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Antibiotic stewardship is of paramount importance to limit the emergence of antibiotic-
resistant bacteria in not only hospital settings, but also in animal husbandry, aquaculture,
and agricultural sectors. Currently, large quantities of antibiotics are applied to treat
agricultural diseases like citrus greening disease (CGD). The two commonly used
antibiotics approved for this purpose are streptomycin and oxytetracycline. Although
investigations are ongoing to understand how efficient this process is to control
the spread of CGD, to our knowledge, there have been no studies that evaluate
the effect of environmental factors such as sunlight on the efficacy of the above-
mentioned antibiotics. We conducted a simple disc-diffusion assay to study the efficacy
of streptomycin and oxytetracycline after exposure to sunlight for 7- or 14-day periods
using Escherichia coli and Bacillus subtilis as the representative strains of Gram-negative
and Gram-positive organisms, respectively. Freshly prepared discs and discs stored in
the dark for 7 or 14 days served as our controls. We show that the antibiotic potential of
oxytetracycline exposed to sunlight dramatically decreases over the course of 14 days
against both E. coli and B. subtilis. However, the effectiveness of streptomycin was only
moderately impacted by sunlight. It is important to note that antibiotics that last longer in
the environment may play a deleterious role in the rise and spread of antibiotic-resistant
bacteria. Further studies are needed to substantively analyze the safety and efficacy of
antibiotics used for broader environmental applications.

Keywords: antibiotic stewardship, antibiotic resistance, Liberibacter, huanglongbing, Erwinia, fire blight,
streptomycin, oxytetracycline

IMPORTANCE

Although antibiotics have been used for agricultural purposes for decades, due to the rapid rise in
antibiotic resistance this usage needs to be revisited. Questions remain on the appropriate mode
of application for antibiotics and the actual benefits of using antibiotics for treating the infections
caused by plant pathogens, especially for the ones that are intracellular in nature. Here, we show
that the two commonly used commercial antibiotics, oxytetracycline and streptomycin, lose their
efficacy at different rates in the presence of sunlight. While the former loses its potency within days,
the latter remains active for many days. Thus, oxytetracycline may not be active long enough to
produce its desired effect, and streptomycin may persist in the environment and as a side effect due
to its selective pressure, may force the rise of streptomycin-resistant pathogens.
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INTRODUCTION

Antibiotic resistance-related mortalities are expected to exceed
the other leading causes of death such as cancer worldwide by
2050 (PLoS Medicine Editors, 2016). Antibiotic stewardship is
therefore promoted in all sectors including human health, animal
husbandry, and agriculture (Thanner et al., 2016; McEwen and
Collignon, 2018; Hernando-Amado et al., 2019). The World
Health Organization and the United States Centers for Disease
Control and Prevention have recognized antimicrobial resistance
as an enormous ongoing threat to public health (Toner et al.,
2015; Kadri, 2019). Runoff of antibiotics in hospital waste water
(Hocquet et al., 2016) and intentional use in aquaculture (Cabello
et al., 2016), animal husbandry (Landers et al., 2012; Martin
et al., 2015; Van Boeckel et al., 2019), and crop management
(Sundin and Wang, 2018) contribute to the rise and spread of
antibiotic resistant bacteria. In this context, alarm was raised
recently regarding the spraying of antibiotics in open fields as an
infection control strategy to stem the spread of bacterial disease
in plants (McKenna, 2019; No authors listed, 2019). Specifically,
the strategy approved by the United States Environmental
Protection Agency (Collins and Kough, 2017; Donley, 2019;
McKenna, 2019) is to use streptomycin and oxytetracycline
to control the spread of citrus greening disease (CGD), also
known as huanglongbing (yellow dragon disease). CGD is a
devastating bacterial disease caused by Candidatus Liberibacter
asiaticus (CLas) that is transmitted between plants by certain
psyllids, which are sap-feeding insects. CLas is a fastidious,
Gram-negative, intracellular plant pathogen that belongs to the
phylum of α-proteobacteria (Merfa et al., 2019; Achor et al.,
2020). Streptomycin and oxytetracycline are also used to treat
infections caused by another bacterial plant pathogen, Erwinia
amylovora, which causes fire blight in apples, pears, and other
related species (Acimovic et al., 2015). E. amylovora has dual
growth modes - an epiphytic mode that is readily accessible
to external antibiotics and an endophytic mode that is less
accessible to external antibiotics (Acimovic et al., 2015). In
addition, tetracycline antibiotics including oxytetracycline are
used in animal husbandry (Granados-Chinchilla and Rodriguez,
2017) and aquaculture (Leal et al., 2019b). Apart from the uses
described above, data also suggests that antibiotics may find
their way into and possibly persist in different animal and plant
tissues (Poapolathep et al., 2008; Mayerhofer et al., 2009; Al-
Rimawi et al., 2019; Araby et al., 2020), which could be an
alternate pathway that can lead to the development of antibiotic-
resistant bacteria. Thus, a comprehensive knowledge of the fate
of antibiotics used in agriculture is urgently needed to hopefully
curb the rise and spread of antibiotic resistance.

