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Simple Summary: Accumulating evidence supports a key function for Tribbles proteins in oncogen-
esis, both in leukemia and solid tumors. However, the exact role of these proteins is hard to define
since in a context-dependent manner they can function as both oncogenes and tumor suppressors.
Their complex role arises from the capacity to interact with a wide range of target molecules thereby
acting as molecular scaffolds and signaling regulators of multiple pathways. This review focuses on
one particular Tribbles family member, namely, TRIB3, addressing its gene and protein expression, as
well as its role in cancer development and progression.

Abstract: The first Tribbles protein was identified as critical for the coordination of morphogenesis
in Drosophila melanogaster. Three mammalian homologs were subsequently identified, with a
structure similar to classic serine/threonine kinases, but lacking crucial amino acids for the catalytic
activity. Thereby, the very weak ATP affinity classifies TRIB proteins as pseudokinases. In this review,
we provide an overview of the regulation of TRIB3 gene expression at both transcriptional and
post-translational levels. Despite the absence of kinase activity, TRIB3 interferes with a broad range
of cellular processes through protein–protein interactions. In fact, TRIB3 acts as an adaptor/scaffold
protein for many other proteins such as kinase-dependent proteins, transcription factors, ubiquitin
ligases, or even components of the spliceosome machinery. We then state the contribution of TRIB3 to
cancer development, progression, and metastasis. TRIB3 dysregulation can be associated with good
or bad prognosis. Indeed, as TRIB3 interacts with and regulates the activity of many key signaling
components, it can act as a tumor-suppressor or oncogene in a context-dependent manner.

Keywords: pseudokinase; mTOR; Akt; rapamycin; ER stress; tumor suppressor; oncogene; RNA
splicing; FK506 binding protein; signaling pathway

1. Introduction

The Tribbles protein was firstly identified because of its critical role in coordinating
morphogenesis in Drosophila melanogaster (fruit fly) [1–3]. Tribbles-deficient embryos enter
mitosis early in the mesodermal cells that impairs morphogenetic movement of gastrulation,
when on the contrary, Tribbles overexpression greatly reduces the number of cells per
wing. In mammals, three Tribbles protein homologs exhibit a high degree of amino acid
similarity: TRIB1 (alias C8fW or SKIP1), TRIB2 (C5fW or SKIP2), and TRIB3 (NIPK, SINK,
or SKIP3). The kinase-like domain is highly conserved through evolution suggesting
an important role in the function for the Tribbles family of proteins [4]. As suggested
in Drosophila, a relationship with cell cycle or cell survival in mammalian cells was also
reported. TRIBs exhibit either unique or overlapping functions (reviewed in [5]). Such
similarities and discrepancies in a pathological context upgrade TRIBs as prognostic or
predictive biomarkers of disease and putative valuable therapeutic targets.

In humans, TRIB3 expression is ubiquitous. Human tissue profiling indicates the
thyroid gland, bone marrow, and peripheral blood leukocytes as sites of high TRIB3 mRNA
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expression [6]. The Human Protein Atlas project also assessed the expression level of TRIB3
mRNA and the abundance of TRIB3 protein in a variety of tissues (www.proteinatlas.org
accessed on 6 January 2021). Clinical studies report an increased TRIB3 expression in
tumor tissue as compared to normal tissue and a correlation with poor prognosis. In fact,
colorectal cancer patients with high TRIB3 protein and mRNA expression levels are likely
to experience a recurrence of the disease and displayed poorer overall survival [7]. In
the same way, in renal cell carcinoma [8], gastric cancer [9], oral tongue squamous cell
carcinoma [10], and non-small-cell lung carcinoma [11], the upregulated TRIB3 expression
correlates with tumor stage, lymph node metastasis, disease recurrence, and thus with
unfavorable prognosis. Nevertheless, despite the association of TRIB3 upregulation with
bad prognosis, it can act as a tumor-suppressor or oncogene in a context-dependent manner.

