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Abstract

Pepsin plays an important role in laryngopharyngeal reflux (LPR), a risk factor for the devel-

opment of hypopharyngeal squamous cell carcinomas (HPSCC). However, the role of pep-

sin in HPSCC is not clear. We show by immunohistochemistry that pepsin positivity occurs

in a significant proportion of human primary HPSCC specimens, and in many cases

matched adjacent uninvolved epithelia are negative for pepsin. Pepsin positivity is associ-

ated with nodal involvement, suggesting that pepsin may have a role in metastasis. Treat-

ment of FaDu cancer cells with pepsin increased cell proliferation, possibly by inducing G1/

S transition. We also observed significant changes in expression of genes involved in NF-

kappaB, TRAIL and Notch signaling. Our data suggest that pepsin plays an important role in

HPSCC and that targeting pepsin could have potential therapeutic benefits.

Introduction

Hypopharyngeal squamous cell carcinomas (HPSCC) have the worst prognosis among head

and neck squamous cell cancers (HNSCC), likely because patients are already presented with

late stage disease at time of diagnosis [1]. An important risk factor for the development of

extra-esophageal cancers is laryngopharyngeal reflux (LPR) [2], in which pepsin is believed to

have an important role [3–5]. In a case-control study conducted by Sereg-Bahar and colleagues

[6], total pepsin in saliva of patients with HNSCC was found to be significantly higher than

that of control subjects. No significant differences in pH were observed, suggesting that non-

acidic pepsin reflux is associated with HNSCC. Pepsin is taken up by laryngeal epithelial cells

by receptor-mediated endocytosis at neutral pH and detected in intracellular vesicles such as

Golgi bodies of low pH [7]. In vitro studies have shown that pepsin can induce a dose- and

time-dependent increase in proliferation of hypopharyngeal cells in parallel with changes in

expression of microRNA and genes known to be involved in tumorigenesis [8]. Treatment of
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cells with nonacid pepsin also increased anchorage-independent growth and migration, dem-

onstrated by an increase in colony formation [9].

Taken together, these data strongly suggest that chronic exposure to pepsin promotes the

development of laryngopharyngeal cancer.

The role of pepsin in laryngopharyngeal carcinogenesis remains unclear. Reflux esophagitis

is associated with the progression of Barrett’s metaplasia to esophageal adenocarcinomas [10,

11], with a potential involvement of NF-κB signaling [12]. It has been speculated that refluxed

pepsin and bile stimulate the release of inflammatory cytokines from esophageal squamous

cells, resulting in recruitment of lymphocytes to the submucosa and subsequently to the lumi-

nal surface of the esophagus [10]. These events lead to activation of NF-κB signaling in Bar-

rett’s cells, enabling these cells to resist apoptosis in spite of DNA damage [10]. Treatment of

Fadu cells with pepsin in a nonacidic environment induced the expression of several pro-

inflammatory cytokines and receptors, including those involved in inflammation of esophageal

epithelium in response to reflux [13].

In this study, we evaluated primary human HPSCC and adjacent noninvolved tissues for

pepsin staining by Immunohistochemistry (IHC). We also investigated the in vitro effect of

nonacidic-pepsin on signal transduction pathways and cellular functions in an effort to under-

stand the role of pepsin in HPSCC pathogenesis.

Methods

1. Patients and tissue samples

Primary HPSCC specimens were obtained from 70 patients at the first affiliated hospital of

Jilin University (Changchun, China) between August 2013 and August 2016. The inclusion

criteria for patient selection were: 1) previously untreated hypopharyngeal cancer, 2) histologi-

cally confirmed squamous cell carcinoma, and 3) no distant metastasis at the initial visit. Of

the 70 patients, 68 were men and 2 were women. The median age of patients was 54.5 years

(range, 45–76 years). Tumor samples were obtained from radical resection of the HPSCCs.

Pathological evaluation indicated that these tumors ranged from stage I to stage IV. Unin-

volved tumor-adjacent tissues were obtained 1cm away from the cancers and were confirmed

as non-cancerous by a certified pathologist. For negative control samples, we used mucosa

from 4 pediatric patients who received tonsillectomy and had no clinical signs or symptoms of

LPR as determined by the reflux finding score (RFS) and the Reflux Symptom Index (RSI)

questionnaire. For positive controls, normal stomach tissues were obtained from patients with

esophageal cancer. All tissue samples were formalin fixed and paraffin embedded (FFPE). This

study was approved by the independent ethics committee of the Jilin University under project

number 2013/091 (June 2013). Written consents were obtained from all patients involved in

the study.

