up and down, respectively. The theory
presented here describes the complex quasi-static deformation behavior of filler reinforced elastomers
for repeated stretching with increasing amplitude. A more general formulation of the DFM that applies
for arbitrary deformation histories requires an additional term for the free energy density of soft filler
clusters Equation (7), which considers the relaxation of cluster stress upon retraction [15,16]. For a test
of the theory the present formulation for repeated stretching with increasing amplitude is sufficient
because all open parameters are entering already and the extension to arbitrary deformation histories
requires no additional fitting parameters.

2.4. Frame-Independent Formulation of Stress-Softening for Fast FEM Simulations

The implementation of the DFM into a FEM algorithm faces several problems. First, the DFM is
a microscopic theory, where stresses are calculated by differentiation of the free energy density with
respect to the internal strain variables λµ and λA,µ, respectively. This is in discrepancy to continuum
mechanical considerations, where corresponding differentiations have to be performed with respect to
external strain variables. Second, the DFM is formulated in the main axis system and requires stress
contributions of different directions, especially for description of filler-induced hysteresis, which all sum
up to produce close cycles. This can hardly be transferred to a pure tensorial formulation. Nevertheless,
a FEM implementation of the DFM was obtained by referring to the concept of representative directions,
which considers uniaxial deformations along fibers in different spatial directions [24,25]. However,
the computational cost of this workaround is very large, and the efficiency is low. Therefore, we want
to focus here on a frame-independent tensor formulation of the stress-softening part of the DFM for
fast and efficient FEM simulations.

In a first step we put the strain amplification factor Xmax ≡ X(εµ,max) in front of the deformation
invariants, appearing in the free energy density of the extended non-affine tube model Equation (2)
and replace the internal strain λµ = 1 + X(εµ,max)εµ by the external strain λµ = 1 + εµ. This follows
the ideas of Einstein [37] and Domurath et al. [38] and is done in close correlation to the evaluations
in [22]. The free energy density reads:

WR =
Gc

2

XmaxI1
(
1− Te

ne

)
1− Te

ne
XmaxI1

+ ln
[
1−

Te

ne
XmaxI1

]+ 2GeXmaxI
∗

(29)

with the (frame-independent) first invariant of the left Cauchy–Green tensor:

I1 ≡ λ
2
1 + λ2

2 + λ2
3 − 3 (30)

and the (frame-independent) generalized invariant:

I
∗

≡ λ−1
1 + λ−1

2 + λ−3
3 − 3 (31)

Here, λµ = 1 + εµ is the external strain of the sample. A frame-independent formulation of
the strain amplification factor Xmax is obtained similar to Equation (5) by replacing the relative
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stress σ̂R,µ(εµ,max) used for the calculation of the boundary cluster size xµ, min by the Frobenius norm
‖ σR(εmax) ‖ of the engineering stress.

X(εmax) = 1 + cΦ
2

3−df
eff

1
d

∫ d(sv/σR(εmax))
α

0

(
ξ
d

)dw−df

ϕ(ξ)dξ+
∫
∞

d(sv/σR(εmax))
α
ϕ(ξ)dξ

 (32)

The iteration procedure for the evaluation of stresses (compare Equation (21a) or (21b) together
with Equation (5)) is then replaced by its tensorial analog:

σR,µ

(
εµ,max

)
= f

(
Xmax

(
σR,µ

(
εµ,max

)))
→ σR(εmax) = f(Xmax(σR(εmax))) (33)

The free energy density Equation (29) can be used in a standard continuum mechanical sense for
the evaluation of stresses and tangent vectors. It can be further simplified by omitting the logarithmic
term, which gives a minor contribution to the stress upturn. In addition. The generalized invariant
can be approximated by the square root of the second invariant, which avoids the calculation of
eigenvalues [39].