2. TRIB3 Gene and Transcripts

The first approved name of the human TRIB3 gene was “Tribbles homolog 3
(Drosophila)”, recalling the Drosophila melanogaster homolog, but in 2016, the HUGO
Gene Nomenclature Committee reconsidered it to “Tribbles pseudokinase 3”, putting in
evidence its function. The human TRIB3 gene (gene ID: 57761) is located in chromosome
20 at the position 20p13 and spans a region of 16.9 kb. Thanks to alternative transcription
start sites (TSS) and alternative splicing, it generates four transcripts (Figure 1).
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Figure 1. Transcript variant analysis of the TRIB3 gene (ENSG00000101255.11). (Adapted from the Ensembl platform; 
https://www.ensembl.org accessed on January 2021). 

The Ensembl genome browser annotates TRIB3-201 transcript as the principal tran-
script, and TRIB3-202 as the alternative transcript (Table 1). The protein encoded by 
TRIB3-202 transcript harbors 27 additional amino acids at the N-term in comparison to 
the one encoded by TRIB3-201. However, there is no experimental evidence indicating 
that this difference in sequence translates in functional diversity in the two proteins. Fur-
thermore, the existence of protein isoforms related to TRIB3-203 and TRIB3-204 transcripts 
(Transcript Support Levels (TSL) of 5 and 3, respectively) has never been proven empiri-
cally, resulting in TRIB3-201 being the only transcript that encodes the TRIB3 protein. 

  

Figure 1. Transcript variant analysis of the TRIB3 gene (ENSG00000101255.11). (Adapted from the Ensembl platform;
https://www.ensembl.org accessed on 6 January 2021).

The Ensembl genome browser annotates TRIB3-201 transcript as the principal tran-
script, and TRIB3-202 as the alternative transcript (Table 1). The protein encoded by
TRIB3-202 transcript harbors 27 additional amino acids at the N-term in comparison to the
one encoded by TRIB3-201. However, there is no experimental evidence indicating that this
difference in sequence translates in functional diversity in the two proteins. Furthermore,
the existence of protein isoforms related to TRIB3-203 and TRIB3-204 transcripts (Transcript
Support Levels (TSL) of 5 and 3, respectively) has never been proven empirically, resulting
in TRIB3-201 being the only transcript that encodes the TRIB3 protein.

Alternative transcription start sites add complexity to the human TRIB3 gene expres-
sion. In silico analysis of the 5′-Untranslated Transcribed Region (5′UTR) suggests three
putative alternative promoters with assigned transcripts (Figure 2). One putative promoter
could generate a very short isoform of TRIB3 (encoding a protein truncated to 60 aa) for
which no matching information is available to our knowledge. In contrast, the other two
promoters allow the transcription of up to ten putative transcripts that finally match the
TRIB3-201 principal transcript and the TRIB3-202 alternative transcript. Since all of the
transcriptional differences of TRIB3 isoforms condensed in the first exon that is not protein
coding, all of the TRIB3 generated proteins are identical.
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Table 1. TRIB3 Transcripts from Ensembl genome browser 101 (www.ensembl.org accessed on 6
January 2021).

Name Transcript ID bp Protein UniProt Flags

TRIB3-201 ENST00000217233.8 2095 358aa Q96RU7 TSL:1, APPRIS P3
TRIB3-202 ENST00000422053.3 1533 385aa J3KR25 TSL:2, APPRIS ALT2
TRIB3-203 ENST00000449710.5 1070 271aa B0QYQ2 CDS 3′ incomplete, TSL:5
TRIB3-204 ENST00000615226.4 877 130aa A0A087WTX3 CDS 3′ incomplete, TSL:3

TSL1: all splice junctions of the transcript are supported by at least one non-suspect mRNA; SL2: the best
supporting mRNA is flagged as suspect or the support is from multiple ESTs; TSL3: the only support is from a
single EST; TSL5: no single transcript supports the model structure. APPRIS is a system to annotate alternatively
spliced transcripts based on a range of computational methods. APPRIS P3: no clear principal variant identified,
and more than one of the variants have distinct CCDS identifiers, APPRIS selects the variant with lowest CCDS
identifier as the principal variant. APPRIS ALT2: candidate transcript that appears to be conserved in fewer than
three tested species.
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Figure 2. In silico analysis of the human TRIB3 promoter region. The three putative alternative promoters and the related
TRIB3 isoforms are indicated (Adapted from [12]). aa: amino acid.