2. Immunohistochemical analysis of pepsin expression

IHC was performed using the SP-kit (Bioss, Beijing, China) following the instructions of the

manufacturer. Briefly, 3.0 μm sections were placed on glass slides, dewaxed, and rehydrated.

Antigen retrieval was performed in citrate-buffered saline using a microwave oven for heating.

Endogenous peroxidase activity was blocked by incubating sections in 3% H2O2 for 15 min at

RT. Sections were blocked in 5% goat serum for 10 min and incubated with rabbit polyclonal

anti-pepsin primary antibody (1:100, EIAab Science, China) overnight at 4˚C. Sections were

washed 3 times in PBS, incubated with biotinylated goat anti-mouse secondary antibody for

20min, and then with streptavidin-HRP conjugate for 20min. Sections were thoroughly
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washed in PBS and incubated with DAB substrate for 10 min for signal detection. Negative

and positive control samples (see above) were routinely included in the IHC analysis.

Table 1 outlines the scoring system used to assess pepsin staining in primary HPSCC speci-

mens. The scoring was based on a combination of staining intensity and percentage of pepsin-pos-

itive tumor cells. Specimens with a point score of 3 or higher were considered as pepsin positive.

3. Cell culture

Human HPSCC FaDu cells (ATCC, Manassas, VA) were grown in Minimum Essential

Medium–Eagle with Earle’s Balanced Salt adjusted to 1.5 g/L sodium bicarbonate. The growth

medium was supplemented with 0.1 mM nonessential amino acids, 1.0 mM sodium pyruvate,

and 10% fetal bovine serum (ATCC). Cultures were incubated at 37˚C under 5% CO2, and

sub-cultured when reached 70% confluence.

Cell viability. FaDu cells were treated with porcine pepsin (0.2 or 0.4ug/ml; Sigma-

Aldrich, St. Louis, MO) for 0.5, 1, 2 or 4 hours in 96-well plates. Treatments were performed at

pH7, and 5 technical replicates were included for each treatment condition. After the treat-

ment, cells were washed with PBS and grown in fresh growth media. Cell viability was deter-

mined using a CCK-8 solution (Beyotime Biotechnology, China) 24 hours after treatment. At

a pre-determined assay time point, a 10% (v/v) CCK-8 solution was added to each well and

incubated for 1 hour. Absorbance at 450 nm was measured in a Bio-Rad 480 microplate reader

(Bio-Rad Laboratories, Hercules, USA). To determine the effect of irreversibly inactivated pep-

sin on cell proliferation, pepsin was inactivated at pH 8.0 for 15 minutes at 37˚C and returned

to pH to 7.0 for cell treatments.

Flow cytometry. FaDu cells were treated with porcine pepsin (0.2 mg/mL, pH 7.0, 37˚C)

for 0.5 or 1 hour, washed three times in fresh media, and incubated for a further 24 hours in

complete growth media. Cells were fixed in 70% ethanol, incubated with a propidium iodide/

Triton X-100 staining solution containing RNase A (50μg/ml PI +200μg /mL RNase A), and

assessed for cell cycle distribution using the Click-iT EdU Alexa Fluor 647 Flow Cytometry

Assay Kit (Beyotime Biotechnology, China) according to manufacturer’s instructions.

Confocal microscopy of FaDu cells treated with Cy3-labeled pepsin. Cy3-labeled pepsin

was supplied by Bioss antibodies (Woburn, MA, USA). FaDu cells were treated with Cy3-la-

beled porcine pepsin (0.2ug/mL; Bioss Antibodies (Woburn, MA, USA) at 37˚C for 30 minutes

in pH 7 growth media. Cells were washed and incubated for a further 24 or 36 hour in complete

growth media. Cells were then washed with PBS and incubated with Lyso-Tracker red (50 nM;

Beyotime Biotechnology, China) in DMEM containing 10% FBS for 60 min at 28˚C. Cells were

washed, fixed, and stained with 40, 6-diami-dino-2-phenylindole (DAPI). Following washes in

PBS, cells were analyzed by confocal microscopy (Fluo-View FV1000; Olympus, Japan).

