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Abstract

Background: Anti-Tumor Necrosis Factor (TNF) therapies are able to control rheumatoid arthritis (RA) disease
activity and limit structural damage. Yet no predictive factor of response to anti-TNF has been identified.
Metabolomic profile is known to vary in response to different inflammatory rheumatisms so determining it
could substantially improve diagnosis and, consequently, prognosis.
The aim of this study was to use mass spectrometry to determine whether there is variation in the metabolome
in patients treated with anti-TNF and whether any particular metabolomic profile can serve as a predictor of
therapeutic response.

Methods: Blood samples were analyzed in 140 patients with active RA before initiation of anti-TNF treatment
and after 6 months of Anti-TNF treatment (100 good responders and 40 non-responders). Plasma was deproteinized,
extracted and analyzed by reverse-phase chromatography–QToF mass spectrometry. Extracted and normalized ions
were tested by univariate and ANOVA analysis followed by partial least-squares regression-discriminant analysis
(PLS-DA). Orthogonal Signal Correction (OSC) was also used to filter data from unwanted non-related effects.
Disease activity scores (DAS 28) obtained at 6 months were correlated with metabolome variation findings to
identify a metabolite that is predictive of therapeutic response to anti-TNF.

Results: After 6 months of anti-TNF therapy, 100 patients rated as good responders and 40 patients as non-responders
according to EULAR criteria. Metabolomic investigations suggested two different metabolic fingerprints splitting the
good-responders group and the non-responders group, without differences in anti-TNF therapies. Univariate analysis
revealed 24 significant ions in positive mode (p < 0.05) and 31 significant ions in negative mode (p < 0.05). Once
intersected with PLS results, only 35 ions remained. Carbohydrate derivates emerged as strong candidate determinants
of therapeutic response.

Conclusions: This is the first study describing metabolic profiling in response to anti-TNF treatments using plasma
samples. The study highlighted two different metabolic profiles splitting good responders from non-responders.
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Background
Anti-Tumor Necrosis Factor (TNF) drug therapies were
first introduced in rheumatoid arthritis (RA) treatment
more than 10 years ago. Anti-TNF agents are able to
control RA disease activity and limit structural damage.
However, a third of patients do not respond to treatment,
prompting efforts to find predictive factors of therapeutic
response in order to optimize patient management and to
limit the systematic use of these drugs. Since the combin-
ation of potential side effects like infections, reactivation
of tuberculosis and basocellular carcinomas, with high
cost (averaging €12000 per year per patient) can often out-
weigh the therapeutic benefits. Despite this effort, no pre-
dictive factor of response to anti-TNF has yet been clearly
identified [1–3].
The metabolome, i.e. the complete set of metabolites,

varies in response to different diseases, and so can poten-
tially make diagnosis and treatment easier. Metabolomic
profile is known to vary in response to different inflamma-
tory rheumatisms, so determining it could substantially
improve diagnosis and, consequently, prognosis [4]. In pa-
tients with inflammatory rheumatism, studying the metab-
olome could facilitate earlier diagnosis of rheumatoid
arthritis (RA) and subsequently better management and
prognosis.
The aim of this study was to determine whether there

is variation in the metabolome in patients treated with
anti-TNF and whether any particular metabolomic pro-
file can serve as a predictor of therapeutic response.

Methods
Study population
All RA patients were aged >18 years and met the 1987
revised classification criteria of the American College of
Rheumatology [5]. All patients has failed to respond to
treatment with at least one disease-modifying antirheu-
matic drug, and were treated with methotrexate at a
dose of at least 7.5 mg weekly. Prednisolone was allowed
provided the dose remained stable and did not exceed
10 mg daily.
Patients with RA requiring anti-TNF-alpha treatment

were recruited in the Rheumatology department of univer-
sity teaching hospitals at Clermont-Ferrand, St-Etienne,
Lyon, Rouen, and Grenoble, all in France. A plasma bank
was created from samples taken from every patient.
Anticitrullinated protein antibodies (ACPA) were detected
with enzyme-linked immunoabsorbent assay (ELISA) and
were considered positive at a serum concentration ≥5 IU/
ml. Rheumatoid factor (RF) was measured by the particle-
enhanced immunonephelometry with the lower level of
detection of 10 IU/ml.
Here we chose to consider only good-responders and