3. TRIB3 Protein Structure

The 3D structure for TRIB3 has not been established yet, but insights from the crystal
structure of its homolog TRIB1 suggest that Tribbles proteins fold into the canonical
conformation of protein kinases [13]. Indeed, the TRIB3 protein presents a structure similar
to a classic serine-threonine protein kinase with N- and C-terminal domains flanking a
kinase-like domain in the center of the protein (Figure 3).
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The kinase-like domain is highly conserved through evolution suggesting an impor-
tant role in the function for the Tribbles family of proteins [4]. However, even if the catalytic
core contains the classic substrate-binding domain, it presents several substitutions of
amino acids that are crucial for the catalytic activity of conventional kinases (Figure 3).
The most evident differences are (1) the lack of the highly conserved Asp-Phe-Gly (DFG)
motif which is required for the binding of Mg2+ and subsequent activation of canonical
kinases; and (2) the lack of the glycine-rich loop (GXGXXG) usually involved in ATP-
binding. In vitro experiments confirmed no phospho-transferase activity in presence of
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several different classical Ser/Thr kinase substrates [14]. However, even though it has been
demonstrated that TRIB3 can very weakly auto-phosphorylate under particular in vitro
conditions, independently of divalent cations, cellular substrates of TRIB3 have not been
identified yet [15]. Based on all these characteristics, TRIB3 is classified as a pseudokinase.

The N-terminal domain contains a large amount of proline (P), glutamic acid (E), serine
(S), and threonine (T) residues. Such PEST regions are involved in Ubiquitin-mediated
degradation of a variety of substrates, thus controlling the half-life of target proteins [16,17].
A nuclear localization signal (NLS) sequence allows TRIB3 to localize to the nucleus where
it interacts with various transcription factors such as ATF4, CHOP, C/EBPβ, PPARγ,
p65/RelA, or SMAD3. The C-terminal domain of TRIB3 contains two conserved sequences:
Mitogen Activated Protein Kinase Kinase (MEK1/MAPKK) binding motif and Constitutive
Photomorphogenesis Protein 1 Homolog (COP1) binding motif recognized by this subclass
of E3 ubiquitin ligase.

4. Regulation of TRIB3 Expression

The best-described modalities of TRIB3 regulation up to date are through several
forms of cellular stress. Evidence in the literature suggest that endoplasmic reticulum (ER)
stress [18,19], oxidative stress, hypoxia, essential amino acid deficiency [20], oversupply or
lack of glucose [21,22], or free fatty acids excess [23] contribute to the activation of the TRIB3
promoter and lead to TRIB3 upregulation. In addition, post-translational modifications of
TRIB3 contribute to the regulation of protein location, stability, confirmation, and activity.

4.1. Transcriptional Regulation

A recently published, in silico analysis of the TRIB3 promoter region indicates six
unique putative promoters but three of them with no transcript assigned (Figure 2). Further
investigations of the region spanning the promoters #2 and #3 detected binding motifs for
a large amount of transcription factors (Figure 4).
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(below the line) orientation relative to the transcription start site (TSS) are indicated.

Several of these transcriptional factors effectively trigger TRIB3 expression levels in
different contexts. The best described activator is ATF4 (Activation Transcription Factor
4) that is recruited to TRIB3 promoter thanks to a basic leucine zipper domain (bZIP)
c/EBP-ATF response element [24]. In conditions of severe or prolonged stress, ATF4 forms
a heterodimer with CHOP (C/EBP homologous protein) that promotes cell death via
the induction of several pro-apoptotic genes and the suppression of the anti-apoptotic
Bcl-2 proteins [25,26]. The transcriptional coactivator PGC-1α (Peroxisome proliferator-
activated receptor gamma coactivator-1 alpha) also promotes TRIB3 expression which leads
to induced insulin resistance in liver cells [27]. The cell-type specific transcription factor
NFATc1 (Nuclear factor of activated T-cells, cytoplasmic 1) promotes TRIB3 expression
in vascular smooth muscle cells upon phenamil treatment resulting in an attenuation of
pulmonary artery hypertension in rats [28]. Another example is FoxO1 (Forkhead box
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protein O1), which according to the cellular context can either promote or repress TRIB3
expression. Hence, it controls the insulin sensitivity in hepatocytes by inhibiting the
expression of TRIB3, whereas it promotes cell death in neurons under NGF deprivation by
inducing the expression of TRIB3 [29,30].