4. Human Signal Transduction PathwayFinder

The Human Signal Transduction PathwayFinder™ RT2 Profiler™ PCR Array (PAHS-014Z,

Qiagen, Frederick, MD, USA) was used to evaluate the expression of a panel of 84 genes

Table 1. Scoring system used for evaluation of pepsin staining in primary HPSCC specimens.

Staining Intensity Points Staining Proportion Points

No staining 0 0% 0

Low 1 <10% 1

Moderate 2 10–29% 2

High 3 30–59%

60–100%

3

4

https://doi.org/10.1371/journal.pone.0227408.t001
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representative of ten different signal transduction pathways, in FaDu cells treated with pepsin.

Total RNA was isolated from pepsin treated Fadu cells and control cells using the Qiagen

RNeasy Mini Kit, following manufacturer’s protocol. RNA was quantified using the Nanodrop

2000 (Gene Company Limited, Hong Kong, China), and quality was assessed based on the integ-

rity of 18 S and 28 S ribosomal RNA bands in 1% agarose gels. First-strand cDNA was mixed

with 2 × RT2 SYBR Green qPCR Master Mix and ddH2O. qPCR was performed in the Applied

Biosystems (ABI) 7500 system using the following conditions: 95˚C for 10 min followed by 40

cycles of 95˚C for 15 sec and 60˚C for 1 min. Each array contained five independent housekeep-

ing genes (Actb, B2m, Hprt1, Ldha and Rplp1) that were used for data normalization.

5. Semi-quantitative analysis of immunofluorescent staining

FaDu cells were grown on slides, fixed in 4% paraformaldehyde in PBS for 15 min at RT and

washed with PBS. Cells were permeabilized with 0.2% Triton X-100 in PBS for 10 min. Cells

were blocked with 5% goat serum for 1 hour, and incubated with rabbit polyclonal anti-p21

(1:100; Bioss Antibodies), rabbit polyclonal anti-C-Myc (1:100; Bioss Antibodies), rabbit

monoclonal anti-NFκB p65 (1:100, Abcam) overnight at 4˚C. The next day cells were washed

3 times with PBS, and incubated with goat Alexa 555 conjugated anti-rabbit IgG (1:400,

Abcam) for 1 hour at room temperature in the dark. Cells were mounted in 70% glycerol and

images were taken by laser confocal microscopy (Fluo-View FV1000; Olympus, Japan).

Detection of the fluorescent intensity (FI) of FaDu cells stained with anti-p21 or anti-C-

myc antibodies were preformed under a laser scanning confocal microscope. Positive signals

were analyzed as mean fluorescent intensity (MFI) using the FV10-ASW 4.0 software (Fluo-

View FV1000; Olympus, Japan). In brief, 100 cells from each treatment group were analyzed

in a blinded manner. All images were captured under the same camera settings.

6. Western analysis

FaDu cells grown in 6-well plates were treated with pepsin (0.2 mg/mL) in pH7.0 for 30 min.

Levels of phosphorylated of IκB and p65 were evaluated by Western analysis. Rabbit polyclonal

anti- p65, anti-phospho-p65, anti-IκB, and anti-phospho- IκB antibodies were purchased

from Abcam (Cambridge, UK). The secondary antibodies were Goat anti-rabbit antibodies

conjugated with horseradish peroxidase purchased from Abcam (Cambridge, UK). Signals

were visualized by ChemiDoc XRS+ using the Image LabTM Software (Bio-Rad Laboratories,

Munich, Germany). Protein levels were quantified by scanning densitometry.

7. Statistical analysis

Proliferation assays. Data from five biological replicates for dose-response experiments were ana-

lyzed by one-way analysis of variance and Tukey multiple comparisons post-test. Data are

expressed as mean±standard deviation. Microarray data was normalized against the house keep-

ing genes by calculating the ΔCt for genes of interest. Fold changes in expression levels were ana-

lyzed using the RT2 PCR array data analysis web portal version 3.5 (http://pcrdataanalysis.

sabiosciences.com/pcr/arrayanalysis.php). Genes with more than a 1.5-fold change in expression

levels between pepsin-treated and control groups were considered significant.

Result

1. Pepsin staining in primary HPSCC tumors and adjacent epithelia

Levels of pepsin protein in human primary HPSCC and corresponding uninvolved adjacent

tissues were assessed by IHC. As shown in Fig 1, gastric oxyntic mucosa and tonsil tissues were
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used as positive and negative controls, respectively. Pepsin staining was localized to the cyto-

plasm of tumor cells as well as adjacent epithelial cells (Fig 1). Table 2 summarizes pepsin

staining in primary HPSCC and matched uninvolved adjacent epithelium specimens. Of the

70 paired specimens, 21 had positive pepsin staining in both tumor and adjacent tissues. We

observed 18 cases where pepsin was detected in the tumor but not in the adjacent epithelium.