3. Experimental and Fitting Procedure

3.1. Materials

EPDM/A (“aging”) samples were prepared by using an amorphous-type ethylene–propylene-diene
rubber (EPDM, Keltan 4450) filled with 50-phr (parts per hundred mass parts rubber) carbon
black (N339). The rubber has a Mooney viscosity of 46 MU (at 125 ◦C) and consists of 52%
ethylene and 4.3% ethylidene norbornene. Moreover, 3 phr zinc oxide, 1 phr stearic acid
and 1.5 phr N-isopropyl-N’-phenyl-1,4-phenylenediamine (IPPD, aging protection) were added.
The curing system consists of 1.8-PHR sulfur, 1.5 phr 1,3-diphenylguanidine (DPG) and 2.4 phr
N-cyclohexyl-2-benzothiazolylsulfenamide (CBS, accelerator). EPDM/CB (“carbon black”) consists
of the same polymer, additives and curing system, but has varying amounts of carbon black (N339):
20, 40 and 60 phr.

3.2. Mixing and Sample Preparation

All ingredients except of the vulcanization system were mixed in an internal mixer of type GK
1,5E (Werner & Pfleiderer Gummitechnik GmbH, Freudenberg, Germany) at a loading of 75% and
a temperature of less than 140 ◦C. The vulcanization system was added in a second step on a 150*350RR
roller mill (KraussMaffei Berstorff GmbH, Hannover, Germany).

All samples were cured in a heated press of type WLP 63/3,5/3 (Wickert Maschinenbau GmbH,
Landau, Germany) at 160 ◦C up to the t90% time, where 90% of the torque obtained from a vulcameter
measurement is reached (17:23 min). One minute curing time was added per millimeter sample
thickness to account for heat diffusion.

From EPDM/A dumbbell test specimen were prepared. These were stored under thermo-oxidative
aging conditions at 130 ◦C in an air-ventilated oven for 0, 1, 3, 7 and 14 days.

3.3. Test Methods and Fitting

Quasi-static multi-hysteresis experiments (multiple deformation cycles up to different strain
levels) were performed in a Zwick 1445 (Zwick Roell, Ulm, Germany) universal testing machine using
a crosshead speed of 20 mm/min. Every strain level was repeated five times. From EPDM/CB tensile
test specimen of S2 type were prepared to achieve strains, which are not accessible using dumbbell
samples. Multi-hysteresis experiments at 100 mm/min crosshead speed were performed in the same
stretching machine. In both cases, the 5th cycles were separated for fittings with the DFM, which can
be considered as equilibrium cycles.
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The adaptation of stress-strain cycles to Equation (28) was performed by minimization of the error

functional χ2 =
∑

cycles
∑

n

(
ymod,n − yexp, n

)2
, where ymod, n and yexp, n represent the nth model and

experimentally obtained 1. Piola–Kirchhoff (“engineering”) stress data point. The set stress parameter
sset,0 was included in the fitting procedure as defined by referring to Equation (27). The remaining two
stress contributions of Equation (28), which involve seven fitting parameters, were obtained iteratively
by using Equations (4)–(6) for the intrinsic stress of the rubber matrix σR,1 and Equations (24) and (25)
for the evaluation of cluster stress σA,1. Note that both stress contributions involve the same cluster
size distribution, which stabilizes the fitting procedure, significantly. The front factor of Equation (5)
was fixed as c = 2.5 according to the Einstein equation [37] and the exponent was approximated as
dw − df ≈ 1 to allow for an analytical solution of the integral. The three fitting parameters describing
the rubber elastic network are the crosslink modulus Gc, the topological constraint modulus Ge and
the effective chain length for finite extensibility neff ≡ ne/Te. The filler clusters are described by four
fitting parameters, i.e., the effective filler volume fraction Φeff, the average cluster size x0 ≡ 〈xµ〉/d,
the tensile strength of virgin filler–filler bonds sv and the tensile strength of damaged filler–filler
bonds sd.

4. Results and Discussion

4.1. Micromechanical Investigations of Thermo-Oxidative Aging

The thermo-oxidative aging of elastomers is of high technological interest for the rubber industry,
because it mostly increases the hardness of the samples and has a negative effect on the fracture
toughness or crack resistance. This limits the life time of rubber goods, significantly. The reason for
this property losses are mainly seen in a change of the rubber–elastic network due to post-curing,
but the often-accompanied increase in electrical conductivity indicates that also the carbon black
network is altering during thermo-oxidative aging of elastomers. This is hardly to distinguish by
standard measurement techniques since changes of the polymer- or filler network structure are difficult
to detect. We therefore refer here to the evaluation of micromechanical material parameters, which are
obtained by fitting the stress–strain response of the aged samples to the DFM.