Even though there is extensive literature describing the activation of TRIB3 in several
stress conditions, little is known about its repression. In a recent publication from our
group we demonstrated that the transcriptional co-repressor GCF2 (GC-Binding Factor 2)
alias LRRFIP1 (Leucine Rich Repeat (In FLII) Interacting Protein 1) participates in TRIB3
downregulation in cancer cells incubated with rapamycin or its derivatives (rapalogs) [12].
The canonical target of rapalogs is mTOR (mechanistic target of rapamycin). They bind with
high affinity to the intracellular receptor FKBP12, a member of the FK506-binding protein
(FKBP) family [31], and the resulting complex binds to the FKBP12-Rapamycin Binding
(FRB) domain of mTOR that leads to its allosteric inhibition. Interestingly, rapamycin can
also bind FKBP25 with high affinity [32] that in turn regulates GCF2 recruitment to the
promoter of TRIB3 [12]. Moreover, the consensus-binding motif for GCF2 overlaps the
RNA polymerase II binding motif (TF2B) near the TSS in the TRIB3 promoter, probably
interfering with the recruitment of RNA polymerase II, and the initiation of transcription.

4.2. Post-Translational Regulation

Several enzymatic modifications occurring at a post-translational stage may regulate
TRIB3 function or location. Thus, high-throughput proteomic analyses followed by mass-
spectrometry confirmed the presence of seven phosphorylation sites on TRIB3 protein
(Figure 5). However, to date, there is no information about the associated kinases or the
functional significance of such phosphorylation. The histone-Lysine N-Methyltransferase
SMYD1 (SET and MYND Domain Containing 1) triggers TRIB3 methylation at K16 in
the N-term region (Figure 5). Following this methylation, TRIB3 acts as a co-repressor to
SMYD1 and inhibits its transcription [33]. The acetylation of TRIB3 by PCAF (P300/CBP-
Associated Factor) results in increased expression of TRIB3 [33,34]. A yeast two-hybrid
screen identified an interaction of TRIB3 with the E3 ubiquitin ligase Seven in absentia
homolog 1 (SIAH1) in mammalian cells, and demonstrated that it promotes proteasome-
dependent degradation [35].
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Finally, upon apoptosis-inducing treatment (TNFα/CHX or anti-Fas antibody), TRIB3
is cleaved by endoproteases of the caspases family at a site located 20 aa from the C-
term [36]. This cleavage leads to accelerated cell death by emphasizing pro-caspase-3
and -7 activation. In contrast, upon ER stress-inducing treatment, TRIB3 is no longer
cleaved. The pro-caspase-3 undergoes nuclear translocation leading to its non-activation
and prevention of apoptosis induction [36].

5. TRIB3 as A Scaffold for Diverse Signaling Proteins

TRIB3 interferes with a broad range of cellular processes through non-catalytic mecha-
nisms. Instead, it takes part in pleiotropic signaling network thanks to diverse and varied

www.phosphosite.org
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protein–protein interactions. Known TRIB3 partners are kinase-dependent proteins, tran-
scription factors, ubiquitin ligases, spliceosome machinery components, as well as many
other proteins. Since TRIB3 lacks an active catalytic site, it contributes to several processes
as a scaffold protein or an adaptor. In fact, TRIB3 generally regulates other proteins by
altering their subcellular localization or impeding the interactions with their enzymatic
partners. The outcome of these regulations is strictly context dependent since TRIB3 can
act both as activator and as repressor.

