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Many drinking water utilities in the United States using chloramine as disinfectant
treatment in their drinking water distribution systems (DWDS) have experienced
nitrification episodes, which detrimentally impact the water quality. Identification of
potential predictors of nitrification in DWDS may be used to optimize current nitrification
monitoring plans and ultimately helps to safeguard drinking water and public health. In
this study, we explored the water microbiome from a chloraminated DWDS simulator
operated through successive operational schemes of stable and nitrification events and
utilized the 16S rRNA gene dataset to generate high-resolution taxonomic profiles for
bioindicator discovery. Analysis of the microbiome revealed both an enrichment and
depletion of various bacterial populations associated with nitrification. A supervised
machine learning approach (naïve Bayes classifier) trained with bioindicator profiles
(membership and structure) were used to classify water samples. Performance of
each model was examined using the area under the curve (AUC) from the receiver-
operating characteristic (ROC) and precision-recall (PR) curves. The ROC- and PR-AUC
gradually increased to 0.778 and 0.775 when genus-level membership (i.e., presence
and absence) was used in the model and increased significantly using structure (i.e.,
distribution) dataset (AUCs = 1.000, p < 0.01). Community structure significantly
improved the predictive ability of the model beyond that of membership only regardless
of the type of data (sequence- or taxonomy-based model) we used to represent
the microbiome. In comparison, an ATP-based model (bulk biomass) generated a
lower AUCs of 0.477 and 0.553 (ROC and PR, respectively), which is equivalent to
a random classification. A combination of eight bioindicators was able to correctly
classify 85% of instances (nitrification or stable events) with an AUC of 0.825 (sensitivity:
0.729, specificity: 0.894) on a full-scale DWDS test set. Abiotic-based model using
total Chlorine/NH2Cl and NH3 generated AUCs of 0.740 and 0.861 (ROC and PR,
respectively), corresponding to a sensitivity of 0.250 and a specificity of 0.957. The
AUCs increased to > 0.946 with the addition of NO2

− concentration, which is indicative
of nitrification in the DWDS. This research provides evidence of the feasibility of using
bioindicators to predict operational failures in the system (e.g., nitrification).
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INTRODUCTION

Many United States water treatment facilities use chloramine
as disinfectant treatment to ensure regulatory compliance
of targeted disinfectant by-products (DBPs). However, more
than half of water utilities using chloramine as a disinfectant
experience episodes of nitrification in their drinking water
distribution system (DWDS; Zhang et al., 2009) with detrimental
consequences in water quality (e.g., taste, odor; Carrico et al.,
2008). Nitrification is a microbial process by which free-
ammonia (NH3) provides the substrate (from excess or decay of
chloramine) for ammonia-oxidizing bacteria (AOB) producing
nitrite (NO2

−), which can be oxidized to nitrate (NO3
−) by

nitrite-oxidizing bacteria (NOB; Wahman et al., 2013). Changes
in water quality have been shown to promote the growth of
nitrifying bacteria (i.e., nitrification). Background nitrification
(complete or partial) likely occurs in small localized areas in
all chloraminated systems (Carrico et al., 2008), but adequate
levels of disinfectant residual (i.e., chloramines) appear to
prevent the intensity and propagation of nitrification in DWDS
(Wahman et al., 2013). However, once nitrification occurs,
chloramine is rapidly degraded and the current approach to
stop and control nitrification is the periodic switching of the
disinfectant from chloramine to free chlorine (i.e., a ‘chlorine
burn’; Carrico et al., 2008).

Many United States water facilities have adopted water quality
monitoring plans to assess DWDS water quality and determine
when nitrification is occurring (Zhang et al., 2009; Hill and
Arweiler, 2013). These plans typically incorporate the physico-
chemical monitoring of some or all of the following water
quality parameters (i.e., water indicators of nitrification): (i) low
or depleted total chlorine residual (chloramine degradation),
(ii) elevated NO2

− concentration, (iii) elevated or depleted
free NH3 concentration (nitrification occurring, e.g., source
of nutrient), (iv) increased NO3

− concentration, (v) low pH,
and (vi) increased temperature (> 15◦C as an indicator of
nitrification potential, e.g., summer). Among the monitoring
strategies, the biomonitoring approach has become a popular
alternative to observe environmental changes and analyze signals
for possible ecological shifts (Siddig et al., 2016). Importantly,
biomonitoring may reveal the potential onset of a nitrification
episode before sufficient levels of chemical surrogates are
detected as changes in the biological stability of the ecosystem
may represent early events in the pathway leading to failed
systems. The term biomonitoring has been defined as the use of
biological communities or their responses as an indicator of the
quality of the system and are used mostly to monitor chemical
changes in the environment (McCarty et al., 2002; Bartell,
2006). For example, biomonitoring determined by culture-
based heterotrophic plate count (HPC) and AOB most probable
number (MPN) counts in combination with chemical parameters
are commonly assessed to identify events of nitrification in
DWDS (Regan et al., 2002; Hoefel et al., 2005). Although it
has been reported that increased HPC counts correlate with
episodes of nitrification (Skadsen, 1993), this standard culture-
based method is not considered a useful operational indicator
because (i) the incubation time (> 72 h and up to a month for

HPC and MPN, respectively) and (ii) elevated HPC counts can
occur for a number of reasons (e.g., contamination in the DWDS,
seasonal changes). Culture-independent techniques have created
new opportunities for assessment of DWDS operations (Zhang
et al., 2009) and current advances in sequencing technology (e.g.,
high-throughput and deep DNA sequencing) allow for the direct
assessment and diversity of the water microbiome present in
DWDS. This technology is being increasingly utilized to reveal
spatial and temporal dynamics of microbial communities in
DWDS (Shaw et al., 2015; Bautista-de los Santos et al., 2016;
Gomez-Alvarez et al., 2016).