Figure 4 shows a series of fittings of multi-hysteresis stress–strain cycles of EPDM/A samples
stored under thermo-oxidative aging conditions at 130 ◦C for 0, 1, 3, 7 and 14 days. In Figure 4a,
the “monodisperse” bond fracture model (α = 1/2) is used while Figure 4b refers to the “hierarchical”
bond fracture model (α = 1). Before we discuss the effect of thermomechanical aging on material
parameters, we will first consider the quality of the fits for the two different bond fracture criteria.
The “monodisperse” model depicted in Figure 4a delivers fair agreement between fits and experimental
data with correlation coefficients between R2 = 0.994 and 0.995, but systematic deviations are seen, e.g.,
for the peak stresses in the medium strain regime. For the “hierarchical” model shown in Figure 4b,
the fits are significantly better with correlation coefficients between R2 = 0.995 and R2 = 0.998.
This indicates that the “hierarchical” model is more suited for describing the stress–strain cycles of
filler reinforced elastomers. Even in the case of aged samples we get excellent adaptations in the small
and medium strain regime up to 100% strain. Therefore, we will mainly focus on the “hierarchical”
model with bond fracture exponent α = 1 for the discussion of thermo-oxidative aging effects on
a microscopic level. Nevertheless, we will see that the “monodisperse” model delivers similar values
and trends of the fitting parameters.
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The stress–strain data in Figure 4 show that the average stress level increases with increasing aging
time. The reason for this hardening of the samples shall be analyzed by referring to the evolution of
fitting parameters that are depicted in Figure 5. The fitting parameters obtained with the “monodisperse”
bond fracture model (α = 1/2) are shown in Figure 5a and those from the “hierarchical” bond fracture
model (α = 1) in Figure 5b. Obviously, the “hierarchical” bond fracture model in Figure 5b delivers
a smoother evolution of fitting parameters, which correlates with the higher correlation coefficients of
the fits in Figure 4b. This confirms our view that the “hierarchical” bond fracture model is more suited
for the discussion of aging effects. Looking first at the crosslink and topological constraint moduli
of the polymer network, Gc and Ge, we see that the former remains almost constant while the later
increases successively with aging time. This indicates that the post-curing effect is not pronounced
for the EPDM samples used in this study, but the topological constraints of the chains increase with
aging time possibly due to an increasing number of entanglements close to the carbon black particles
(surface-induced entanglements). This correlates with the observed decrease of the effective chain
length, neff ≡ ne/Te, since the segment number ne between successive entanglements decreases with
aging time if Ge increases (Ge ∼ 1/ne). However, it must be noted that it is difficult to distinguish
between the two parameters Gc and Ge in the frame of the DFM, since both act in a similar way.
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neff ≡ ne/Te. The filler clusters are described by four fitting parameters, i.e., the effective filler
volume fraction Φeff, the average cluster size x0 ≡ 〈xµ〉/d, the tensile strength of virgin filler–filler
bonds sv and the tensile strength of damaged filler–filler bonds sd.

An additional significant effect of thermo-oxidative aging is observed for the strength of virgin
and damaged filler–filler bonds, sv and sd, which both increase systematically with aging time. This is
clearly seen in the case of the “hierarchical” bond fracture model (α = 1). It indicates that a relaxation
of bonds takes place during heating of the samples at 130 ◦C, leading to more stable filler–filler joints.
Note that this is related to confined polymer between the filler particles, which is assumed to be
in a glassy-like state at room temperature [7] but can relax at elevated temperature. This relaxation
process has been investigated recently by online dielectric spectroscopy during heat treatment of
carbon black filled EPDM [40]. The increase of sv and sd with aging time observed in Figure 5b
results in stronger stress-softening and hysteresis effects of the aged samples. Two further parameters
describing the aging of the filler network are the effective filler volume fraction Φeff and the mean
cluster size x0. The former decreases slightly with aging time, but remains larger than the real filler
volume fraction, as expected (Φeff > Φ ≈ 0.2). This indicates a slight decrease of the occluded rubber
during aging, which is hidden in the voids of the filler particles and acts like additional filler. The mean
cluster size lies in a reasonable range of about 10 to 15 particle diameters and goes through a weak
maximum with increasing aging time. This can be related to flocculation effects and restructuring of
the filler network

4.2. Frame-Independent Model of Stress Softening

For the discussion of the frame-independent model of stress softening we will focus
on the “hierarchical” bond fracture model with α = 1, only. For the analysis of the stress-softening
effect, described here, we refer to the EPDM/CB samples with varying amount of carbon black. Note
that the hysteresis is not included in this model.