5.1. TRIB3 Regulation of Kinase-Dependent Proteins

Thanks to its C-term MEK1-binding domain, TRIB3 is able to deactivate multiple
mitogen-activated protein kinases (MAPKs). In fact, the best-described function of TRIB3
is the negative regulation of Akt (thymoma viral proto-oncogene/protein kinase B) activity
(Figure 6). The PI3K/Akt signal transduction pathway is pivotal for cell response to various
extracellular stimuli. Active Akt plays a pro-survival role thanks to its multifunctional
downstream signaling nodes. However, its effective activation requires phosphorylation
on two key residues, namely, Thr308 and Ser473. Firstly, PI3K (phosphoinositide-3-kinase)
activates PDK1 (Pyruvate Dehydrogenase Kinase 1), which phosphorylates AKT at Thr308.
Then, for optimal activation, mTORC2 phosphorylates Akt on Ser437 [37]. Several evi-
dence suggest that TRIB3 disrupts the phosphorylation at both Thr308 and Ser473 residues
through a direct interaction with Akt [38]. In addition, TRIB3 can inhibit the Akt phosphory-
lation at Ser473 by binding to the mTORC2 component, RICTOR [39]. The TRIB3-mediated
Akt inhibition does not inhibit all Akt substrates in the same way, which is an additional tes-
tament for its context-dependent regulation. For instance, FoxO and BAD phosphorylation
is impaired, whereas GSK3β and PRAS40 phosphorylation remains intact.
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In parallel to the modulation of the PI3K/Akt signaling pathway, TRIB3 binds also
directly to extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK),
and dose-dependently regulates their phosphorylation state, leading to the modulation of
cell proliferation and migration of lung adenocarcinoma cells, for example [40]. It should
be noted that TRIB3 does not affect the levels of p-P38 MAPK. Similar effects of TRIB3
onto MAPK-dependent pro-survival and pro-migratory effects were reported in renal cell
carcinoma [8], or breast cancer, completed with interactions with TGFβ pathway [41].
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5.2. TRIB3 Regulation of Transcription Factors

In addition to the interaction with several protein kinases, TRIB3 binds and regulates
the expression level of different transcription factors. In this manner, it contributes to the
modulation of multiple cell behaviors that have whole-body impact. Through a COP1
(constitutive photomorphogenic protein 1) conserved binding motif present at the C-
terminal domain, TRIB3 can recruit the E3 ubiquitin ligase COP1 and favor ubiquitination
and proteasomal degradation of transcription factors [42–44]. For example, TRIB3 interacts
with PPARα (peroxisome proliferator-activated receptor alpha) and promotes its ubiquitin-
dependent degradation [45]. This favors the survival of leukemic cells and meditates the
progression of acute myeloid leukemia (AML). Furthermore, it participates to a tight control
of adipogenesis by interacting with PPARγ (peroxisome proliferator-activated receptor
gamma), leading to the downregulation of its transcriptional activities. This negative
regulation of PPARγ inhibits adipocyte differentiation [42].

TRIB3 regulates inflammatory signaling through NF-kB (nuclear factor-kappa B).
However, the relationship between TRIB3 and NF-kB is quite complex. In certain instances,
TRIB3 increases NF-kB activity, and leads, for example, to the induction of apoptosis
in pancreatic β cells [46]. In contrast, in esophageal cancer cells, TRIB3 inhibits NF-kB
signaling by interacting with RelA, a member of NF-kB family [47]. Moreover, TRIB3 can
indirectly inhibit NF-kB as the downstream effector of the ATF4-CHOP pathway [48,49].

ATF4 (activating transcription factor-4) binds to and activates the promoter of chap-
erone encoding genes that help to restore cellular homeostasis. Under sustained stress,
ATF4 also binds to and activates the promoter of CHOP (CCAAT-enhancer-binding protein
homologous protein), which in turn boosts endoplasmic reticulum (ER) stress-induced
apoptotic cell death. Furthermore, CHOP can form heterodimers with ATF4, C/EBPβ
(CCAAT/enhancer binding protein), and C/EBPγ, then binds to the promoter of TRIB3 and
contributes to its positive regulation [19]. In turn, TRIB3 inhibits the transcriptional activity
of ATF4 and CHOP by binding directly their transactivation domains without affecting
their DNA binding ability [18,50]. In this manner, a negative feedback-loop is established
where TRIB3 represses its own promoter and fine-tunes its own expression. In conclusion,
we could imagine TRIB3 as a sensor of ER-stress induced cell death. For instance, when
the stress is mild, ATF4/CHOP-containing complexes induce TRIB3 expression, but the
TRIB3-dependent negative-feedback loop inhibits their transcriptional activity that finally
promotes cell survival. However, when the stress is severe, sustained TRIB3 overexpression
leads to cell death.