non-responders in order to increase the chances of find-
ing significant differences in metabolic profiles. Indeed,

only baseline blood samples (collected before the initi-
ation of anti-TNF treatment : “M0”) of good-responders
and non-responders were used for the metabolomics
analysis. In total, 140 venous plasma samples were with-
drawn, in a non-fasting state, before the initiation of
anti-TNF-alpha treatment (M0) and frozen at −80 °C
until analysis.
RA patients received anti-TNF therapy (infliximab,

abatacept or etanercept) and this treatment was kept un-
changed for at least the first 6 months. Initially, all the
patients had active RA at M0 (DAS-28 >3.2) requiring
biological therapy and underwent disease severity assess-
ments (DAS-28 ESR, DAS-28 CRP, Health Assessment
Questionnaire scores [6]). Anti-TNF was started at usual
doses and by standard administration. Three different
anti-TNF therapies were used : infliximab, adalimumab
or etanercept. Six months after initiation of treatment
(M6), DAS28 was assessed to classify therapeutic re-
sponse according to EULAR criteria [7] and thus create
three groups: good responders, moderate responders, and
non-responders. A good clinical response in RA was de-
fined as a DAS28 ≤3.2 and a >1.2-point improvement in
DAS28 after anti-TNF therapy [8]. A non-response in RA
was defined as a DAS28 ≥5.1 and a <0.6-point improve-
ment in DAS28 after the anti-TNF-alpha therapy [8].
Disease activity scores obtained at M6, and metabolome

variation findings were cross-correlated to identify a
metabolomics fingerprint that is predictive of therapeutic
response to anti-TNF-alpha therapy.
The study was approved by the appropriate institu-

tional review boards/independent ethics committees
(Committee of Patient’s Protection Grenoble 05-CHUG3
et Sud-Est 6 –AU731), and was carried out in accord-
ance with the ethical principles of the Declaration of
Helsinki. All patients gave written, informed consent.

Metabolomics analysis
The blood samples were first deproteinized and extracted,
then analyzed by reverse-phase liquid chromotography–
electrospray QToF mass spectrometry. The metabolic pro-
files were collected using positive and negative ionization,
in full-scan mode, on a mass range from 90 to 1000 m/z.
The data were then centroided and corrected before
reprocessing to obtain a matrix containing retention times,
exact masses and intensities of potential markers.
A preliminary quality analysis of the data performed

by principal component analysis detected the possible ef-
fect of fouling of the ionization source of the mass spec-
trometer during the sample injection series. These effects
were checked and corrected using quality control samples
corresponding to the pools of all the analyzed samples.
After linear regression modeling of this instrumental drift
on quality control samples, the model thus obtained was
used to correct all extracted ion intensities.
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The list of extracted and normalized ions was considered
in univariate analysis. The results from metabolomic inves-
tigations were analyzed by ANOVA and cross-compared
against partial least-squares regression-discriminant analysis
data (PLS-DA). Orthogonal Signal Correction (OSC) was
also used to filter data from unwanted non-related effects.
Results were considered statistically significant if p < 0.05
and if VIP (Variable Importance of the Projection) >1.5.
Ions were identified by annotation in the HMDB database.

Statistical analysis
This was an exploratory and multicentric study. Biostat-
istical analyses followed the design of a case-control
study with binary analysis (“case” subjects are good-
responders according to EULAR response criteria; “con-
trol” subjects are non-responders according to EULAR
response criteria).
The justification for the number of subjects was based

primarily on ability to recruit, sample sizes of princeps
publications, and the experience of the services involved
in this research. In order to identify predictive metabo-
lites of therapeutic response, it was necessary to include
120 patients (for a bilateral risk of error α equal to 5 %
and a power ≥90 %) considering:

1) an in-population response rate of 60 %: distribution
was 70 % responders (breaking down as 35 % very
good responders and 35 moderate responders) and
30 % non-responders;

2) the rules for determining the required number of
subjects involved in the study of predictors of a binary
response variable as defined by Harrell et al. [9].