Pepsin was not present in both tumor and adjacent tissues in 31 cases.

2. Pepsin is associated with nodal metastasis in HPSCC patients

To understand the relevance of pepsin positivity in HPSCC pathogenesis, correlative studies

were performed using available clinical and pathological data. As summarized in Table 3, there

was no association between pepsin positivity and alcohol and tobacco consumption. There

was also no association between pepsin staining and tumor stage and grade. On the other

hand, we observed a statistically significant association between pepsin positivity and nodal

involvement (P = 0.027, χ2 test). Whereas 35% of HPSCC patients without nodal metastasis

were presented with pepsin positive tumors, 64% of tumors from patients with nodal metasta-

sis were positive for pepsin.

3. Pepsin induced G1/S transition resulting in increased proliferation of

FaDu cells

Treatment of FaDu cells with pepsin at a concentration of 0.2 mg/ml (pH 7.0) for 30 mins

resulted in a significant increase in cell number (Fig 2A). At this concentration of pepsin,

extending the duration of treatment to 1–4 hours did not result in further increase in cell num-

ber. When the concentration of pepsin was increased to 0.4 mg/mL (pH 7), treatment of FaDu

cells for 2 hours also resulted in a significant increase in cell number (Fig 2B). However, there

was no effect on cell number when cells were treated for 30 min, 1 hour, or 4 hours. Treatment

of FaDu cells with irreversibly inactivated pepsin under the same conditions had no effect on

cell number (Fig 2C and 2D). Therefore, subsequent experiments were performed at a pepsin

concentration of 0.2 mg/ml.

Fig 1. Pepsin staining in primary HPSCC tumors and matched adjacent tissues. Pepsin stained positively in

HPSCC tumor 1a and matched adjacent tissue 1b. There was no pepsin in HPSCC tumor 3a and matched adjacent

tissue 3b. Tumor 2a was positive but adjacent tissues 2b was negative, for pepsin staining. Gastric oxyntic mucosa (4)

showed strong pepsin staining while tonsil (5) showed negative pepsin staining.

https://doi.org/10.1371/journal.pone.0227408.g001

Table 2. Summary of pepsin staining in matched tumor and matched adjacent uninvolved tissues.

Pepsin (+)(%) Pepsin (-)(%) total p

Primary tumor 39(55.7%) 31(44.3%) 70 0.002

Tumor-adjacent tissue 21(30.0%) 49(70.0%) 70

https://doi.org/10.1371/journal.pone.0227408.t002
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To further investigate the effect of pepsin on cell proliferation, we determined cell cycle dis-

tribution of FaDu cells following pepsin treatment. Cells were treated with 0.2 mg/ml (pH 7)

of pepsin for 30 mins or 1 hour, fixed, and stained with propidium iodide for analysis by flow

cytometry. When cells were treated with pepsin for 30 min, we observed a significant increase

Table 3. Correlation between pepsin and clinical and pathological characteristics of HPSCC.

Clinical Characteristics Overall Pepsin expression P Value

positive negative

Alcohol consumption

Daily 53 28 25 0.391

Rare/never 17 11 6

Tobacco exposure

Smoker 55 31 24 0.834

Nonsmoker 15 8 7

Staging and Grading

Tumor stage (pathological)

T1/2 16 7 9 0.273

T3/4 54 32 22

Nodal stage (pathological)

N0 20 7 13 0.027�

N1–3 50 32 18

Grading

G1/2 23 13 10 0.924

G3/4 47 26 21

�P<0.05.

https://doi.org/10.1371/journal.pone.0227408.t003

Fig 2. Pepsin increases the growth and proliferation of FaDu cells. FaDu cells were treated with pepsin for the

indicated length of time and cultured in fresh complete growth media for 24 hours before analysis. (a) FaDu cells

treated with pepsin at a concentration of 0.2mg/ml at pH 7 for 30 min and incubated in fresh media for 24 hours at