This study investigated the practicality of bulk water (BW)
microbiome-based signatures as a screening tool and a potential
predictor of nitrification in DWDS. BW was chosen because
sampling of BW in a DWDS by water utility operators is
relatively simpler and easier than collecting biofilm samples from
underground pipes. For this purpose, we initially examined the
BW bacterial community of a chloraminated DWDS simulator
operated through successive operational schemes, including an
episode of nitrification (Gomez-Alvarez et al., 2016). DWDS
simulators provide a managed platform to review all related
water indicators (biotic and abiotic) along with an assessment of
system operations (i.e., schemes), since several related events can
occur simultaneously or sequentially (Hill and Arweiler, 2013).
Our methodology applied a supervised classification machine
learning approach (naïve Bayes algorithm) for developing
predictive models for drinking water instability (e.g., nitrification;
Figure 1). Classification models were trained with indicator
species profiles (hereinafter referred to as bioindicators) generated
from high-throughput 16S rRNA gene libraries. The training
sets were divided into two groups (i.e., binary) of positives
and negatives (Failure and Stable, respectively). The objective
in binary classification is to train (learn) a model (function)
that can distinguish one operational scheme from another. After
method evaluation, our models were compared against current
monitoring indicators of nitrification [biomass (ATP) and water
chemical parameters]. In addition, we utilized our microbiome-
based classification model to determine the operational scheme of
full-scale DWDS studies of chloraminated systems. Nitrification
can lead to the degradation of water quality in DWDS and can
potentially impact compliance with the Safe Drinking Water Act
(Friedman et al., 2013). The results of this study demonstrated
the feasibility of using BW microbiome-based screening tools to
assess water quality, thus expanding the inventory of molecular
tools for the prediction of nitrification in DWDS.

MATERIALS AND METHODS

Water Microbiome and Data Source
To investigate the BW bacterial microbiome composition within
and between different operational schemes, we re-examined the
dataset compiled by Gomez-Alvarez et al. (2016). The study
examined the microbial communities of a chloraminated DWDS
simulator operated through successive operational schemes,
including an episode of nitrification, followed by a ‘chlorine burn’
[restore event (SR)] by switching disinfectant from chloramine to
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FIGURE 1 | Machine learning classification for the prediction of drinking water distribution systems (DWDS). Schematic of a supervised machine learning approach
to classify operational schemes. Different color arrows indicate training (–) and test (–) datasets.
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free chlorine (Figure 2). DWDS simulator design, water analysis,
sample collection, DNA extraction, sequencing, and biomass
quantification were previously published (Gomez-Alvarez et al.,
2016) and briefly described in Supplementary Material.

The current study re-examined the 16S rRNA gene (v4 region)
sequence dataset generated using Illumina MiSeq sequencing
technology and only BW sequences associated with Stable
(SS; SI and SII) and Failure (SF) events. In addition, water
quality parameters (Supplementary Table S1) and biomass
values corresponding to the same sampling points were
included in this study.

Operational Schemes
Stable (SS) and Failure (SF) operational schemes were defined
using the water quality indicators recommended by the American
Water Works Association (Hill and Arweiler, 2013). Low total
chlorine residual (< 0.2 mg/L) and increased concentrations of
NO2

− (> 0.05 mg/L) and free NH3 (> 0.2 mg/L) are indicative
of nitrification (i.e., Failure). Stable systems maintain a baseline
of > 1.5 mg/L total chlorine residual, < 0.15 mg/L free NH3, and
< 0.01 mg/L NO2

−.

Water Chemical Parameters
Eleven water chemical parameters [pH, turbidity, NH2Cl, Free-
Chlorine, NH3, NO2

−, NO3
−, phosphate (P), total organic

carbon (TOC), total nitrogen (TN), and C/N ratio] were used as
variable inputs for principal component analysis (PCA). Prior to
the analysis, water parameters were log-transformed to decrease
the variability of data due to differences in magnitudes and scales
of measurements (Kenkel, 2006). A non-parametric Mann–
Whitney U tests (α = 0.05) was used to determine the differences
in the water quality parameters between SS and SF schemes.
PCA ordination and Wilcoxon–Mann–Whitney U tests were
performed using the software PAST v3.12 (Hammer et al., 2001).

16S rRNA Sequence Analysis
Reads were analyzed using the software MOTHUR v1.37.6
(Schloss et al., 2009) and were screened following the procedure
described in Gomez-Alvarez et al. (2016) and briefly described
in Supplementary Material. Reads were aligned against the
SILVA SEED release 123 reference dataset and grouped with
97% sequence identity as the cut-off point for each operational
taxonomic unit (OTU). Taxonomic classification was obtained
using the Ribosomal Database Project (RDP v16) reference
database. The sequences and taxonomic outlines for the RDP
hierarchies were downloaded from the MOTHUR website1. Prior
to community analysis, samples were rarefied to the smallest
dataset (5,000 reads).

Microbial Community Assemblages
Normalized libraries were used to calculate richness (S), richness
estimators (ChaoI and SACE), Shannon diversity (H), and
evenness (HE) with the software MOTHUR v1.37.6 (Schloss et al.,
2009). Principal coordinate analysis (PCoA) based on the Square
Root Jensen–Shannon Divergence coefficient (dissimilarity) was

1https://www.mothur.org

used to describe the relationships among microbial communities.
The Jensen–Shannon divergence is a method of measuring the
similarity between two probability distributions based on relative
distribution. A Mann–Whitney U test (α = 0.05) was used to test
the differences between the diversity indices of samples from the
SS and SF schemes.