Concerning power estimation for each metabolite, we
explored different simulations, as proposed by Cohen

[10], using as starting point the conventional effect
sizes (ES) for the Student test: small (ES = 0.2), mean
(ES = 0.5) and high (ES = 0.8). Given the sample size of
this study (i.e. 70 cases and 50 controls), the expected
ES was 0.6 for α = 5 % and β = 10 %.
Statistical analyses were performed in STATA v11

(STATA Corp, College Station, TX). Numerical outcomes
were expressed as mean ± SD (for Gaussian distributions).
Nominal outcomes were expressed as raw values and per-
centages. Level of significance was set at 5 %.

Results
After 6 months of anti-TNF therapy, 100 patients were
considered good-responders and 40 patients as non-
responders according to EULAR criteria [7]. The baseline
characteristics of the patients are summarized in the
Table 1. There was no difference in response to anti_TNF
treatment between patients with or without rheumatoid
factors or anti-citrullinated peptide.
Metabolomic investigations suggested two different

metabolic fingerprints segregating good-responders group
from non-responders group (Fig. 1). There is a concrete
global effect of discriminative ions, even though we were
unable to report any single discriminating biomarker that
could simplify routine management of RA.
The univariate analyses revealed 24 significant ions in

positive mode (p < 0.05) and 31 significant ions in nega-
tive mode (p < 0.05). Once intersected with PLS results,
only 35 ions remained. The ions-of-interest were then
identified by querying the HMDB database (Table 2).
Carbohydrate derivates (D-glucose, D-fructose, sucrose,
and maltose) emerged as determinants of therapeutic re-
sponse. Because of lack of pertinent biomarkers, no ab-
solute quantifications and identifications of different
metabolites were proceeded.

Table 1 Baseline characteristics of rheumatoid arthritis patients by response to anti-TNF therapy at 6 months

Good responders (n = 100) Non-responders (n = 40) P-value

Age, years (mean ± SD) 50 ± 14 57 ± 13 0.44

Female (%) 76 (76) 31 (77.5) 1.00

Disease duration (months, range) 9 (3.3–15.3) 10 (3.7–12.8) 0.54

Infliximab (%) 13 (13) 7 (17) 0.64

Adalimumab (%) 29 (29) 17 (43) 0.32

Etanercept (%) 58 (58) 16 (40) 0.82

DAS-28 M0 (Mean ± SD) 4.8 ± 0.9 5.0 ± 1.2 -

DAS-28 M6 (Mean ± SD) 2.2 ± 0.6 4.8 ± 1.2 -

RF positivity (%) 77.4 70 0.25

ACPA positivity (%) 75 62 0.18

ERS (mm/h) 32 ± 25 35 ± 23 0.37

CRP (mg/l) 17 ± 19 21 ± 18 0.45

Bone erosion (%) 38 31 0.37

RF rheumatoid factor, ACPA anticitrullinated protein antibodies, ERS erythrocyte sedimentation rate, CRP C-reactive protein
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Despite of the discriminatory power of ions, the con-
struction of a PLS model based only on the most signifi-
cant ions did not allow sufficient discrimination: only a
global effect could be linked to the therapeutic response.
There was no difference between different groups of

anti-TNF therapies (infliximab, etanercept and adalimu-
mab. We found no interaction of the metabolome with
age, sexe and rheumatoid factors or anti-citrullinated

peptide status, use of steroids or methotrexate. We have
no sufficient data about smoking status, glucose blood
levels or lipidic profile.