37˚C. (b) Treatment with pepsin at a concentration of 0.4 mg/mL. (c, d) Treatment with irreversibly inactivated

pepsin. Data are from five biological replicates. Bar graphs show mean ± standard deviation. Dose-response data were

analyzed by one-way analysis of variance and Tukey multiple comparisons post-test. Time-response data were

analyzed by two-way analysis of variance and the Bonferroni multiple comparisons post-test. �P< 0.05.

https://doi.org/10.1371/journal.pone.0227408.g002
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in percentage of cells entering the S phase and a corresponding decrease in percentage of cells

in the G1 phase in comparison with control cells (P� < 0.05, Fig 3). Treating cells with pepsin

for 1 hour resulted in a significant decrease in percentage of cells in the G1 phase (P< 0.05),

but there was no significant difference in percentage of cells in the S or G2/M phase when

compared to controls (Fig 3)

4. Involvement of endosome/.lysosome in pepsin intracellular reactivation

To investigate a potential involvement of the endosomes in pepsin reactivation, pepsin-treated

FaDu cells were stained with Lysotracker red to track acidic organelles. We observed co-locali-

zation of the Lysotracker red and pepsin, consistent with localization of pepsin to the lysosome

(Fig 4). Pepsin remained localized to the lysosome up to 36 hours post-treatment (Fig 4).

5. Gene expression readouts of signaling pathways in pepsin-treated FaDu

cells

To investigate the effects of pepsin on signaling pathways, we used the Human Signal Trans-

duction Pathway Finder RT2 Profiler PCR Array to profile pepsin-treated and control FaDu

Fig 3. Cell cycle distribution of FaDu cells in response to pepsin treatment. Cells were fixed, stained with propidium iodide, and analyzed by flow

cytometry. (a) control, (b) pepsin (0.2mg/ml) treatment for 30 min, and (c) pepsin treatment (0.2mg/ml) for 1 hour at 37˚C. (d) Summary of data. Data

are from five biological replicates and presented as mean ± standard error of the mean. Statistical analyses were performed by one-way analysis of

variance and Tukey multiple comparisons post-test. �P<0.05.

https://doi.org/10.1371/journal.pone.0227408.g003
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cells. Expression of 84 genes were evaluated to provide readouts for a range of signaling trans-

duction pathways (S1 Appendix). Our experiments confirmed that pepsin treatment resulted

in a >1.5-fold increase in expression of TNF-α and BCL2A1 compared to control cells

(P<0.05, Table 4). In contrast, treatment with pepsin resulted in a 1.93-fold and 2.83-fold

decrease in expression of TNFSF10 and HES5, respectively (P<0.05, Table 4).

Fig 4. Localization of pepsin to the lysosomes of FaDu. FaDu cells were treated with Pepsin-Cy3 for 0.5 h, washed

and incubated for 24 hours or 36 hours. After labeling with Lyso-tracker red, cells were stained with DAPI and

visualized under a confocal microscope. Pepsin taken up by cells mainly localized to the lysosomes at 36 hours post-

treatment.

https://doi.org/10.1371/journal.pone.0227408.g004

Table 4. Genes that were up- or down-regulated by>1.5-fold in Fadu cells treated with pepsin (0.2 mg/mL; pH7; 30 minutes).

Gene

Symbol

Gene ID Fold Change P

value

Annotated Gene functional

(pepsin vs

control)

HES5 NM_001010926 -2.83 0.02 Transcriptional repressor of genes that require a bHLH protein for their transcription. Plays an important

role as neurogenesis negative regulator.

TNF NM_000594 3.5 0.03 This gene encodes a multifunctional proinflammatory cytokine that belongs to the tumor necrosis factor

(TNF) superfamily. This cytokine is mainly secreted by macrophages. It can bind to, and thus functions

through its receptors TNFRSF1A/TNFR1 and TNFRSF1B/TNFBR.

TNFSF10 NM_003810 -1.93 0.04 The protein encoded by this gene is a cytokine that belongs to the tumor necrosis factor (TNF) ligand family.

This protein preferentially induces apoptosis in transformed and tumor cells, but does not appear to kill

normal cells although it is expressed at a significant level in most normal tissues.