In colorectal cancer cells, TRIB3 interacts with TCF4 but also with β-catenin in a
dose-dependent manner [51]. This transcriptional complex induces the expression of genes
related to Wnt signaling pathway and cancer stemness. Moreover, activated β-catenin
increased expression of TRIB3, indicating a positive-feedback loop. In liver cancer cells, an
increased expression level of TRIB3 correlates with increased expression levels of PPARγ,
ATF4, ATF5, eIF2α, CHOP, and several other transcription factors related to activation of
Wnt/β-catenin signaling pathway [52].

5.3. TRIB3 Regulation of Pre-mRNA Splicing

In the context of cancer cell resistance to rapamycin, a non-targeted liquid chromatog-
raphy tandem mass chromatography (LC-MS/MS) proteomics combined to functional
annotation clusters was conducted to complete the TRIB3 protein interaction network [12].
Surprisingly, in addition to the well-known TRIB3 interactors described above, the majority
of the identified partners were related to the pre-mRNA splicing process. More specifically,
TRIB3 interacts with core spliceosomal proteins that form the PRP19 and U2 small nuclear
ribonucleoproteins (U2 snRNP) complexes, and thus is involved in pre-mRNA splicing
modulation. Rapamycin treatment leads to impairment of the pre-mRNA splicing efficacy
by downregulating TRIB3 expression in an mTOR independent manner [12].

Interestingly, a recent study in Saccharomyces cerevisiae reported that rapamycin triggers
the accumulation of unusual introns as stabilized linear non-coding RNAs, associated with
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components of the spliceosome [53]. This accumulation of introns interferes with key
biological functions in yeast, like, for instance, cell survival [54], whereas intron retention
(IR) in higher eukaryotic organisms is coupled to non-sense-mediated mRNA decay (NMD)
and regulates gene expression. Evidence in the literature suggest that IR can also regulate
RNA stability and translation, as well as the generation of distinct protein isoforms [55].
In mammalian cells, pharmacological mTOR inhibition can lead to intron retention in
lipogenic genes. In this context, IR impacts the stability of the mRNA by triggering NMD
and disrupts the lipid metabolism thereby affecting cellular growth [56].

6. TRIB3 and Cancer

Since TRIB3 is a negative regulator of key processes and signaling pathways, it has a
critical role in several pathologies. For instance, the overexpression of TRIB3 is involved in
several metabolic dysfunctions such as diabetes type II and cardiovascular diseases [57]. In
addition, considerable number of studies suggest that TRIB3 dysregulation plays a role in
cancer development, progression, and metastasis.

6.1. Genetic Alterations and Expression

According to the Catalogue Of Somatic Mutations In Cancer (COSMIC) database,
several somatic mutations are present in the TRIB3 gene (Figure 7A). However, in the
current version of The Cancer Genome Atlas Research Network (TCGA) that comprises
cancer samples for 33 different cancer types (last access January 2021) TRIB3 is mutated in
1.28% of cancer samples (Figure 7B).
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gov/tcga accessed on 6 January 2021).

In the context of genetic alterations, two different studies reported a copy number
gain for the TRIB3 locus in 16% and 40% of patients [58,59]. As a result, the colorectal, liver,
and lung cancer exhibit higher TRIB3 mRNA level as compared with non-tumor sample. In
accordance, data from TCGA confirm that TRIB3 mRNA expression is higher in the tumor
tissues compared to the normal tissues (Figure 8). In addition, TRIB3 expression is even
higher in metastatic lesions compared to primary tumors.

https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
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*** p-value < 0.001.

Finally, evidence in the literature for gastric, liver, colorectal, renal cell, and non-small-
cell lung carcinoma suggest increased TRIB3 protein level in the tumor tissue compared to
the adjacent non-tumor tissue [14]. Taken together, these data indicate that in cancer, TRIB3
is upregulated both at mRNA and protein level.