One-way PERMANOVA test (Anderson, 2001) based
on Jensen–Shannon dissimilarity matrix derived from the
distribution of microbial communities with 9,999 permutations
was used to determine if there were significant differences
(α = 0.05) between the communities at each operational
scheme. Similarity Percentage (SIMPER) analysis was used
to determine the percentage contribution of species to the
differences observed between operational schemes (Clarke,
1993). Ordination plot, Wilcoxon–Mann–Whitney U tests,
SIMPER, and PERMANOVA were performed with the software
PAST v3.12 (Hammer et al., 2001).

Bioindicator Discovery Analysis
Sequence- and taxonomy-based relative abundance datasets were
examined for bioindicator discovery. Sequence-based dataset are
reads grouped with 97% sequence identity as the cut-off point
(i.e., OTU). Taxonomy-based dataset are reads assigned to the
same taxonomy classification (i.e., genus-level bioindicators).
Differentially abundant microbial bioindicators were identified
using the linear discriminative analysis (LDA) effect size (LEfSe)
program v1.0 (Segata et al., 2011) on a Galaxy server hosted by
the Huttenhower Lab at Harvard2. The parameters used were an
LDA threshold score = 2.0 and α = 0.05. LEfSe determines the
OTUs or taxa (i.e., features) most likely to explain differences
between operational schemes (i.e., classes) by coupling standard
tests for statistical significance with biological consistency and
effect relevance (Segata et al., 2011).

Machine Learning Classification and
Evaluation
A supervised machine learning approach was used to classify
samples from SS and SF (Figure 1). For our experimental
approach we used the naïve Bayes classification algorithm, a
probability-based method that assumes a strong conditional
independence of features (Lowd and Domingos, 2005; Knights
et al., 2011). All models were evaluated using the 10-fold cross-
validation (Refaeilzadeh et al., 2009). In summary, the training
dataset is first randomly divided into ten equal sized segments
or folds, the models are trained on nine segments and tested
on the tenth segment. The process is repeated ten times using
a different segment for testing and then combined to produce a
single evaluation score.

Performance of each classification model was displayed by a
confusion matrix and evaluated by calculating the area under
the curve (AUC) from receiver-operating characteristic (ROC)
and precision-recall (PR) curves (Fawcett, 2006; Lever et al.,
2016). The confusion matrix indicates the number of instances
with regards to the predicted and the actual classes. The AUC,
a metric of classification accuracy, was computed on ten sets

2http://huttenhower.org/galaxy
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FIGURE 2 | Water parameters distinguish between operational schemes. (A) Principal component (PC) analysis representing the relationship of drinking water
distribution systems (DWDS) simulator samples. Values in parenthesis indicate the percentage of total variation explained by the first two axes. Dashed arrows
indicate the orientation and contribution of water parameters to the ordination plot. Labeled samples represent transition points. Bulk water (BW) source: SS (•),
SF (•), SR (•). Water quality values are listed in Supplementary Table S1. (B) The simulator was operated through four successive operational schemes; a stable
period (SI) where chloramine residual (–) is maintained to a failure period (SF) where no chloramine residual is maintained as a result of nitrification (–), followed by a
‘chlorine burn’ (SR) by switching disinfectant from chloramine to free chlorine (–) and switching back to chloramine resuming normal operation (SII).

of predictions obtained from 10-fold cross-validation. An AUC
of 1.0 indicates an excellent classifier (no false positive or false
negative), while a value of < 0.5 is equivalent to a random
classification of the subjects (Fawcett, 2006). A ROC curve
represents relative tradeoffs between benefits (TP; true positives)
and costs (FP; false positives), in which TP rate is plotted on
the y-axis and FP rate is plotted on the x-axis. PR curve is
the TP rate (i.e., recall) against the positive predictive value
(PPV) or precision. ROC is routinely used to evaluate classifier
performance; however, PR has proven particularly useful in
this study where the overall number of positives examples is

small, i.e., imbalanced datasets (Brodersen et al., 2010; Saito and
Rehmsmeier, 2015). Construction of models and evaluation were
conducted using the Knowledge Flow Interface (Supplementary
Figure S1) implemented in the Waikato Environment for
Knowledge Analysis (WEKA) suite v3.9.0 (Hall et al., 2009).

Training Sets
Classification models were trained with chosen biotic features
of either biomass (ATP), OTUs (Supplementary Figure S2), or
genus-level taxonomic groups (Supplementary Table S2) and
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based on data generated from the DWDS simulator (Gomez-
Alvarez et al., 2016). Binary training sets were divided into two
groups of positives and negatives (Supplementary Table S3).
The objective in binary classification is to train (learn) a model
(function) that can distinguish one operational scheme from
another (e.g., Failure vs. Stable). To avoid overfitting of the
biotic models based on the microbiome, we adopted stringent
conditions (LDA = 4.0, p < 0.01) in the selection of OTUs
and genus-level taxonomic bioindicators (Schubert et al., 2014;
Zackular et al., 2014). Training datasets were class-imbalanced
with a higher number of “negative” samples (class: Stable) than
“positive” samples (class: Failure). To make the model optimize
its performance on both the classes, a synthetic minority over-
sampling technique (SMOTE) was applied to the imbalanced
datasets. SMOTE algorithm generates a random set of artificial
data from minority samples (Chawla et al., 2002).