Discussion
This is the first study to describe metabolomic profiling
in response to anti-TNF treatments using plasma sam-
ples. Our study highlighted two different metabolomic

Fig. 1 Metabolomic fingerprinting distinguished between baseline plasma samples from RA patients demonstrating good response to anti-TNF
agents (green circles) and no response (blue circles) at 6 months in positive (a) and negative (b) mode analysis
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profiles splitting the good-responders group from the
non-responders group. There is a concrete global effect
of discriminative ions.
The major limit of our study is the impossibilty to

identify any particular biomarker. However, this is an
original study and despite our originality we could not
found discriminant biomarkers in our patient’s sample.
To our knowledge, there is no other study published
with more significant results.
Choice of sample is a fundamental and potentially de-

cisive factor: indeed, analyses of blood or plasma can
prove more complicated than metabolomic investigations
with urine samples as they contain all the metabolites
from different whole-body pathways. Opting for urine
analysis could simplify metabolomic measurement and re-
sults interpretation in further research [11]. Nevertheless,

metabolomic fingerprinting offers new prospects for find-
ing predictive biomarkers of response to biological agents.
An other limit of our study is the absence of negative

controls. Indeed, metabolomic approach limits the num-
ber of different samples that can be analysed at the same
time and our objective was to find metabolomic differ-
ences between good and no responders. We choose to
analyse more patients than negative controls in order to
show more powerful results.
Contrary to other publications, the main metabolomic

differences between responder and non-responder groups
concerned carbohydrate derivatives. Nevertheless, recent
advances in glycomics and glycol biomarker profiling
show direct or indirect associations between glycosylation
modifications and autoimmune disturbances in RA: pep-
tide epitope/glycol epitope cross-reactivity, neo-expression
of normally-restricted glycans, sugar induction of in-
appropriate processing and presentation of self-antigens
to T-lymphocytes and conformational glycomodification
leading to unmasking of antigenic epitopes [12].
Indeed, immune response can be strongly modulated

by induced changes in glycosylation site (galactosylation,
sialylation or fucosylation) in the constant domain of the
IgG Fc region [13]. Animal and human studies suggest
that aberrant glycosylation of IgG plays a key role in RA
pathophysiology [14–16]. For example, increased fucosy-
lation despite low galactose levels of the IgG Fc region
strongly modifies antibody binding capacities and in-
duces abnormal inflammatory reaction [14, 17]. More-
over, increased rate of glycosylated IgG was correlated
with 10-year structural prognosis of RA diagnosis with
95 % specificity and 90 % sensitivity when associated
with rheumatoid factor [14]. Glycomodifications have
even distinguished early RA from other rheumatic dis-
eases [16]. Also, Newkirk et al. reported that the
rheumatoid factor avidity was significantly correlated
with the presence of the glycoform of IgG lacking galact-
ose in both circulating and immune complexes-derived
IgG [18].
Glyco-biomarkers also reflect RA activity and progno-

sis as they are correlated with rheumatoid factor, tender
joint score, and frequency of subcutaneous nodules as
well as structural damage [19–22]. Moreover, levels of
glycosylated IgG decreased and became normalized with
anti-TNF treatment [23] or with acquired remission
[24]. These results are especially consistent and coherent
with our findings.
Finding predictive factors of response to biological

therapy is central to the management of RA patients,
both in the short term to enable rapid relief of pain and
in the long term as it is now established that persistence
of RA disease activity is correlated with structural dam-
age that can lower the functional prognosis [25–27]. The
potential value of the metabolome in the diagnosis of

Table 2 Baseline plasma metabolites most strongly correlated
with response to TNF antagonists using partial least-squares
regression and ANOVA (VIP >1 with p < 0.1 and VIP >1.5 with
p < 0.05)