6.2. TRIB3 Expression Levels and Patient’s Prognosis

Clinical studies report an increased TRIB3 expression in tumor tissue as compared to
normal tissue, and this correlates with poor prognosis. In fact, colorectal cancer patients
with high TRIB3 protein and mRNA expression levels are likely to experience a recurrence
of the disease and display poorer overall survival [7]. In the same way, in renal cell
carcinoma [8], gastric cancer [9], oral tongue squamous cell carcinoma [10], and non-
small-cell lung carcinoma [11], the upregulated TRIB3 expression correlates with tumor
stage, lymph node metastasis, disease recurrence, and thus with unfavorable prognosis.
Nevertheless, despite the association of upregulation with poor prognosis, TRIB3 can
act as a tumor-suppressor or oncogene in a context-dependent manner. However, no
evidence could currently predict in which scenario TRIB3 would promote or inhibit cancer
progression.

6.3. Is TRIB3 A Tumor Suppressor?

In some cellular and animal models of cancer, TRIB3 repression or deletion leads to
enhanced cell proliferation and tumor formation in xenograft models, suggesting a potential
role as tumor suppressor for TRIB3. The principal mechanism by which TRIB3 inhibits
tumor progression probably relies on the inhibition of the phosphorylation/activation
of Akt resulting in reduced pro-survival action [60,61]. Another mechanism by which
TRIB3 can contribute to tumor suppression is via the interaction with the anti-viral cytidine
deaminase APOBEC3A (Apolipoprotein B mRNA Editing Enzyme Catalytic subunit 3A). In
cancer cells, two members from this family APOBEC3A and APOBEC3B are prevalent, act
as potent mutators, and are associated with the burden of signature C to T mutations [62].
TRIB3 has been reported to restrict APOBEC3A activity by promoting its degradation via a
proteasome-independent manner [63]. Such a TRIB3-APOBEC3A complex proposes TRIB3
as an important guardian of the genome integrity.

https://www.cancer.gov/tcga
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6.4. Is TRIB3 An Oncogene?

TRIB3 can contribute to tumor progression via the attenuation of the major intracel-
lular degradative process named autophagy that has a potential preventive role against
early stage cancer [64]. In an elegant study, Hua et al. reported that TRIB3 interacts
with the autophagosome cargo protein p62, and restricts its co-aggregation with selected
substrates tagged for degradation [65]. Thereby, the p62/TRIB3 2 interaction induces
the blocking of the autophagic flux that interestingly leads to the accumulation of sev-
eral tumor-promoting factors. The interruption of this p62/TRIB3 interaction attenuates
xenograft tumor growth and metastatic dissemination, confirming the role of TRIB3 in this
context as an oncogene [65,66].

In addition, TRIB3 can contribute to tumor progression via the positive regulation of
signaling pathways like Notch and TGF-β. TRIB3 was identified as a master regulator of
JAG1 (Jagged canonical Notch ligand 1) gene expression, and Notch activation in breast can-
cer. It induces cell survival and tumor xenograft growth [41,67]. The same authors demon-
strated that MAPK-ERK was the predominant pathway promoting TRIB3-dependent
Notch activation, and TGFβ-SMAD4 signaling in the regulation of JAG1 expression [41,67].
Similarly, in aggressive lung cancer cell lines, TRIB3 depletion is correlated with Notch1
downregulation and inhibition of tumor growth and metastatic dissemination [11]. In
hepatocellular carcinoma cell lines, TRIB3 overexpression can increase the activity of TGFβ-
SMAD3 by reducing the degradation of SMAD3 and promoting its translocation to the
nucleus, which in turn promotes epithelial–mesenchymal transition [68].

7. Conclusions

Tribbles pseudokinase 3 clearly has a role in tumor progression, either as tumor
suppressor or as oncogene. Nevertheless, in the wake of the impaired catalytic activity of
its kinase-like domain, TRIB3 acts as a collaborating effector and modulates the localization
or activity of other intracellular molecules. TRIB3 acts like a “jack of all trades” through
a wide interaction network including components of central signaling pathways, such
as Akt or MAPK, for example. In parallel, TRIB3 also interferes with gene expression at
the transcriptional level, through direct interaction with various transcription factors or
through impairment of the spliceosome machinery and pre-mRNA maturation. These
complex interactive functions of TRIB3 are encouraging to better understand the processes
in which it is involved, but also to explore novel cancer therapeutic approaches that target
TRIB3.
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