Test Sets
The test sets included only genus-level taxonomic groups
identified as bioindicators (see previous section) compiled from
water samples of full-scale DWDS studies of chloraminated
systems (Supplementary Tables S4, S5). Species profiles were
obtained from published results and/or by reanalyzing their
corresponding sequencing data (if available) following the
protocol listed in this study (see section “16S rRNA Sequence
Analysis”). The following samples were use in the analysis: (i)
forty-six locations (sequence libraries: n = 137) along the DWDS
located in Pinellas County, FL (Wang et al., 2014), (ii) multiple
locations (n = 13) along two distinct chloramine-treated DWDS
in Western Australia (Shaw et al., 2015), (iii) tap water samples
(n = 21) from five DWDSs along the Arkansas and lower
Mississippi Rivers (Holinger et al., 2014), (iv) tap water samples
(n = 9) from two municipalities located within the headwaters
of the Ohio River Basin (Stanish et al., 2016), (v) nine locations
(n = 116) in the DWDS of Ann Arbor, MI (Pinto et al., 2014), (vi)
water samples (n = 30) from a building plumbing rig connected
to DWDS in the eastern portion of the continental United States
(Ji et al., 2015), (vii) tap water samples (n = 40) collected in
2012 from two municipal drinking water systems (Algiers and
Carrolton) in New Orleans, LA (Hull et al., 2017), and (viii)
five locations (n = 14) along the DWDS in Urbana, IL (Hwang
et al., 2012). Furthermore, eleven water samples from the DWDS
simulator obtained before the start of the current experiment
were included in the test set.

Classification Performance and
Prediction
Examination of the classification performance our model was
performed with a microbiome-based test set of full-scale DWDS
categorized instances. Categorized instances (n = 161) are samples
defined as Stable (SS) or Failure (SF) by the authors or using
the water quality indicators recommended by the American
Water Works Association (Hill and Arweiler, 2013). The test set
of categorized instances contained 113 SS and 48 SF samples.
Conversely, most of the published research studies used in this
study omitted the operational status of the DWDS or did not

include key water chemical parameters of nitrification (e.g.,
NO2

−). The latter dataset was defined as uncategorized instances
(n = 230) and was used only to predict the operational scheme
of these samples.

Taxonomic identification of 16S rRNA gene reads is usually
based on one of these three reference databases: RDP, SILVA
or Greengenes (Balvočiūtė and Huson, 2017). Given the known
discrepancies of microbial classifications, the choice of a reference
database to assign taxonomic affiliation (i.e., features) may affect
the ability of our model to classify BW samples. To address
this, we constructed three test sets of categorized instances with
the same bioindicator profile using either the RDP, SILVA or
Greengenes as reference database for taxonomic identification.
The sequences and taxonomic outlines for the nr SILVA (release
128) and Greengenes (release gg_13_8_99) hierarchies were
downloaded from the MOTHUR website (see footnote 1).

In addition, we constructed an abiotic-based model using
water chemical parameters [disinfectant (total Chlorine/NH2Cl),
NH3 and NO2

−] to compare the classification performance
and prediction against the microbiome-based model. The
performance of the classification models was evaluated by
plotting the ROC and PR curves using the WEKA suite v3.9.0
(Hall et al., 2009).

RESULTS

Water Quality and Operational Schemes
Principal component analysis of water samples based on
eleven physico-chemical parameters showed differences between
operational schemes (Figure 2A). The first two axes explained
89.6% of the total variation, with chloramine (NH2Cl), NH3,
NO2

− and free-chlorine as the major contributors of dissimilarity
(Supplementary Table S1). The water samples were clustered in
three distinctive schemes; Stable (SS), Failure (SF), and Restore
(SR). The clustering of samples in the plot was further confirmed
by one-way ANOSIM (Global R = 0.873, p < 0.001; Gomez-
Alvarez et al., 2016). The current approach to stop nitrification
is the switching of the disinfectant from chloramine to a high
concentration of free chlorine (e.g., SR, Supplementary Table S1
and Figure 2B). SR was not included in further analysis, and data
from both pre- (SI) and post-Stable (SII) were combined into one
SS dataset, as no significant differences were observed between
latter events (Gomez-Alvarez et al., 2016). Significant differences
in the levels of NH2Cl, NH3, and NO2

− were observed between
SS and SF water samples (Mann–Whitney U tests, p < 0.001).
SS samples were characterized with a background level of NH2Cl
(1.03 ± 0.43 Cl2 mg L−1) and NH3 (0.20 ± 0.08 mg L−1) with
a minimal presence of NO2

− (Supplementary Table S1 and
Figure 2B). SF water samples showed depleted levels of NH2Cl
and NH3, but a higher concentration of NO2

− (Supplementary
Table S1 and Figure 2B).

Bacterial Richness and Diversity
Forty 16S rRNA BW libraries (Gomez-Alvarez et al., 2016) from
11 sample times were analyzed for this study. A total of 1,090
bacterial OTUs were identified at a ≥ 97% sequence identity
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TABLE 1 | Alpha diversity indexes (± SD) for microbial bulk water (BW)
communities along operational schemes in the pipe-loop system.