Ion mass (Da) RT (min) Formula

Positive-mode analysis

181.070 5.2 C6H12O6, C42H44FeN8O8S2R4, C6H11O6R,
CH2NOR, NH2R, C10H17O10PR2, C5H9O5R,
C38H37FeN6O6SR2, C7H8N4O2,

224.129 4.2 C12H17NO3

268.148 12.7 C16H17N3O

460.293 6.0 C29H37N3O2

481.350 13.2 C28H48O6

482.359 13.3 C24H52NO6P

583.257 9.9 C33H34N4O6

Negative-mode analysis

115.038 4.6 C5H8O3

128.033 1.4 C5H7NO3, C5H12O12P3R

181.054 5.5 C9H10O4

203.022 0.9 C7H8O7, C6H10NO3SR, C12H9ClO

221.156 12.9 C14H22O2

249.115 10.3 C14H18O4

281.249 16.3 C18H34O2

285.183 7.8 C19H26O2, C14H26N2O4, C19H37N5O7

313.067 1.2 C17H14O6

335.223 11.3 C20H32O4, C10H18O13P2R2, C20H34NO15R,
C6H13NO7PR, C7H13NO9PR,
C10H15NO11PR3, C4H7O7PR2,

341.111 1.3 C12H22O11, C24H39N7O18P3SR,
C27H40N10O23P4R, C10H14N5O8P,
C17H24N5O10P, C8H6NO3R, NH2R

425.289 6.7 C20H38N6O4

466.296 12.0 C29H41NO4

87.009 1.3 C3H4O3

RT retention time, VIP variable importance in the projection

Tatar et al. BMC Musculoskeletal Disorders  (2016) 17:353 Page 5 of 7



chronic inflammatory rheumatic diseases has been in-
vestigated in animal models and in human subjects.
Analysis in the RA murine model (K/BxN transgenic
mouse) [28] found that the specific metabolomic profile
(nucleic acids, amino acids, reactive derivatives of oxy-
gen, fatty acids, and the enzymes involved in lipolysis
and methylation) was significantly different from that in
control mice (p = 0.00075), and evidenced 18 metabolites
out of the 59 initially studied.
In humans, Madsen et al. [29] showed the value of the

metabolome in the early diagnosis of RA established
even before expression of the anti-CCP antibodies. Here,
mass spectrometry analysis of the metabolome established
RA diagnosis with a sensitivity of 93 % and a specificity of
70 %. The metabolomic profile in RA patients compared
to healthy controls showed an increase in certain bio-
markers (3-phospho-glyceric acid, d-ribofuranose and
hypoxanthine) and a decrease in others (histidine, threonic
acid, threonine, methionine, cholesterol and asparagine).
The metabolome appears to vary in response to RA

disease activity. Lauridsen et al. [30] studied the serum
metabolome by NMR mass spectrometry in 47 RA pa-
tients (23 with active RA and 24 with RA in remission)
and 51 control subjects for one year, and reported a sig-
nificant difference (p = 0.0007) in metabolomic profile
between patients with active RA and those in remission.
They identified several potential markers of RA disease
severity, including total cholesterol, lactates, acetyl glyco-
protein and lipid derivatives. The difference between the
two groups was non-significant (p = 0.91) at 31 days after
initiation of effective treatment in patients with active RA.
The metabolome of the two patient groups remained dif-
ferent from that of the control group.
Nevertheless, studying the metabolome could not only

improve the diagnosis of a disease but also predict the
tolerance and effectiveness of certain treatments [31].
For example, analysis of the urinary metabolome was
able to predict the digestive toxicity of non-steroidal in-
flammatory drugs in rats [32].
However, there is only one documented report on urine

metabolomic variations in RA patients on anti-TNF-alpha
treatment. Kapoor et al. [11] showed that variations in
metabolomic profile correlated with response to anti-TNF
agents according to EULAR criteria with a good sensitivity
(88.9 %) and specificity (85.7 %). Variation of expression of
histamine, glutamine, xanthurenic acid and ethanolamine
were particularly significant and predictive. There is no
published metabolomic analysis of plasma samples con-
cerning response to anti-TNF-alpha treatment in RA
patients.

Conclusion
This is the first study describing metabolic profiling in
response to anti-TNF treatments using plasma samples.

The study highlighted two different metabolic profiles
splitting good responders from non-responders. Our
metabolomic approach needs to be completed by screen-
ing larger cohorts of patients and investigating outcomes
with other biologic agents in patients with severe RA.
Metabolomic analysis remains expensif but in case of
identification of pertinent biomakers, classic quantitative
analysis could be used in clinical practice.
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