Although the application of antibiotics to treat CGD inspired
us to pursue this study, the primary objective of this report
is to investigate the effect of environmental factors, specifically
sunlight, on the stability of streptomycin and oxytetracycline.
To this end, we conducted a disc-diffusion assay with Gram-
negative Escherichia coli and Gram-positive Bacillus subtilis and
monitored the zones of inhibition of antibiotic-containing discs
that were exposed to sunlight for a 7- or 14-day period. Discs
that were kept in the dark for an equivalent duration or that

were freshly prepared served as our controls. Based on our
results, we report that sunlight significantly impairs the efficacy
of oxytetracycline, but only moderately impacts streptomycin.
While short-lived antibiotics may not be active long enough for
their intended purpose, stable antibiotics may apply constant
selection pressure and create an environment conducive for the
emergence of antibiotic-resistant strains (Shentu et al., 2015).
Our data provides a window into the life span of commercial
antibiotics in nature that we hope highlights the need for
further rigorous safety and efficacy investigations regarding the
environmental use of antibiotics.

RESULTS

Oxytetracycline Loses Its Antibiotic
Potential in the Presence of Sunlight
Within the Span of a Few Days
To monitor the effect of sunlight on the efficacy of
oxytetracycline, we conducted a disc-diffusion assay. Briefly, we
prepared multiple discs with oxytetracycline (50 µg) dissolved
in water and placed the antibiotic-laden discs in either a natural
outdoor setting with abundant sunlight to simulate agricultural
use, or in a dark indoor cabinet for 7 or 14 days. In addition
to the discs that were kept in the dark, we also used freshly
prepared discs and vehicle (water) discs as controls. The discs
were then placed, as shown in Figure 1, on a pre-inoculated
plate containing either a lawn of E. coli or B. subtilis cells.
In all cases, as expected, the blank disc (N; negative control)
and the freshly prepared discs (P; positive control) showed
negligible and maximum zones of inhibition (ZOI), respectively
(Figures 1A–D). The discs that were kept in the dark (labeled
“D”) for the duration of 7 or 14 days appeared to produce
similar ZOI as our positive control at approximately 9 mm for
E. coli and 8 mm for B. subtilis (Figures 1E,F). This suggests
that oxytetracycline maintains its efficiency in the dark at
room temperature for at least the maximum duration of this
experiment (14 days). Next, we quantified the ZOI for the discs
that were exposed to sunlight (labeled “L”) for either a 7- or
14-day period. We observed that the efficacy of oxytetracycline
gradually and significantly decreased over time to almost similar
to our negative control in both E. coli and B. subtilis and only
retained less than 15% activity after 14 days (Figures 1A–F). This
implies that in the presence of sunlight, oxytetracycline loses its
antibiotic potential in a matter of a few days.

Moderate Negative Effects From
Sunlight on the Efficacy of Streptomycin
A similar experimental setup to the one discussed above was
adopted for studying the effects of sunlight on streptomycin.
As noted earlier, blank discs and freshly prepared discs with
streptomycin (200 µg) served as our negative and positive
controls, respectively. As expected, the ZOI were unobservable
for our blank discs and maximum for our positive controls
(Figures 1G–L). Similar to oxytetracycline, streptomycin is also
able to maintain its efficacy when kept in darkness for the
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FIGURE 1 | Oxytetracycline and streptomycin lose antibiotic potential in the presence of sunlight. Shown are representative disc-diffusion assay results for the
effects of oxytetracycline (A–D) or streptomycin (G–J) on growth of either Gram-positive B. subtilis or Gram-negative E. coli. Quantification of the zones of inhibition
in millimeters are plotted for each 7- or 14-day cohort of oxytetracycline (E,F) and streptomycin (K,L). Significance was determined using a one-way ANOVA with
Tukey’s multiple comparisons analysis. Error bars represent standard deviation (SD) of the mean from three biological replicates. N: negative control (discs prepared
with sterile water), P: positive control (discs prepared the day of testing), L7 or L14: 7 or 14 days in sunlight, D7 or D14: 7 or 14 days in darkness. ∗∗∗∗p < 0.0001,
∗∗∗p < 0.001, ∗∗p < 0.01.
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FIGURE 2 | UV irradiation significantly decreases the efficacy of oxytetracycline. Representative results of the disc-diffusion assay for UV-treated oxytetracycline
(A,C) or streptomycin (B,D) conducted using B. subtilis and E. coli are shown. Quantification of the zones of inhibition in millimeters are plotted for oxytetracycline
(A’,C’) and streptomycin (B’,D’). Significance was determined using a one-way ANOVA with Tukey’s multiple comparisons analysis. Error bars represent standard
deviation (SD) of the mean from three biological replicates. N: negative control (discs prepared with sterile water), P: positive control (discs prepared the day of
testing), UV: UV-treated discs. ∗∗∗∗p < 0.0001, ns, not significant.