Characteristics§ Stable‡ Failure P value†

SS (n = 24) SF (n = 16)

Observed species (S) 121 ± 38 119 ± 12 0.3476

Richness estimator

ChaoI 192 ± 50 198 ± 20 0.6990

SACE 227 ± 60 246 ± 40 0.1896

Shannon diversity (H) 2.11 ± 0.66 2.50 ± 0.14 0.0346

Shannon evenness (HE ) 0.44 ± 0.13 0.52 ± 0.02 0.0132

§For comparison, libraries were normalized to 5,000 reads. ‡Operational schemes:
SS, stable chloramine residual; SF, complete nitrification and minimal chloramine
residual. †Significance set at α = 0.01.

cutoff (rarefied to 5,000 reads per library). Only 259 OTUs
(24% of the total OTU diversity) were shared by SS and SF,
representing 98.7–99.3% of the reads in their respective schemes.
Further analysis revealed 546 (32% of the OTUs and 1.8% of
reads) and 285 (52% and 0.7%) OTUs found exclusively in
the SS and SF libraries, respectively. Taxonomic classification
revealed that the majority of the diversity were associated with
the phylum Proteobacteria (59% of reads), Actinobacteria (30%),
and Bacteroidetes (5%) with additional representatives of 17
phylum detected to a lesser extent (≤ 2% each). Alpha diversity
indexes and rarefaction analysis revealed the diversity of bacterial
groups contained in this system (Table 1 and Supplementary
Figure S3). Observed OTUs and diversity metrics (e.g., SACE,
ChaoI) were slightly higher in the SF compared to the SS
communities but did not reach statistical significance (Mann–
Whitney U tests, p > 0.01; Table 1). A more comprehensive
and detailed community analysis of the microbial diversity and
structure can be found in Gomez-Alvarez et al. (2016).

Microbial Assemblages and Bioindicator
Discovery
The resulting PCoA ordination plot (n = 40) highlighted an
evident difference in the community structure between SF
and SS schemes (Figure 3A). The separation of samples by
operational schemes was confirmed by one-way PERMANOVA
test based on Jensen–Shannon dissimilarity matrix (Pseudo-F
value = 17.47, p < 0.0001; Table 2). The microbial communities
examined in this study contained ≈49% singletons (i.e., OTU
with only one sequence for all samples combined). These OTUs
represent the rare biosphere and explained < 0.33% SIMPER
analysis of the dissimilarity within the operational schemes.
Most of the dissimilarity (≈80%, SIMPER analysis) is explained
by a small number of OTUs (22 out of 1,090) whose relative
abundance varied significantly among operational schemes. For
example, OTU 01 (taxonomic affiliation: Actinobacteria) is the
dominant representative in the SS with a relative distribution
of 43% but only 8% in the SF scheme (Supplementary
Figure S2). While the combined relative distribution of OTU
06 and OTU 09 (Alphaproteobacteria) was 22% in the SF but
< 0.1% in the SS scheme (Supplementary Figure S2). Detailed
information of the relative distributions of functional groups

(e.g., AOB, NOB) identified at each operational scheme can be
found in Gomez-Alvarez et al. (2016).

Linear discriminative analysis effect size (LEfSe) with stringent
conditions (LDA = 4.0, p < 0.01) identified 70 and 62 OTU-level
bioindicators in the SF and SS operational schemes, respectively.
Furthermore, LEfSe identified 144 discriminative genus-level
taxonomic groups (45 and 99 in the SF and SS, respectively).

Model-Building and Evaluation
We utilized a machine learning approach (naïve Bayes classifier)
with biomass (ATP) and microbiome datasets as potential
bioindicators in detecting failed DWDS experiencing nitrification
episodes. First, a total of eight OTU-level bioindicators with
the highest LDA score were selected for evaluation to avoid
overfitting of the model (Figure 3B). A similar approach was used
with the genus-level taxonomic groups (Supplementary Table
S2), with the three genus-level bioindicators overrepresented
(Taxa B1–B3), while five were underrepresented (Taxa A1–A5)
in the SS scheme (Supplementary Table S3 and Figure S4A).

Performance of each classification model was evaluated using
the AUC from the ROC and PR curves. ROC-AUC and PR-AUC
using biomass data were determined to be 0.477 (CI 0.274–
0.680) and 0.553 (CI 0.351–0.755), respectively (Figures 3C,D);
which is equivalent to a random classification of the subjects.
The values gradually increased when genus-level taxonomic
membership (i.e., presence and absence) data were used in the
classification model (ROC-AUC = 0.684, CI 0.533–0.835; PR-
AUC = 0.689, CI 0.539–0.839; Supplementary Figures S4B,C).
We observed that using OTU-level membership, the ROC-AUC
and PR-AUC increased significantly to 0.871 (CI 0.767–0.975,
p < 0.05) and 0.861 (CI 0.754–0.968, p < 0.05), respectively
(Figures 3C,D). Furthermore, combining membership with
distribution (i.e., community structure) for both the genus-
level taxonomic and OTU-level sets significantly improved the
predictive ability of the model beyond that of membership only
(ROC-AUC and PR-AUC = 1.000, p < 0.01; Figures 3C,D and
Supplementary Figures S3B,C).