BCL2A1 NM_004049 2.24 0.02 This gene encodes a member of the BCL-2 protein family. The proteins of this family form hetero- or

homodimers and act as anti- and pro-apoptotic regulators that are involved in a wide variety of cellular

activities such as embryonic development, homeostasis and tumorigenesis. This gene is a direct transcription

target of NF-kappa B in response to inflammatory mediators.

https://doi.org/10.1371/journal.pone.0227408.t004
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6. Pepsin treatment activates NF-κB signaling in FaDu cells

To confirm our PCR array results, we used immunofluorescent staining and Western blotting

to assess the protein levels of selected genes in FaDu cells treated with pepsin in comparison to

control. Semi-quantitative analysis of immunofluorescent signals confirmed that treatment of

FaDu cells with pepsin induced the protein levels of NF-κB p65, p21 and c-Myc (Fig 5, p<

0.05). We further investigated the effect of pepsin on NF-κB signaling by assessing levels of

phosphorylated p65 and IκB in FaDu cells treated with 0.2 mg/mL of pepsin for 30 minutes.

Western analysis showed that treatment with pepsin induced levels of phospho-p65 and phos-

pho- IκB, consistent with activation of NF-κB signaling (Fig 6, P< 0.05).

Discussion

A high prevalence of LPR has been reported in patients with HPSCC, but whether it contrib-

utes to cancer growth and metastasis remains unclear. Pepsin is considered as an important

clinical marker for LPR when detected in the upper aerodigestive tract [14–16]. Pepsin induces

the proliferation of hypopharyngeal cancer cell lines in a dose- and time-dependent manner

[8], and has also been shown to inhibit apoptosis [9]. Using a hamster buccal model, Adams

et al [17] demonstrated that chronic exposure to pepsin together with DMBA resulted in a

higher incidence of dysplasia than DMBA treatment alone. Results from this study confirm a

role for pepsin in the promotion of HPSCC development and further suggest that this may

driven in part by activation of NF-κB signaling.

We evaluated pepsin expression in 70 primary human HPSCC specimens and matched

adjacent uninvolved epithelial tissues by IHC. Pepsin was detected in 39 of the 70 HPSCC

specimens (Fig 1, Table 1). Of the 39 pepsin-positive HPSCC specimens, pepsin was also

detected in the adjacent epithelial in 21 of the cases. However, in 18 cases pepsin was detected

in HPSCC but not in adjacent epithelial samples. Importantly, pepsin expression in primary

HPSCC was associated with nodal involvement, suggesting that pepsin may play a role in

metastasis. Due to unavailable clinical follow-up data at this time, we were unable to determine

whether pepsin positivity is associated with disease-free or overall survival.

Our in vitro studies showed that treatment with pepsin at concentrations of 0.2mg/ml and

0.4mg/ml for 30 min induced proliferation of the FaDu hypopharyngeal cancer cells. Extend-

ing pepsin treatment time did not further increase cell proliferation.

Previous studies showed that pepsin is taken up by hypopharyngeal epithelial cells by recep-

tor-mediated endocytosis at neutral pH and localizes at late endosome and trans-reticular

Golgi up to 6hrs post-treatment [18]. We observed that within cells pepsin is localized to the

lysosome where the pH is in the acidic range (~pH 4.0) [19], suggesting that the lysosome may

be the organelle within which inactive pepsin is reactivated. Together with the observation that

irreversibly inactivated pepsin did not induce cell proliferation, we speculate that the enzy-

matic activity of pepsin has an important role in inducing cell proliferation.

Data from our PCR arrays revealed that pepsin treatment up-regulated NF-κB signaling

related genes TNF-alpha, TNFSF10 (TRAIL), and BCL2A1 compared to control. TNF family

cytokines trigger a variety of NF-κB-dependent responses that can be specific to both cell type

and signaling pathway [20, 21]. The roles of NF-κB in determining chronic inflammation and

carcinogenesis have been well demonstrated [22], and both of these functions may be crucial

to head and neck carcinogenesis. During the development of HNSCC, NF-κB is frequently up-

regulated from premalignant lesions to invasive cancer [23, 24], and has been associated with

tumor invasion and metastasis [25]. In an in vitro model of gastroduodenal reflux model,

Sasaki et al [26] observed Bcl-2 overexpression and significant transcriptional deregulation of

NF-κB–related genes with oncogenic function in hypopharyngeal cancer cells treated with
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acid/ bile. In another in vitro study performed by Sasaki el al [27], weakly acidic-pepsin (pH

5.0) and neutral-pepsin (pH 7.0) were found could induce mild activation of NF-κB with

increase in TNF-α mRNAs in human hypopharyngeal primary cells, that is in accordance with

our study, but no oncogenic transcriptional activity was detected in their study. This could be

explained that the mild increase of NF-κB activity may be related to stress reaction[27] and in

vitro cellular study could not mimic the dynamic events in tissue response to selected ranges

of acidified pepsin.