duration of our experiment (Figures 1G–L). However, unlike
oxytetracycline, streptomycin appears to be moderately resistant
to sunlight. At the 7-day mark, based on the ZOI (Figures 1K,L),
the discs exposed to sunlight appear to have retained almost
approximately 80 and 70% of their activity in E. coli and
B. subtilis, respectively, when compared to that of our positive
control. Further measurable decrease to nearly 50% efficiency
compared to our positive control was noted subsequent to
14 days of sunlight exposure for E. coli. However, the decrease
in efficiency for B. subtilis at the 14-day time point was within the
standard error when compared to that of the 7-day time point
(Figures 1H,J,K,L).

UV Radiation Is Responsible for the
Rapid Decline in the Antibiotic Potential
of Oxytetracycline
Next, we investigated whether the increase in temperature or
UV radiation from sunlight leads to the increased loss of
the antibiotic potential of oxytetracycline. For this purpose,
we prepared the antibiotic discs containing oxytetracycline or
streptomycin as described previously and placed them either (i)
in a dark incubator at 37◦C; or (ii) in an enclosed dark chamber
illuminated with a UV light source at room temperature; for
48 h. Subsequent to this step, these discs and the control discs
were subjected to the disc-diffusion assay described previously.
As shown in Figure 2, the blank disc (N; negative control)

and the discs that were freshly prepared (P; positive control)
showed negligible and maximum ZOI, respectively, in all cases.
We noticed that UV-treated oxytetracycline discs displayed a
dramatic loss in antibiotic efficacy in both E. coli and B. subtilis
(see Figures 2AA’, 2CC’). Quantification of the ZOI indicated a
statistically significant decrease in antibiotic potential upon UV
treatment for oxytetracycline. However, this is not the case with
streptomycin, as it remains potent even after UV treatment. Heat
treatment at 37◦C for 48 h also did not significantly alter the
antibiotic potential of either antibiotics. For oxytetracycline, the
ZOI were 8.00 ± 0.00 mm (P) and 7.95 ± 0.17 mm (heat-treated
disc; H) in the case of B. subtilis and 10.28 ± 0.26 mm (P) and
10.08 ± 0.48 mm (H) for E. coli. For streptomycin, the ZOI were
10.11 ± 0.49 mm (P) and 10.06 ± 0.39 mm (H) for B. subtilis and
10.56 ± 0.81 mm (P) and 10.44 ± 0.73 mm (H) for E. coli. Based
on this data, we infer that UV radiation from sunlight is likely the
most dominant cause for the decrease in the antibiotic potential
of oxytetracycline.

DISCUSSION

Rapid rise of antibiotic resistance in bacteria is a major
concern worldwide with enormous predicted fatalities resulting
from drug-resistant bacteria causing difficult to treat infections.
Antibiotics are now routinely used in clinics, animal husbandry,
and agriculture. Acknowledgment of the fact that the rise of
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antibiotic resistance stemming from one of those settings could
potentially render antibiotics useless led to the formation of a
multidisciplinary collaborative initiative to promote antibiotic
stewardship under the umbrella term One Health (McEwen and
Collignon, 2018; Hernando-Amado et al., 2019). Despite this,
environmental antibiotic pollution is a growing concern that
requires urgent attention (Kraemer et al., 2019).

Some commercial antibiotics such as oxytetracycline and
streptomycin are produced by soil-dwelling Streptomyces spp.
However, soil bacteria do not produce antibiotics at levels
comparable to commercial applications – which can occasionally
be in the scale of thousands of kilograms (Collins and
Kough, 2017; Donley, 2019; McKenna, 2019). Also, the
efficiency of superficial application of antibiotics in limiting the
growth of plant bacterial pathogens, including some that are
intracellular, is unclear. Recent studies have suggested injection
of oxytetracycline produces better results (Acimovic et al.,
2015; Li et al., 2019a). The spread of antibiotic resistance
has been documented from agricultural use for antibiotics
like tetracycline and streptomycin (Popowska et al., 2012;
Tancos et al., 2016; Cycon et al., 2019). It has also been
noted that antibiotic resistance genes are naturally found
in the environment (Sundin et al., 1995; Schmitt et al.,
2006). Therefore, application of consistent selection pressure
by excessive and frequent use of antibiotics may enrich
the population of naturally resistant organisms. However,
at least in some instances under certain conditions, it was
noted that streptomycin use did not alter the composition
of soil microbial communities appreciably (Shade et al., 2013;
Walsh et al., 2013).