Classification Performance on Full-Scale
DWDS Test Sets
We subsequently performed classification analysis on full-
scale DWDS genus-level taxonomic test sets of categorized
(Supplementary Table S4) and uncategorized instances
(Supplementary Table S5). First, we tested the hypothesis
that the reference database used to assign taxonomic affiliation
(i.e., features) could affect the ability of our model to classify BW
samples. The performance of the model on an RDP-generated
test set of categorized instances resulted in higher ROC-AUC and
PR-AUC values (0.825 and 0.821, respectively), corresponding to
a sensitivity of 0.729 and a specificity of 0.894 (Supplementary
Figure S5). The PPV and negative predictive value (NPV) were
0.745 and 0.886, respectively. The microbiome-based model
correctly classified 136 (out of 161) instances (Table 3). Next,
the test sets using the SILVA reference database resulted in
similar AUC values; however, the use of the Greengenes dataset
yielded lower AUCs (< 0.681), with a sensitivity of 0.229 and a
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FIGURE 3 | Microbial assemblages and bioindicator discovery. (A) Principal coordinate analysis (PCoA) ordination plot based on Jensen–Shannon dissimilarity of
16S rRNA operational taxonomic unit (OTU)-level bacterial profiles (cutoff = 0.03). Values in parenthesis indicate the percentage of total variation explained by the first
two axes. Samples: Stable (SS, •), Failure (SF, •). (B) Identification of statistically significant genus-level assigned OTU bioindicators using linear discriminative
analysis (LDA) effect size (LEfSe) analyses (LDA score > 4.0, p < 0.0001). Negative LDA scores are enriched in SF while positive LDA scores are enriched in SS
events. (C) Receiver operating characteristic (ROC) and (D) Precision-recall (PR) curves with area under the curve (AUC) values and 95% confidence intervals in
parenthesis for predictive model comparing biomass (ATP, –) and microbial bioindicators based on community membership [OTU (M), –] and structure OTU (S), –]
data. Dashed lines indicate the null model. Samples: biomass, n = 32; OTU, n = 48.

TABLE 2 | Results of One-way PERMANOVA test based on Jensen–Shannon dissimilarity matrix derived from the distribution of microbial communities.

Source of Variation df Sum of Squares Mean Square Pseudo-F value P value Permutations

Operational scheme‡ 1 21,602 21,602 17.47 < 0.0001 9915

Residual 38 46,997 1,237

Total 39 68,600

‡Operational schemes: SS, stable chloramine residual; SF, complete nitrification and minimal chloramine residual. †Significance set at α = 0.01.

specificity of 0.885 (Supplementary Figure S5). Further analysis
and comparisons were performed using RDP-based test sets.

To test the capacity of the water microbiome as a screening
tool, we generated classification models using two common
chemical parameters used for monitoring water quality in
DWDS. In comparison, an abiotic-based model using total
Chlorine/NH2Cl and NH3 generated lower AUCs of 0.740
and 0.861 (ROC and PR, respectively), corresponding to a
sensitivity of 0.250 and a specificity of 0.957. The AUCs increased
to > 0.946 with the addition of NO2

− concentration (i.e.,
feature) to the test set, which is indicative of nitrification
(> 0.05 mg/L, i.e., Failure) in the DWDS. As can be
seen in Figure 4, the microbiome-based model significantly
improved the ability to distinguish between Stable and Failure

instances compared with the model containing disinfectant
residual and ammonia.

Finally, we explored the ability of our microbiome-based
model to classify a test set of uncategorized instances (n = 230).
A total of 202 instances were classified as Stable samples while
the remainder twenty-eight contained microbial communities
associated with a Failure system (Table 3). In comparison, a
decrease in the classification of failed system (nine instances) was
observed when an abiotic-based model (total Chlorine/NH2Cl
and NH3) was used in the analysis. Further evaluation
was impossible since most of the published research studies
used in this study omitted the operational status of the
DWDS or did not include key water chemical parameters of
nitrification (e.g., NO2

−).
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TABLE 3 | Evaluation results for the prediction of bulk water (BW) samples.

Location (References) N Operational Scheme‡ Classification† Classified

SS SF Uncategorized SS SF Correctly Incorrectly Error (%)

Western Australia (Shaw et al., 2015) 13 10 3 – 10 3 13 0 0.0

DWDS simulator (this study) 11 11 0 – 10 1 10 1 9.1

Pinellas County, FL (Wang et al., 2014) 137 92 45 – 93 44 114 23 16.8

Arkansas and Mississippi (Holinger et al., 2014) 21 – – 21 17 4 – – –

Ohio River basin (Stanish et al., 2016) 9 – – 9 7 2 – – –

Ann Arbor, MI (Pinto et al., 2014) 116 – – 116 98 18 – – –

Eastern United States (Ji et al., 2015) 30 – – 30 26 4 – – –

New Orleans, LA (Hull et al., 2017) 40 – – 40 40 0 – – –

Urbana, IL (Hwang et al., 2012) 14 – – 14 14 0 – – –

‡Operational schemes: SS, stable chloramine residual; SF, complete nitrification and minimal chloramine residual. †Naïve Bayes Taxa-based classification model. DWDS,
drinking water distribution systems.

FIGURE 4 | Classification performance on full-scale drinking water distribution systems (DWDS). (A) Receiver operating characteristic (ROC) and (B) Precision-recall
(PR) curves with area under the curve (AUC) values and 95% confidence intervals in parenthesis for predictive model comparing microbial bioindicators based on
community structure (genus-level taxonomy: RDP taxonomic database, –) and water quality (parameters: NH2Cl + NH3, –; NH2Cl + NH3 + NO2

−, –) data. Dashed
lines indicate the null model. Samples: Failure, n = 48; Stable, n = 113.