NF-κB and TRAIL signaling pathways are important in the regulation of proliferation and

apoptosis. NF-κB has many cellular functions and targeting NF-κB for therapeutic applica-

tions may lead to severe side effects. Targeting of TRAIL on the other hand can selectively

induce apoptosis in cancer cells without affecting normal cells [28], indicating that TRAIL

may be suitable target for anti-cancer therapy [29]. Using a panel of HNSCC cell lines, Ren

et al [30] showed that targeting of TRAIL and Smac bypassed NF-κB activation to induce can-

cer cell death, raising the potential benefit of co-targeting strategies involving TRAIL for treat-

ing HNSCC.

We identified three target genes (HES5, HEY1, HEY2) of the NOTCH pathway to be signif-

icantly altered at RNA levels in FaDu cells treated with pepsin (Table 4). NOTCH signaling is

mediated through binding of ligands (JAG1 and -2, and DLL1, -3, and -4) to the NOTCH

receptor (NOTCH1, -2, -3, and -4). We found that the expression of NOTCH1 and JAG1 were

not affected by the pepsin treatment. After binding of ligand to NOTCH, γ-secretase complex

releases the NOTCH intracellular domain (NICD), which moves to the nucleus, resulting in

the transcriptional activation of NOTCH target genes [31]. HES, HEY, CCND1, MYC, BCL-2,

and p21 are among a large number of NOTCH target genes [32]. The role of NOTCH signal-

ing in promoting or suppressing the development of HNSCC remains controversial [33].

HES5 has an important role in regulating mammalian neuronal differentiation and maintain-

ing neural stem cells [34]. A recent study showed that HES5 silencing is an early and recurrent

event in prostate tumorigenesis [35]. In addition, Upadhyay et al [36] showed that Notch path-

way activation is essential for maintenance of stem-like cells in early tongue cancer, and the

effect of Notch was enhanced by TNF-alpha [37]. However, Wirth et al [38] found that high

levels NOTCH1 mRNA is associated with better survival in HNSCC. Mutations studies in

HNSCCs have identified loss-of-function mutations in the NOTCH signaling pathway [39],

Fig 5. P21, C-Myc, and p65 expression in FaDu cells treated with pepsin. Cells were visualized by confocal microscopy (left panel,

magnification = 400X). Quantifications are presented on the right panel. Control and pepsin treated cells were analyzed for expression of p21 (a, b),

c-Myc (c, d), and NF-κB p65 (e, f). Arrows in (e) indicate nuclear translocation of NF-κB p65 protein. Hoechst 33342 was used to identify nuclei.

Triplicate samples of 100 cells were scored, and data are presented as mean percentage ± SD. � P< 0.05, �� P<0.01.

https://doi.org/10.1371/journal.pone.0227408.g005

Fig 6. Pepsin induced phosphorylation of P65 and IκB. Protein levels were semi-quantitatively analyzed by scanning

densitometry. Ratios of phosphorylated to total proteins are presented on the right panel. ��P< 0.05, ##P< 0.05.

https://doi.org/10.1371/journal.pone.0227408.g006
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consistent with the observation that inactivation of canonical Notch signaling drives head and

neck carcinogenesis in mouse models of keratinizing HNSCC[40]. Additional studies will be

needed to elucidate the exact role of pepsin in modulating the NOTCH pathway.

Our research was performed in a cancer-derived cell line that might responds to pepsin dif-

ferently compared with normal epithelial cells. This is one major limitation of our research

and will be resolved in the future study using cultured primary epithelial cells.

Conclusion

Results presented in this study suggest that pepsin reflux induces a dose-dependent increase in

proliferation of hypopharyngeal cancer cells, and this effect is mediated by the enzymatic activ-

ity of pepsin. Although the exact role of pepsin in hypopharyngeal cancer development is not

fully understood, our data suggest that NF-κB, TRAIL and NOTCH signaling, representing

major mediators of cell proliferation, differentiation and apoptosis, are likely to be involved.

The development of pharmacological inhibitors to specifically target pepsin could potentially

modulate these signaling pathways and have therapeutic value for treating HPSCC.

Supporting information

S1 Appendix. Gene expression readouts of signaling pathways in pepsin-treated FaDu

cells.
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