Figure 6a,b shows fits of stress–strain cycles of the EPDM/CB samples with the frame-independent
model (α = 1) up to 100% and 200%, respectively. In both cases the stress-softening effect is reproduced
fairly well, though for the 200% fit systematic deviations are seen for the sample with 60-PHR N339
in the small strain regime. The effect of filler concentration on the fitting parameters is depicted for
both cases in Figure 7a,b, respectively. All values of the parameters are found in a reasonable range.
However, they strongly depend on the range of the fitted stress–strain data up to 100% and 200%,
respectively. This indicates that the DFM cannot simply be extended to strains up to 200% because
additional mechanisms of stress softening may appear at larger strains, e.g., detachment of the polymer
from the filler surface. Nevertheless, the quite reasonable fits in Figure 6b show that the simplified
DFM can be used as an empirical model also for larger strains up to rupture of the samples. Due to
the simplifications of the frame independent model compared to the original DFM it makes no sense to
discuss the dependence of fitting parameters on filler concentration in detail. The more interesting
point is the high stability of the fitting procedure with parameters that all are positive and can easily be
reproduced. Most important is the ability to implement the simplified model into a finite element code
for fast FEM simulations by using standard methods. This is of major interest for the rubber industry
and will be a task of future work.
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5. Conclusions

A micromechanical model of stress-softening and hysteresis of filler reinforced elastomers
was presented, which is based on a non-affine tube model of rubber elasticity and a generalized
three-dimensional Kantor–Webman model of flexible chain aggregates, describing the deformation
and fracture of filler clusters in the stress field of the rubber matrix. This dynamic flocculation model
(DFM) has been shown to reproduce the complex quasi-static deformation behavior of filler reinforced
elastomers upon repeated stretching with increasing amplitude fairly well. It is described in some detail
in the theoretical section, whereby two different fracture mechanisms of filler–filler bonds, denoted
“monodisperse” and “hierarchical” bond fracture mechanism, are considered. In the first approach all
bonds are considered to be equal (monodisperse) having the same strength. In the second approach
a hierarchy of bond strengths is realized, because during cluster–cluster aggregation the mobility of
the clusters decreases with cluster size.

In the experimental section the DFM is adapted to a series of aged EPDM samples which were
treated in an oven at 130 ◦C for different thermo-oxidative aging times. The fitting parameters
indicate that the crosslinking density remains almost constant while the entanglement density increases
slightly. This indicates that the sulfur bridges in EPDM networks are quite stable even at 130 ◦C
aging temperature, which can be related to the mono-sulfidic nature of the crosslinks. The observed
hardening of the composites with increasing aging time is mainly attributed to the relaxation of
filler–filler bonds. This results in an increased strength of the bonds, which produces a larger stiffness
and filler-induced hysteresis of the composites.

The two different bond fracture mechanisms are investigated by separate adaptations to the full
series of aged EPDM composites. They show that the “hierarchical” bond fracture mechanism delivers
better fits and more stable fitting parameters, though the evolution of fitting parameters with aging time
is similar for both models. Therefore, it is concluded that the “hierarchical” bond fracture mechanism,
which takes into account that the mobility of clusters decreases with cluster size, appears to be realized
in filler reinforced elastomers.

In the last section a frame-independent simplified version of the DFM is proposed that focuses on
an easy implementation of the stress-softening effect of filled rubbers into a finite element codes by
using standard methods. The model is shown to reproduce the stress-softening effect of EPDM samples
with varying amount of carbon black fairly well. Therefore, it appears to be well suited for performing
fast FEM simulations of highly filled rubber goods, where stress-softening cannot be neglected.
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