DISCUSSION

In this study, we report significant differences in the microbial
structure of BW samples and demonstrate the potential of
water microbiome profiles as bioindicators for system stability
in DWDS. We also observed the occurrence and dominance
of specific microbial groups (Proteobacteria and Actinobacteria)
which is consistent with other DWDS studies (Hwang et al., 2012;
Holinger et al., 2014; Pinto et al., 2014; Wang et al., 2014; Ji
et al., 2015; Shaw et al., 2015; Stanish et al., 2016; Hull et al.,
2017), albeit not at the same ratios. In addition, a previous
study by Gomez-Alvarez et al. (2016) demonstrated that the
microbial communities associated with DWDS were sensitive to
changes in operational parameters (e.g., temperature, disinfectant
residual) and responded to a disturbance by returning to a stable
state after a shift in community composition (i.e., resilience).
Potential microbiome bioindicator candidates for the monitoring
of DWDS met two key factors: (i) measurable changes in the
relative distribution of specific microbial groups during episodes
of disturbance (Gomez-Alvarez et al., 2016), and (ii) the impact
the water microbiome has on water quality (Zhang et al., 2009).

Bioindicators are by definition objective and quantifiable
biological features (i.e., living organisms) that can be used to
indicate the quality and stability of their ecosystem (Siddig et al.,
2016), and can be measured at higher levels of organization (e.g.,
species, population, community; McCarty et al., 2002; Bartell,
2006). Fundamentally, the goal of bioindicators/biomarkers
development is to build a predictive model from a collection
of biological data (i.e., features) and a qualitative dependent
variable, which can be used to classify/predict new instances
into specific categories with optimal sensitivity and specificity
(Xia et al., 2013).

Recent advances in ‘omics’ technologies and bioinformatics
for systems analyses have revitalized the field of
bioindicator/biomarker discovery. However, the unprecedented
amount of data makes the goal of building predictive models
from metagenomic studies difficult to obtain with traditional
approaches. To cope with this complexity, machine learning
techniques and supervised classification have recently been
suggested as a promising tool useful for recognizing patterns in
complex datasets derived from metagenomic studies (Libbrecht
and Noble, 2015). The use of such techniques for bioindicator
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discovery and prediction has been explored by several researchers
although mostly in clinical studies. For example, sequencing
methods targeting 16S rRNA regions have allowed identification
of microbiome-associated bioindicators that correlate with
protection against CTLA-4 blockade-associated colitis (Dubin
et al., 2016), presence of adenomatous polyps in patients (Hale
et al., 2017), to differentiate patients with Clostridium difficile
infection and non-C. difficile-associated diarrhea from healthy
controls (Schubert et al., 2014) and for the identification of
individuals harboring adenomas and carcinomas (Zackular et al.,
2014). Overall, machine learning may hold a promising future in
predictive modeling for metagenome based DWDS studies.

The steps involved in predictive modeling are bioindicator
selection, performance evaluation and classification model
creation. In the case of bioindicator selection, our study
identified 132 OTU-level discriminative bioindicators, but only
eight OTU-level bioindicators with the highest LDA score
were selected for evaluation to avoid overfitting of the model.
Overfitting occurs every time an algorithm excessively adapts
to the training set. The selected OTU-level bioindicators
correspond to three bioindicators overrepresented and five
bioindicators underrepresented in the Stable (SS) operational
scheme (Supplementary Figure S2). The overrepresented OTUs
(i.e., genus-level taxonomic group) are members of the class
Proteobacteria (family Rhizobiales and Sphingomonadales) and
Actinobacteria (Mycobacterium), while the underrepresented
are representatives of the Nitrospira (NOB) and Proteobacteria
[Nitrosomonas (AOB) and Sphingomonadales] (Supplementary
Table S2). Like other published studies, Actinobacteria shared
similar patterns of occurrence in chloraminated systems despite
their geographic separation, which was demonstrated to be
characteristic of this drinking water environment (Wang et al.,
2012; Bautista-de los Santos et al., 2016). Furthermore, a
meta-analysis of several 16S rRNA gene sequencing studies
corroborated the enrichment and depletion of these bacterial
populations in full-scale DWDS which were associated with
changes in water quality (Bautista-de los Santos et al., 2016).
Furthermore, Gomez-Alvarez et al. (2016) reiterated the common
notion that disturbances induce a strong selection pressure on
microbial populations. In conclusion, these findings stress the
importance of using not just one single bacterial population, but
rather a consortium of bacterial populations, in predicting the
stability of the DWDS.

Nitrification is triggered by the release of NH3 during
chloramine decay and is accomplished through a two-step
microbiological process; the oxidation of NH3 to NO2

− by
AOB follow by the oxidation of NO2

− to NO3
− carried out

by NOB. Both groups of nitrifying bacteria are ubiquitously
distributed in chloraminated DWDS. As indicated previously,
a group of AOB and NOB were overrepresented in the Failure
(SF) operational scheme samples (Supplementary Table S2).
The representation and predominance of AOB and NOB
populations during nitrification is consistent with a previously
reported molecular analysis of the population in a pilot scale
chloraminated distribution system (Regan et al., 2002). In
a recent study, quantitative PCR analysis indicated higher
frequency of AOB and NOB populations detected before the

chlorine burn on a failed DWDS, while the presence of these
two groups was greatly reduced after the chlorine burn (Wang
et al., 2014). Changes in the microbial community associated with
nitrification may represent early events in the pathway leading to
failed systems. This has considerable importance in developing
monitoring plans to predict future nitrification episodes in water
systems compared to current methods which only confirm that
nitrification is occurring. Although our results are supported by
previous evidence, further studies in full-scale DWDS are needed
to determine whether these bacterial populations indeed are
found more frequently in failed full-scale chloraminated DWDS
and are associated with nitrification exclusively.