Several reports on degradation kinetics and mechanisms of
degradation of the antibiotics that are discussed here are available
(Wang and Yates, 2008; Xuan et al., 2010; Slana and Dolenc, 2013;
Liu et al., 2015; Shen et al., 2017; Leal et al., 2019a,b; Li et al.,
2019b; Choi et al., 2020). It has been reported that the half-life
of oxytetracycline at 25◦C is approximately 7 days, at 35◦C is
3 days and at 60◦C is 0.2 day, indicating a rapid temperature-
dependent degradation of oxytetracycline, as the half-life at
4◦C is 120 days (Xuan et al., 2010). According to the same
study, the half-life due to photolysis in the presence of sunlight
is in the same order of magnitude. A similar investigation
exists evaluating the photostability and temperature stability of
streptomycin (Shen et al., 2017). Briefly, the photodegradation
of streptomycin is more modest than oxytetracycline by nearly
10-fold. The half-life of streptomycin was determined to be
nearly 105, 42, and 30 days at 15, 25, and 40◦C, respectively,
implying a decreased rate of degradation when compared
to oxytetracycline. A description of the possible degradation
products of oxytetracycline and streptomycin are available (Xuan
et al., 2010; Shen et al., 2017). Our results showing a faster
loss of efficacy for oxytetracycline than streptomycin upon
sunlight exposure are therefore in agreement with the reported
degradation kinetics of these antibiotics. To our knowledge,
an analysis such as the one we have conducted to monitor
the biological efficacy of antibiotics subsequent to exposure
to environmental elements are either lacking or not publicly
available [as recognized by this article (No authors listed, 2019)].

Our experimental conditions simulate the agricultural use of
antibiotics and our results indicate that sunlight contributes
to the degradation of oxytetracycline and streptomycin. Our
experiments reveal that UV radiation plays a predominant role in
the decline of the antibiotic potential of oxytetracycline than heat
at conditions tested. Although our report is limited in scope, we
believe it sheds light on the fate of antibiotics in the environment.
Further studies to understand the effects of antibiotics are
needed to inform the public and appropriate regulatory
agencies (Thanner et al., 2016; McEwen and Collignon, 2018;
Hernando-Amado et al., 2019).

MATERIALS AND METHODS

Strains Used and General Methods
The B. subtilis strain PY79 and the E. coli strain K-12 were
incubated in 2 ml LB at 37◦C and grown until the culture
OD600 reached 1.0 (exponential growth phase). A 100 µl aliquot
of culture was then spread onto LB agar plates using sterile
beads and set to dry completely prior to the placement of discs,
see section below.

Disc-Diffusion Assay
UV sterilized Whatman filter paper discs (7 mm) were
impregnated with 5 µl of a freshly made stock antibiotic solution
of either 40 mg/ml streptomycin sulfate (MilliporeSigma) in
sterile distilled water or 10 mg/ml oxytetracycline hydrochloride
(Alfa Aesar) in sterile distilled water to reach a concentration
of 200 µg for streptomycin and 50 µg for oxytetracycline in
each disc, and then set to dry completely. The concentrations
selected were based on the concentration range recommended for
agricultural use (Vidaver, 2002), and after empirically ensuring
similar initial zones of inhibition for both antibiotics in the strains
tested. To mimic the use of agricultural antibiotics, the discs
were then placed outdoors (during the spring months in Tampa,
FL, United States where the average daytime temperature ranged
from 27 to 32◦C) in direct sunlight for 7 or 14 consecutive 24-h
periods (days) in parafilm-sealed sterile Petri dishes. Discs that
were kept indoors in a dark cabinet at room temperature for 7 or
14 days, freshly prepared discs made the day of testing, and 5 µl of
sterile water were used as controls. For the UV experiment, discs
were irradiated with a 15 W light source emitting UV radiation
at wavelength between 385 and 400 nm at a distance of 9 cm
between the light source and the discs for 48 consecutive hours
at room temperature. Discs were then transferred and pressed
onto the pre-inoculated LB agar plates and incubated overnight
at 37◦C. The zone of inhibition measurements were taken from
the center of the disc to the edge of the zone of inhibition, minus
disc radius (3.5 mm).

Statistical Analysis
GraphPad Prism Software (version 8.3.1) was used to analyze the
data. All data represent biological triplicate data with technical
replicates. Graphs show mean values and error bars represent
standard deviation (SD).
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