We developed a naïve Bayes classification model to
discriminate operational schemes (SS and SF events) based
on the selection of eight OTU-level bioindicators (i.e., training
set). First, incorporation of the membership (i.e., presence
and absent) to the set provided a marginal improvement
(AUC < 0.689) in classification versus a biomass-based model
(i.e., ATP: AUC < 0.553). In line with other studies (Schubert
et al., 2014; Zackular et al., 2014), the inclusion of the relative
abundance data significantly improved the predictive ability
of the model beyond that of membership only (AUC = 1.000).
Furthermore, similar performance was obtained using the
training set based on the relative abundance at genus-level
taxonomic affiliation of the eight bioindicators (i.e., Taxa-level
training set). Inclusion of the relative abundances significantly
enhanced the ability to discriminate BW samples regardless of
the type of data [OTU (sequence-based) or taxa (taxonomy-
based)] we used to represent the microbiome. Moreover, we
found that the latter approach has the advantages that it is not
limited by the exhaustive computation required for OTU-based
analysis (e.g., alignment and clustering), is more tolerant of
sequencing errors, and allows comparisons when sequences are
from different regions of the 16S rRNA gene (Sul et al., 2011).

The naïve Bayes Taxa-based classification model was able
to correctly classify 85% of categorized instances (documented
nitrification or stable events) with an AUC of 0.825 (sensitivity:
0.729, specificity: 0.894) on a full-scale DWDS test set (Table 3).
In comparison, abiotic-based model using total Chlorine/NH2Cl
and NH3 generated AUCs of 0.740 and 0.861 (ROC and
PR, respectively), corresponding to a sensitivity of 0.250 and
a specificity of 0.957. The AUCs increased to > 0.946 with
the addition of NO2

− concentration, which is indicative of
nitrification in the DWDS. This research provides evidence of the
feasibility of using bioindicators to predict operational failures in
the system (e.g., nitrification). The discriminative power of the
model was not influenced by geographical location or sequencing
technology used in the DWDS study, reinforcing the potential
of the microbiome as a capable classification tool of system
stability in DWDS. Although established protocols of monitoring
reported the association between water parameters and/or
culture-based assays with system stability (Hill and Arweiler,
2013), our supervised machine learning analysis provided a
significant improvement in the classification of BW samples.
Microbial populations are directly involved in the process of
nitrification, which make them perfect bioindicator candidates
for the prediction of future nitrification episodes as current
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monitoring plans only confirm that nitrification is occurring.
Furthermore, our analysis demonstrated the importance of
reference database selection for the taxonomic classification of
populations in BW samples (i.e., test sets). For example, the use
of the Greengenes-based test set yielded a decrease in sensitivity
and specificity in comparison to the RDP- and SILVA-based test
sets. The discrepancy in performance against the latter reference
databases may be explained by the fact that Greengenes is the
smallest reference database with much less diversity than the
other taxonomies, and it has not been updated for the last 4 years
(Balvočiūtė and Huson, 2017).

It is important to mention the research challenges and
opportunities faced during our study. First, of the publicly
available BW samples used in this study for evaluation, up to
59% were uncategorized samples. These chloraminated DWDS
metagenome-based studies contain incomplete information
related to water parameters and stability of the system. Therefore,
we used our classification model to predict the operational
schemes of these samples (Table 3). Most of the samples
were classified as SS (88% out of 230) with the rest 12%
as SF. Nonetheless, these results will be valuable for utilities
about the potential of microbial communities associated with
nitrification at these locations in their DWDS. However,
without a complete categorization of the system, we cannot
confirm the actual operational status (stable or failure) of
these samples. Next, our models were based on the water
microbiome at two very specific operational schemes (Hill
and Arweiler, 2013). Our study was designed to reproduce
a catastrophic event in a DWDS. Thus, we are limited in
our ability to identify the incremental progressive changes in
the water microbiome toward nitrification or the recovery to
a stable state. Again, the aim of this study was to identify
components of the microbiome that are associated with SS
and SF. Description of such changes will be possible only
if BW samples are routinely collected before and after the
development of a nitrification event. Finally, understanding
the response of microbial communities in disturbed DWDS
environments is essential for risk management and for evaluating
the biological stability of the systems. Such information could be
incorporated into ecosystem process models and greatly enhance
our ability to predict ecosystem responses to disturbances.
For example, supervised machine learning can be used to
build a model from a set of categorized data points that can
classify/predict the correct category of unlabeled data, whenever
alternative methods for obtaining data classification are difficult
(Knights et al., 2011).

CONCLUSION

We report here evidence of the feasibility of using microbiome-
based bioindicators to predict operational failures in the
system (e.g., nitrification). While the method requires additional
validation and is not deployable in the presented form, it
could be developed as a portable quantitative tool to detect
bioindicators in the distribution system. These bioindicators
may reveal the potential onset of a nitrification episode before

sufficient levels of chemical surrogates are detected. Traditional
methods of culturing, e.g., AOB MPN requires weeks of
incubation and they lack the ability to detect AOBs in the DWDS
when they occur at low levels. Importantly, the discriminative
power of the model was not influenced by geographical
location, disinfectant treatment or sequencing technology used
to generate the microbiome profile. Unlike chemical surrogates,
bioindicators monitor the microbial populations responsible for
the chemical surrogates during onset of nitrification. Previous
studies recognized the correlation between nitrification and
an early warning indicator, i.e., surrogate (for details see
Regan et al., 2002; Pintar et al., 2005). The information
generated in this study improves our understanding of
the drinking water ecosystem, particularly the unintended
consequences of disinfectant switching practices and how
bioindicators may be a screening tool and a potential predictor
of nitrification in DWDS.
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